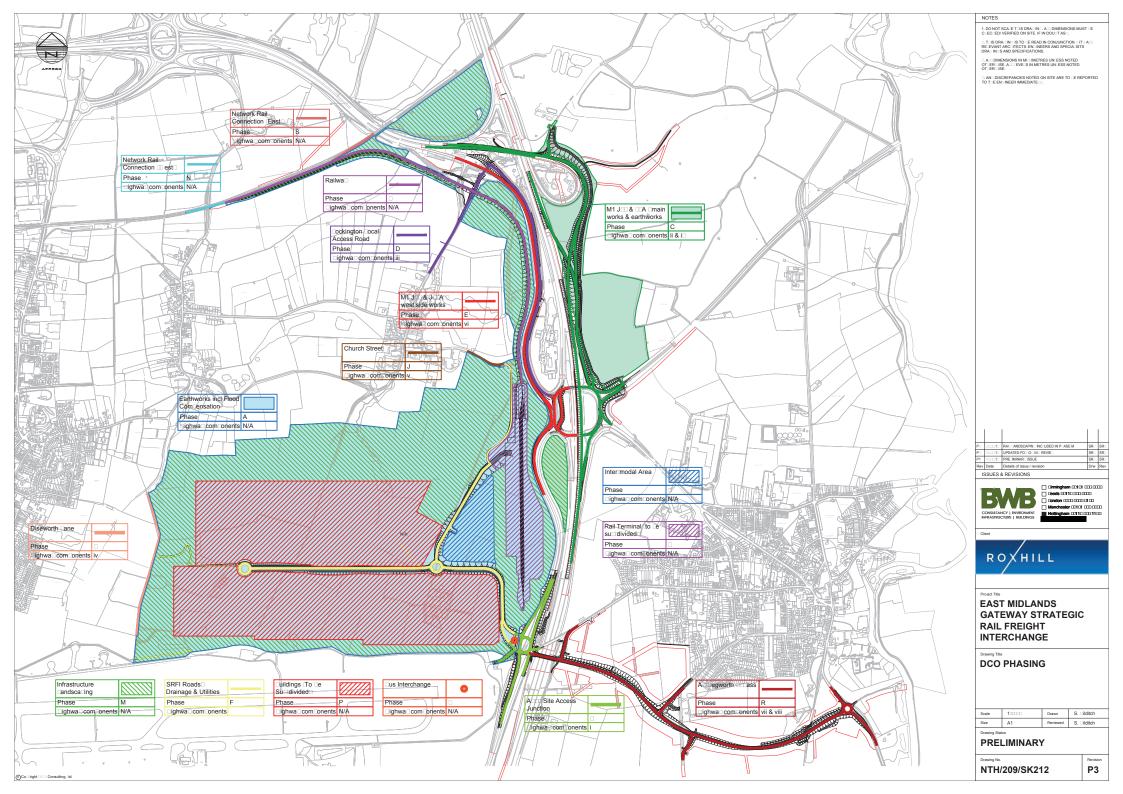
East Midlands Gateway Phase 2 (EMG2)

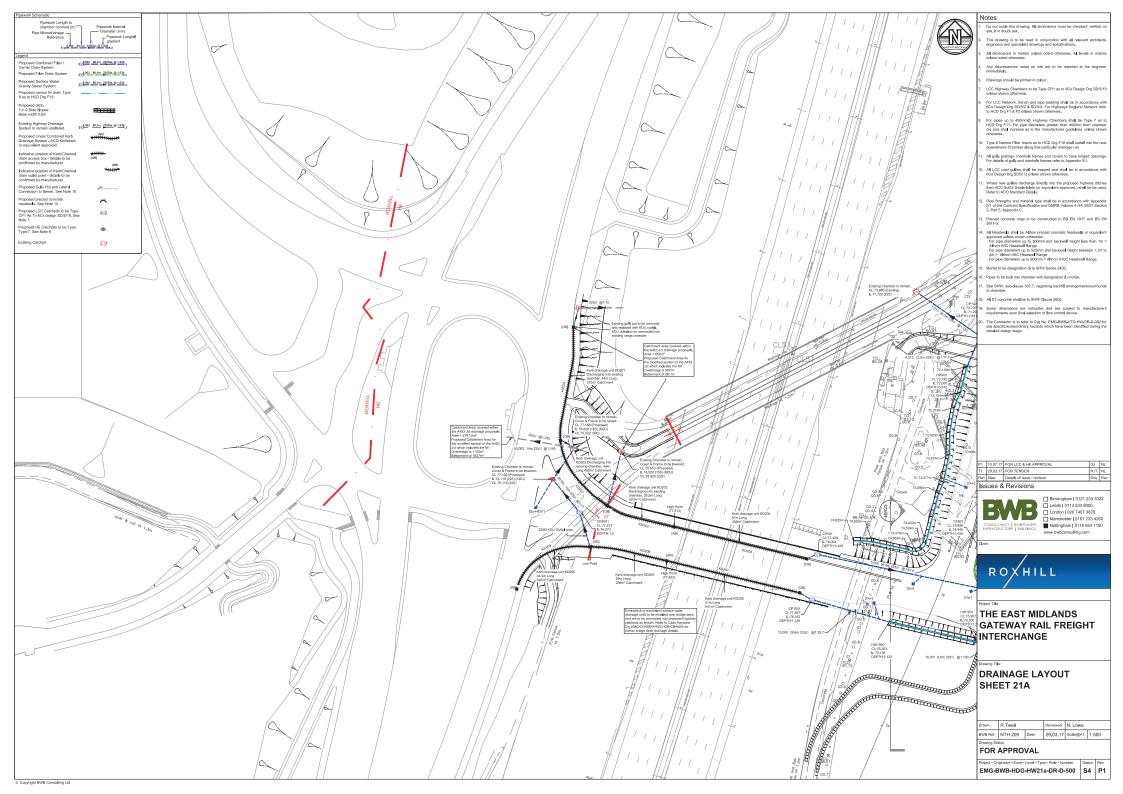
Document DCO 6.14F/MCO 6.14F (Part 2)

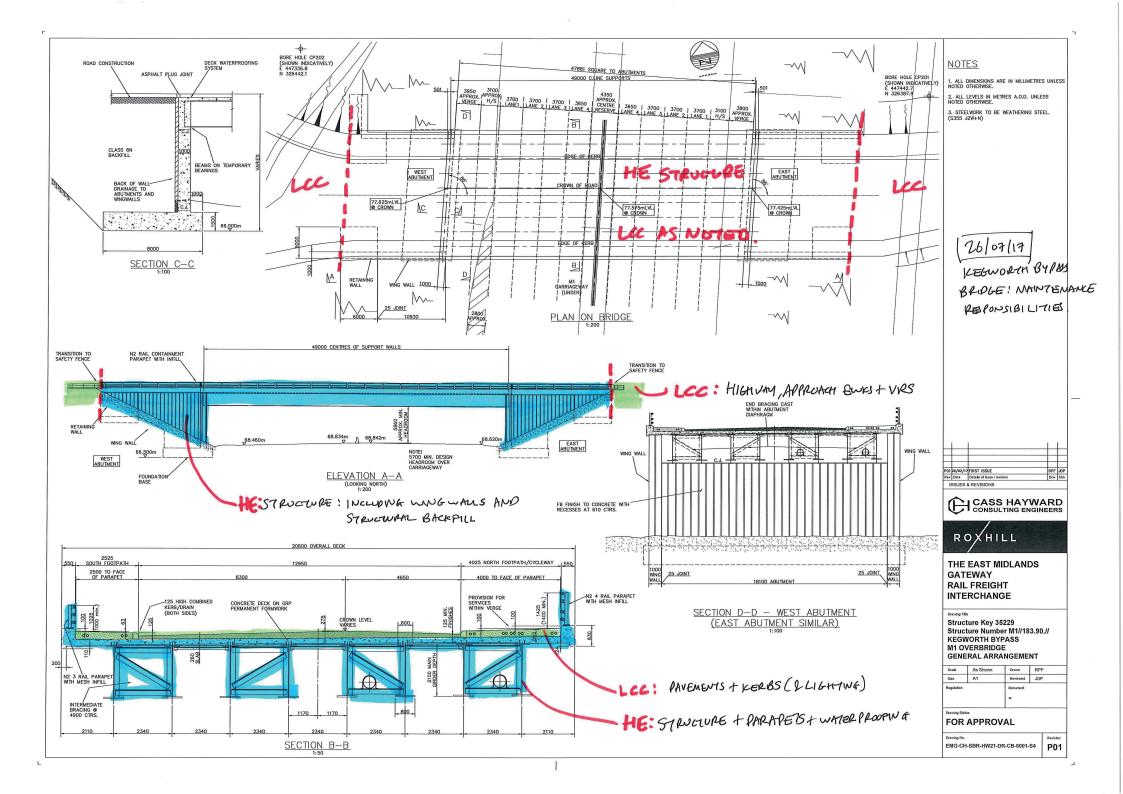
ENVIRONMENTAL STATEMENT

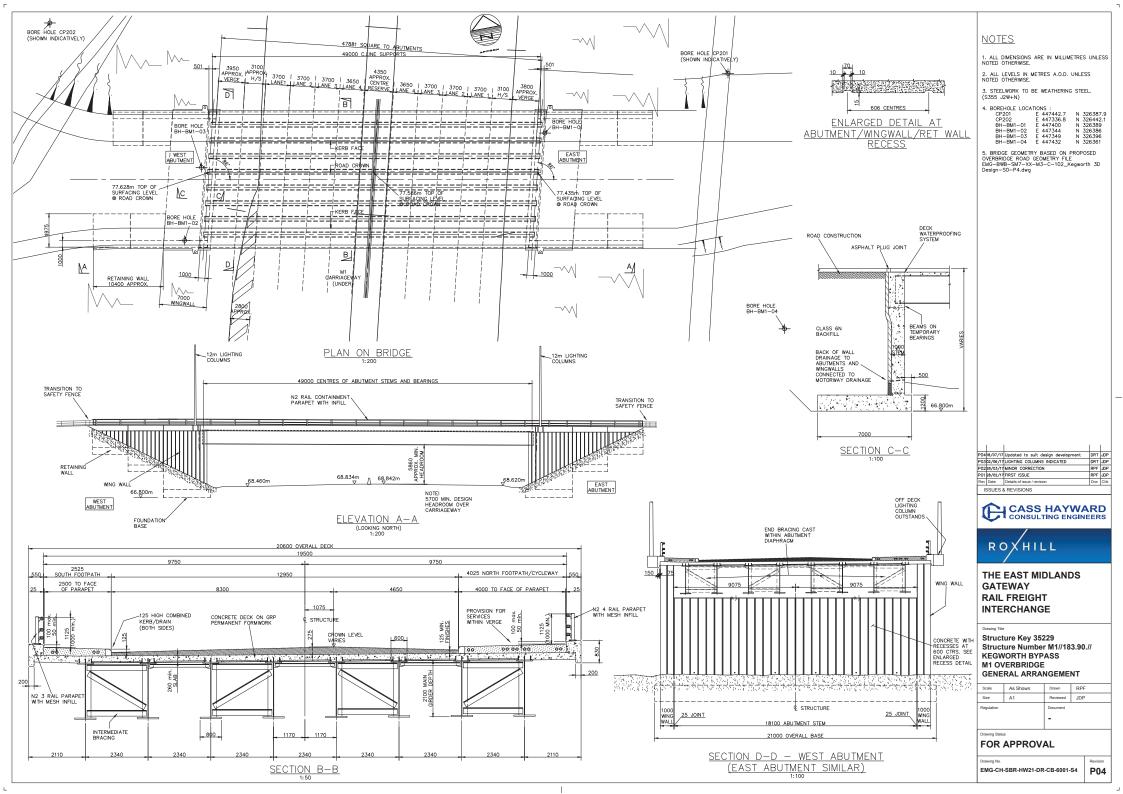
Technical Appendices

Appendix 14F


Preliminary Sources Study Affecting National Highways


August 2025




The East Midlands Gateway Phase 2 and Highway Order 202X and The East Midlands Gateway Rail Freight and Highway (Amendment) Order 202X

East Midlands Gateway Strategic Rail Freight Interchange: Zone 1 Main Development Plateau and Rail Freight Terminal. Preliminary Ground Investigation Report, prepared by RSK, reference 312494/1 - 03 (00) on behalf of Roxhill Developments Ltd, dated December 2013.

East Midlands Gateway Strategic Rail Freight Interchange: Zone 3 Main Trunk Road Improvements. Preliminary Sources Study Report, prepared by RSK, reference 312494/3-02 (00), on behalf of Roxhill Developments Ltd, dated December 2013

East Midlands Gateway Strategic Rail Freight Interchange: Zone 3 Main Trunk Road Improvements. Factual Ground Investigation Report, prepared by RSK, reference 312494-03-03 (00), on behalf of Roxhill Developments Ltd, dated December 2013.

East Midlands Gateway Strategic Rail Freight Interchange: Zone 3 Main Trunk Road Improvements. Preliminary Ground Investigation Report, prepared by RSK, reference 312494/3-04 (00), on behalf of Roxhill Developments Ltd, dated December 2013.

Stage 1 Preliminary Ground Investigation at Kegworth, for Waterman Transport and Developments Limited. Project Number PC124998, dated October 2012.

BOUSSINESQ. J. 1883. Application des etermine a' L'Etude de L'Equilibre et du Mouvementes Solides Elastiques, Gauthier-Villars, Paris, France

BRAJA. M. DAS & NAGARATNAM SIVAKUGAN, 2007. Settlements of shallow foundations on granular soil – an overview, International Journal of Geotechnical Engineering, IJGE.2007.01.01.19-29

BRITISH GEOLOGICAL SURVEY. 2002. Engineering geology of British rocks and soils. Mudstones of the Mercia Mudstone Group. Keyworth Nottingham. BGS. 2002 ISBN 085272 403 9.

BRITISH STANDARDS INSTITUTION. 1990. Method of tests for soils for civil engineering purposes. BS 1377. Parts 1 – 9. BSI, London

BRITISH STANDARDS INSTITUTION. 2004. Eurocode 7 – Geotechnical Design, Part 1 General rules, BS EN 1997-1. BSI, London

BRITISH STANDARDS INSTITUTION. 2007. Eurocode 7 – Geotechnical Design, Part 2 Ground investigation and testing, BS EN 1997-2. BSI, London

BRITISH STANDARDS INSTITUTION. 1999. Code of practice for Site Investigations. BS 5930. BSI, London

BRITISH STANDARDS INSTITUTION. 2008 + A1:2011. Code of practice for temporary works procedures and the permissible stress design of falsework. BS 5975. BSI London

BRITISH STANDARDS INSTITUTION, 2009. Code of practice for earthworks. BS 6031. BSI London

BRITISH STANDARDS INSTITUTION, 1989. Workmanship on building site. Part 1: Code of practice for excavation and filling. BS 8001-1. BSI London

BRITISH STANDARDS INSTITUTION. 2015. Foundations, BS 8004. BSI, London

BRITISH STANDARDS INSTITUTION. 2016. Code of practice for strengthened/reinforced soils and other fills. BS 8006-1:2010. BSI London

BRITISH STANDARDS INSTITUTION. 2001. Code of Practice for Investigation of Potentially Contaminated sites. BS 10175. BSI, London

BRITISH STANDARDS INSTITUTION. 2004. Hydraulically bound unbound material for use in civil engineering and highway construction. BS EN 13242. BSI London

BRITISH STANDARDS INSTITUTION. Geotechnical investigation and testing – Identification and classification of soil. BS EN ISO 14688. BSI London

BRITISH STANDARDS INSTITUTION. Geotechnical investigation and testing – Identification and classification of rock. BS EN ISO 14689. BSI London

BRITISH STANDARDS INSTITUTION. 2003. Aggregates for unbound and hydraulically bound materials for use in civil engineering works and road construction. Guidance on the use of BS EN 13242. PD 6682-6: 2003. BSI, London.

BRITISH STANDARDS INSTITUTION. Geotechnical investigation and testing – Field testing. BS EN ISO 22476. BSI.

BRITPAVE ASSOCIATION, 2005 .Britpave Technical Guidelines for the Stabilisation of Sulfate-bearing Soils BP/16 (BP/16).

BROUWER, J.J.M. Guide to cone Penetrometer testing on shore and near shore. Lankelma. 2002

BURLAND, J.B. & BURBIDGE, M. C. 1985. Settlement of foundations on sand and gravel. Proc., Institution of Civil Engineers, Part I, 78(6), pp 1325 -1391

BAUMANN, V. & BAUER, G.E.A. 1974. The performance of foundations on various soils stabilised by the vibro-compaction method. Can. Geotech. J. II, pp509-529

BUILDING RESEARCH ESTABLISHMENT. 2001. Building on fill: geotechnical aspects, 2nd Edition. BRE BR424. BRE, Garston

BUILDING RESEARCH ESTABLISHMENT. 2015. Building on fill: geotechnical aspects, 3rd Edition. BRE FB75. BRE Garston

BUILDING RESEARCH ESTABLISHMENT. 1997. Low rise building on fill. BRE BR427. BRE, Garston

BUILDING RESEARCH ESTABLISHMENT. 2005. Geotechniques for building professionals. BRE BR473. BRE, Garston

BUILDING RESEARCH ESTABLISHMENT. 2005. Brownfield sites, an integrated ground engineering strategy. BRE BR485. BRE, Garston

CHAI, J.C., CARTER, J.P., MIURA, N. & HINO, T. 2004. Coefficient of consolidation from piezocone dissipation tests. Proceedings of the International Symposium on Lowland Technology, September 2004

CIRIA. 2001. Engineering in Mercia Mudstone. CIRIA C570. CIRIA London 2001. ISBN 0860175707.

CLAYTON, C. R. I. 2001. Managing Geotechnical Risk. Improving productivity in UK building and construction. Thomas Telford, London. 80 pp

THE HIGHWAYS AGENCY. 1991. Design Manual, Road and Bridges: Volume 4, Geotechnics and Drainage; Section 1, Earthworks; Part 1, HA 44/91, Design and preparation of contract documents. HA 44/91

THE HIGHWAYS AGENCY. 2008. Design Manual for Roads and Bridges. Volume 4, Geotechnics and Drainage. Section 1 Earthworks, Part 2, Managing Geotechnical Risk. HD 22/08

THE HIGHWAYS AGENCY. 2009. Design guidance for road pavement foundations (Draft HD 25). Interim Advice Note 73/06 Revision 1. IAN 73/06 Rev 1

THE HIGHWAYS AGENCY. 1994. Design Manual, Road and Bridges: Volume 4, Geotechnics and Drainage; Section 1, Earthworks; Part 5, HA 68/94 Design methods for the Reinforcement for Highway Slopes by Reinforced Soil and Soil Nailing Techniques. HA 68/94

THE HIGHWAYS AGENCY. 1994. Design Manual, Road and Bridges: Volume 4, Geotechnics and Drainage; Section 1, Earthworks; Part 5, HA 70/94, Construction of Highway earthworks. HA 70/94.

THE HIGHWAYS AGENCY. 1995. Design Manual, Road and Bridges: Volume 4, Geotechnics and Drainage; Section 1, Earthworks; Part 7, HA 73/95, Site investigation for Highway works on contaminated land. HA 73/95

THE HIGHWAYS AGENCY. 2007. Design Manual, Road and Bridges: Volume 4, Geotechnics and Drainage; Section 1, Earthworks; Part 6, HA 74/07, Treatment of Fill & Capping Materials Using Either Lime or Cement or Both. HA 74/07.

HIGHWAYS ENGLAND. 2016. Manual of Contract Documents for Highway Works, Specification for Highway Works: Volume 1. SHW

HOULSBY, G.T. & TEH, C.I. Analysis of the piezocone in clay. Penetration Testing 1988, ISOPT-1, De Ruiter (ed.)1988 Balkema Rotterdam. ISBN 90 6191 8014

INSTITUTION OF CIVIL ENGINEERS. 2012. ICE Manual of Geotechnical Engineering. Volume 1 Geotechnical Engineering Principals, Problematic Soils and Site Investigation. ICE Publishing, 2012. ISBN 978-0-72777-5707-4

INSTITUTION OF CIVIL ENGINEERS. 2012. ICE Manual of Geotechnical Engineering. Volume 2 Geotechnical Design, Construction and Verification. ICE Publishing, 2012. ISBN 978-0-72777-5709-8

JANBU, N., BJERRUM, L. & KJAERNSLI, B. 1956. "Veiledning Ved Losing av Fandamenteringsoppgaver," (Soil Mechanics Applied to Some Engineering Problems), in Norwegian with English Summary, Norwegian Geotechnical Institute Publication No. 16, Oslo

NATIONAL HOUSE-BUILDING COUNCIL. 2016. Ground Conditions. NHBC Standards, Part 4. NHBC, Amersham

NATIONAL HOUSE-BUILDING COUNCIL. 2011. Building near trees. NHBC Standards, Part 4.2. NHBC, Amersham.

NEWMARK, N. M, 1935. Simplified computations of vertical pressure in elastic foundations, University of Illinois Engineering Experiment Station Bulletin No 429

OSMAN, A. S. & BOLTON, M.D. 2004. A new approach to the estimation of undrained settlement of shallow foundations on soft clay. Engineering Practice and Performance of Soft Deposits, IS-OSAKA 2004. ISBN 4-88644-812-7

POULOS, H.G. Foundation settlement analysis – practice versus research. The 8th Spencer Buchanan Lecture. 2000.

ROBERTSON, P.K & CABAL, K.L. 2015. Guide to cone penetrometer testing for geotechnical engineering, 5th edition. Gregg Drilling & Testing Inc

SCHMERTMANN, J.H. 1970. Static cone to compute static settlement over sand. Journal of Soil Mechanics and Foundations. ASCE 96 (SM3).

SKEMPTON, A.W. 1951. The bearing capacity of the clay. Proceedings of Building Research Congress, Volume 1, pp 180-189.

SKEMPTON, A.W. & BJERRUM, L. 1957. Contribution to the settlement analysis of foundations on clay. Geotechnique, Volume 7, No. 4, pp 167-178

SMITH,I. 2006. Smith's elements of soil mechanics (8th Edition) Blackwell Publishing. ISBN10: 1-4051-3370-8

TERZARGHI & PECK, 1967. Soil mechanics in engineering practice (2nd edition), Wiley International Edition

THORBURN, S. 1975. Building Structures supported by stabilised ground. Thorburn & Partners. Geotechnique 1975

TOMLINSON. M.J. 2001. Foundation Design & Construction (6th Edition & 7th Edition). Prentice Hall Press

US ARMY CORPS OF ENGINEERS, 1990. Engineer manual, settlement analysis. EM 1110-1-1904.

US ARMY CORPS OF ENGINEERS, 1994. Engineering manual, Chapter 5 deformation and settlement. EM 1110-1-2908. Department of the Army

APPENDIX 1/5: TESTING TO BE CARRIED OUT BY THE CONTRACTOR

Table 1/5.1 – Earthworks testing requirements

CLAUSE	WORK, GOO MATERIAL	DS OR	TEST	FREQUENCY	TEST CERTIFICATE	COMMENTS
Series 600	Earl	thworks				
601, 631 to 637, 640	Acceptable L	imits General Description			Required	¹ Only required where the use of hydraulic binders is proposed
	1	General	MC, Grading and UC (U)	1 per 500m³		Test frequency
		Granular Fill	TPS Sulphate suite	1 per 500m², min 5 per source		relates to the class of material
			OMC/MDD (Vib Hammer)	1 per 1,000m³		from each source.
			CBR at OMC (U)	1 per 1,000m³		See Table 6/1 (Specification
	2	General Cohesive Fill	MC, PI, Grading (U)	1 per 500m³		app 6/1) for specific
		Conesive i iii	OMC/MDD (U) with Hand Vane at each compaction point. Particle Density (2.5kg for 2A, 2C or 4.5kg for 2B)	1 per 1000m³		testing requirements for individual
			TPS Sulphate Suite	1 per 500m³, min 5 per source		material subclasses.
			Undrained Triaxial Shear Strength at OMC (U)	1 per 1,000m³		Where Table 6/1 does not a test
	4	Fill to Landscape	MC (U) & HSV	1 per 500m³		requirement
		Area	Grading (U)	1 per 1,000m³		Refer to Clause 612 for in situ
	6	Selected granular fill	Grading/uniformity coefficient/mc (U)	1 per 500m³		testing requirements during the
			OMC/MDD (Vib Hammer)	1 per 1,000m³, min 3 per source		placement and compaction of
			CBR at OMC (U)	1 per 1,000m³, min 3 per source		fill.
			PL/LL (U)	1 per 1,000m³, min 3 per source		All Made Ground shall be
			Los Angeles Coefficient LA (U)	1 per source as delivered to site		tested in accordance
			Organic matter / water soluble sulphate (WS) content (U)	1 per 500m³, min 5 per source		with the requirements of Appendix 6/14 and 6/15 for
			Oxidisable sulphides (OS), total sulphur and total potential sulphate (TPS) content (U)	1 per 500m³, min 5 per source		chemical testing requirements. Refer to SHW Clause 601 for
			Bitumen content (U)	1 per 1,000m³		TPS Sulphate
			Drained Shear Parameters SHW Clause 636 & 639	1 per source		suite
	7	Selected cohesive fill	MC, PI, Grading (U)	1 per 500m³		
		COHESIVE TIII	OMC/MDD (U) with Hand Vane at each compaction point. Particle Density (4.5kg Rammer)	1 per 1,000m³, min 3 per source		
			Undrained Triaxial Shear	1 per 1,000m³, min 3 per		

CLAUSE	WORK, GOO MATERIAL	DS OR	TEST	FREQUENCY	TEST CERTIFICATE	COMMENTS
Series 600	Eart	hworks				
			Strength at OMC (U)	source		
			Organic matter / water soluble sulphate (WS) content (U)	1 per 500m³, min 5 per source		
			Oxidisable sulphides (OS), total sulphur and total potential sulphate (TPS) content (U)	1 per 500m³, min 5 per source		
			Ph/Chloride ion content (U)	1 per 500m³, min 5 per source		
			Drained Shear Parameters (U)	1 per source		
			Permeability (U)	1 per source		
	9	Stabilised	Pulverisation	1 per 625m²		
		Material	Bearing Ratio [CBR] recompacted 2.5kg Rammer (U)	1 per day		
			MCV (U)	1 per 250m³, max 5 per day		
602	the surfac paved area,	naterial beneath e of a road or if within 450mm ned surface	Frost Heave (U)	Source Approval	Required	For ALL material within 450mm finished level.
	Compaction	of Fills			Required	Compaction Trial to be
		Method Compaction	Field Dry Density	1 per 400m³ per layer		completed in accordance
		·	CBR (Mexe, TRL DCP, ect), granular fill only	1 per 400m³ per layer		with App 6/3 and be witnessed by the Client
			HSV undrained shear strength, cohesive fill only	1 per 400m³ per layer		and/or Client's Representative.
			Compaction Trial	1 per method per source. To be witnessed by Hydrock		Plate load testing to be carried out in
612			Dual Cycle Static Plate Load Test using 0.60m Diameter	1 per 20m x v 2m per 1.0m of fill, base of foundation and at final formation		accordance with DMRB IAN 73/06 Rev 1 for equivalent CBR
		End Product	Field Dry Density	1 per 200m³ per layer		at the formation of
			CBR (Mexe, TRL DCP, ect), granular fill only	1 per 200m³ per layer		each & every class of fill material.
			HSV undrained shear strength, cohesive fill only	1 per 200m³ per layer		Refer to Appendix 6/1 and 6/3 for
			Compaction Trial	1 per method per source. To be witnessed by Hydrock		minimum compaction requirements to
			Dual Cycle Static Plate Load Test using 0.60m Diameter	1 per 20m x20m per 1.0m of fill, base of foundation and at final formation		be met.
		Drainage layers	Grading	1 per 400 tonnes or 200m³ whichever is the lesser		

Notes to Table 1/5-1:

- 1. The minimum number of tests will be 3 per source, before the course can be approved by Hydrock for use. 2.(U) indicates that a UKAS test report or certificate is required.
- 3. Unless otherwise shown in this Appendix, tests and test certificates for works, goods or materials as scheduled under any one clause are required for all such work, goods or materials in the works.
- 4. Frequency of testing applies to each separate earthworks material within each of the earthworks material class.
- 5. Unless specifically stated to the contrary, all samples used in the testing shall be taken from materials after delivery to the site for incorporation into the works.
- 6. The Contractors attention is drawn to the requirements of the relevant Specification Appendices for the form of all deliverables, storage of test records and storage of records of materials imported to and exported from site.
- 7. Where source approval is specified, source testing shall be carried out at each quarry or stockpile used for supply to site and at each location of borrow/site winnings used for on-site material.
- 8. Definitions of abbreviations:
 - mc: natural moisture content.
 - Organic Matter: Organic Matter Content.
 - OMC: Optimum Moisture Content.
 - MDD: Maximum Dry Density.
 - CBR: California Bearing Ratio.
 - HSV: Hand Shear Vane for assessment of undrained shear strength.
 - IDD: Intact Dry Density.
 - ACM: Asbestos and Asbestos Containing Materials.
 - MEXE: In situ assessment of equivalent CBR by MEXE Probe
 - TRL DCP: Transport Research Laboratory Dyanmic Cone Penetrometer for in situ assessment of equivalent CBR.
- 9. All Made Ground shall be tested in accordance chemical testing requirements as defined in the relevant Appendix for class of material and the requirements of Appendix 6/14 and 6/15.

APPENDIX 1/23: RISKS TO HEALTH AND SAFETY FROM MATERIALS OR SUBSTANCES

1.0 GENERAL

- 1.1 In connection with substances hazardous to health the Contractor shall be responsible for taking all reasonable steps to secure the safety of his employees, members of the Employers team and members of the public through the carrying out of all reasonable steps in connection with:
 - i) Restrictions in relation to traffic management measures
 - ii) Restrictions in relation to working practices
 - iii) Measures to be taken to protect members of the public
 - iv) Monitoring to be undertaken by the Contractor
 - v) Traffic management proposals
- 1.2 The Contractor's attention is also drawn to the Construction, Design and Management Regulations which shall apply to the Works.

2.0 DUST MITIGATION, HAUL ROADS AND MUD/DUST ON HIGHWAY

- 2.1 The Contractor shall provide to the Council for prior written approval a scheme for the provision of wheel cleansing facilities for heavy commercial vehicles and any mobile plant which has an operating weight exceeding three tonnes, or such other tonnage that may be agreed in writing with the Council.
- 2.2 Such approved wheel cleansing facilities shall be installed in accordance with a timescale approved in writing by the Council and shall be maintained throughout the period of Construction works by the Contractor unless any variation has been approved in writing by the Council.
- 2.3 All heavy commercial vehicles or other mobile plant which has an operating weight exceeding three tonnes, or other such tonnage that may be agreed in writing with the Council, associated with the construction of the Development leaving the Site, shall on each occasion, prior to leaving, pass through the wheel cleansing facilities.
- 2.4 Appropriate measures shall be implemented at all times to minimise any dust emissions.
- 2.5 Temporary haul roads shall be maintained for the duration of their use to minimise any build-up of loose spoil etc. Any damage to the existing site haul roads shall be repaired at the contractor's expense.
- 2.6 Traffic both entering and working on site shall obey a maximum speed limit of 10 mph.
- 2.7 Mobile water bowsers and sprayers shall be available on site at all times to water unpaved haul roads and working areas. The water spray may include chemical dust suppressants or wetting agents to improve dust control.
- 2.8 All open bodied Heavy Commercial Vehicles carrying dry or loose aggregate, cement or soil into and R/14792/008— Annex A Page 10

out of the site, shall be sheeted or sealed so as to prevent the release of such material into the local environment.

- 2.9 An adequate supply of water shall be maintained on site at all times to allow for dust suppression activities to be carried out at short notice.
- 2.10 Where mobile water bowsers are no effective in suppressing dust then vapour masts shall be used. Such vapour masts shall be deployed at 20m centres on the downwind side of haul roads or excavations giving rise to significant dust or emissions of odour.
- 2.11 Regular inspections of the public highway adjacent to the site shall be carried out. If deemed necessary by the Contractor or the Supervisor, the highway shall be swept regularly to remove any mud, slurry or dust deposited by vehicles entering or departing the site. If the Supervisor considers that significant amounts of any detritus have been deposited on the public highway then operations shall be temporarily suspended until appropriate cleaning operations have been undertaken.
- 2.12 The Contractor shall, as soon as reasonably practicable, but no later than the end of each working day, sweep or otherwise clear away any mud or similar material which may be carried onto the public highway by vehicles leaving the Site during the period of the Development.

3.0 ODOUR

- 3.1 In general terns the excavation works are not considered likely to give rise to any significant odour problems.
- 3.2 If highly odorous materials are encountered, which may give rise to nuisance to neighbouring properties, vapour masts shall be deployed to provide odour control.
- 3.3 Any odorous materials shall be covered at the end of each working day and any stockpiles will be located away from any sensitive areas.
- 3.4 Plant and machinery shall be serviced regularly to ensure that exhaust fumes are not excessive.
- 3.5 Compliance with Legislation and Regulatory Approvals

APPENDIX 1/24: QUALITY MANAGEMENT SYSTEMS

1.0 GENERAL

- 1.1 The Contractor shall institute and operate a quality management system complying with BS EN ISO 9001 and SHW Clause 104. The quality management system shall be described in a Quality Plan that shall be submitted to the Employers Representative for their acceptance before the commencement of any site works.
- 1.2 The Quality Plan shall cover the following items:
 - i) Contractor's organisation and management;
 - ii) Contractor's method statements and construction procedures
 - iii) Contractor's construction quality control
 - iv) Organisation's Quality Plans.
- 1.3 The Quality Plan shall conform to the requirements of Sections 2.0, 3.0 and 4.0 of this appendix.
- 1.4 Items i) and ii) of the Quality Plan shall be submitted to the Employers Representative for its acceptance not later than 28 days after award of contract.
- 1.5 Method statements are required for each major activity to be undertaken by the Contractor. The Contractor shall agree in writing with the Employers Representative the full scope of activities which require the production of individual Method Statements.

2.0 CONTRACTOR'S ORGANISATION AND MANAGEMENT

- 2.1 This section of the Quality Plan shall include:
 - i) Definition of the Contract and its documentation.
 - ii) The organisation of the Contract, including the line of command and communication and communication links between parties involved in the Contract.
 - iii) Names, roles responsibilities and authority of the principals and key personnel.
 - iv) Control of liaison and meetings with third parties.
 - v) Identification of the Contractors own staff responsible for overseeing each major activity.
 - vi) The Contractors control systems for any sub-contractors to be appointed by them.
 - vii) Document control.
 - viii) Programme for submission of Method Statements and Organisations Quality Plans.
 - ix) The quality plans for subcontractors and suppliers of work, goods and materials which are the subject of quality management schemes.

- x) Procedure for the preparation, review and adjustment of programmes for the effective progression of the Works and the recording of this.
- xi) Control and approval of purchases of materials.
- xii) Control of off-site activities (where appropriate).
- xiii) Procedures for the regular review and recording by the Contractor of the quality of the works.
- xiv) Control of personnel selection, based on their care, skill and experience.
- xv) Management review/audits to monitor and exercise adequate control over the implementation of the Quality Plan.
- xvi) Any other relevant item, specific to the methods of work proposed by the Contractor.

3.0 CONTRACTOR'S METHOD STATEMENTS AND CONSTRUCTION PROCEDURES

- 3.1 This section of the Quality Plan shall include:
 - i) Detailed method statements for each major activity whether directly controlled or subcontracted.
 - ii) The method statements for all activities that might affect the quality of the permanent and temporary works shall identify hold points and invoke:
 - (1) Work instructions.
 - (2) Quality control procedures.
 - (3) Compliance testing and inspection arrangements.
 - (4) Work acceptance procedures.
 - ii) Identify the relevant construction procedures in the Contractor's own Quality Management System, and provide copies on request.

4.0 CONTRACTOR'S CONSTRUCTION QUALITY CONTROL

- 4.1 This section of the Quality Plan shall include:
 - i) Statement of the Contractors organisation for quality control.
- 4.2 The Quality Plan shall identify procedures (which may be part of the Contractors general procedures) that cover the topics listed below:
 - i) Arrangements for 'receiving' and 'in-process' testing.
 - ii) Control of test laboratories.
 - iii) Control of test, measuring and inspection equipment.

- iv) Document control.
- v) Procedures for monitoring and recording the inspection, test and approval status of the constructed/installed work.
- vi) Procedures for tests and inspections for the purpose of the Contractor certifying that prior to covering up, each part of the Works is complete and conforms to the Contract.
- vii) Procedures for the review of work submitted for review but not accepted as conforming to the Contract.
- viii) Procedure for the collation of quality records as identified in BS EN ISO 9001 and provision of copies when requested by the Employers Representative.

5.0 ORGANISATION QUALITY PLANS

- 5.1 The Quality Plan shall include:
 - i) Definition of the product or service to be provided.
 - ii) The organisation organogram shall describe the line of command and state the name of the senior manager responsible for the contracted Work and the name of the Organisations on-site Management representative. Contact addresses, telephone numbers etc. shall be provided.
 - iii) Identification of the relevant parts of the Organisations quality system relevant to the product or service being provided. Copies to be provided to the Employers Representative on request.
 - iv) The control of personnel selection (at works and on site), including special requirements for skilled personnel e.g. certification of welders, training of operatives, experience requirements etc.
- 5.2 Specific procedures shall be provided for the following:
 - i) Receipt and examination of certificates of conformity and test results for purchased products.
 - ii) Product identification and traceability.
 - iii) Handling, storage, packaging and delivery to site and storage and handling on site.
 - iv) Quality records.

6.0 TESTING

- 6.1 The Contractor shall undertake all compliance testing required during the course of the filling operation to check the material classification, acceptance limits and, the method of compaction control as defined by Appendix 6/1. The minimum frequency of testing is defined in Appendix 1/5 of the specification with the material acceptance and compliance limits set out in Appendix 6/1 and specifically in Table 6/1.
- 6.2 The compliance testing of the earthworks materials shall be carried out by a laboratory which holds UKAS (for geotechnical tests) or MCERTS (for chemical and contaminations tests) accreditation for

the specific test. Where it is not possible to obtain the testing of a material for a specific property to a UKAS or MCERTS accredited method, the Contractor shall obtain permission from the Employers Representative for the test that is to be completed by the proposed laboratory, before the test is undertaken.

- 6.3 The Contractor shall provide to the Supervisor, by mid-day on the first working day of each week, an updated electronic summary (Microsoft Excel 2010 or earlier) of all testing which has been completed up to the end of works for the previous week.
- 6.4 The testing summary shall be in a form agreed with the Supervisor, and shall include the results of all *in situ* test results (if the final validated report has not been issued by the appointed laboratory, these results shall be denoted with a draft to show that they are not final results). The summary shall also include a list of all samples submitted for laboratory testing, and provide the results of those laboratory tests where report certificates have been issued.
- 6.5 The information to be included for the summary of testing shall include, but not be limited to, the following:
 - i) sequential test number,
 - ii) date of test;
 - iii) coordinated position to include easting & northing, correct to National Grid Reference;
 - iv) reduced level, correct to m OD;
 - v) site reference;
 - vi) test grid reference;
 - vii) layer number (during placement of fill);
 - viii) test type;
 - ix) whether results are Draft (before the issue of certificate) or Final (certificate issued and received by Contractor); and
 - x) the results of the testing, compliance with the Specification and any comments relating to the test .
- 6.6 The contractor is to make available on site at all times a file containing all test certificates in addition to the testing summary, for inspection by the Supervisor.
- 6.7 The results of all testing shall be submitted to the Supervisor as soon as they are reported, and no more than 1 day after issue of the test certificate to the Contractor. It is recognised that different tests may take different time to complete; however the Contractor shall advise the Supervisor of any delay that they are aware of regarding the completion of any tests (e.g. a sample is being re-tested and the report will be delayed). The Supervisor shall be given sufficient time to review the content of the testing and the associated test results.

- 6.8 If in the opinion of the Supervisor, the material alters in classification or becomes unacceptable for whatever reason during the course of the filling operations, the Contractor will be required to repeat the compliance testing as required by the Supervisor. Equally, if the Contractor considers the classification of a material to have changed from that given in Appendix 6/1 they shall inform the Supervisor immediately.
- 6.9 The Contractor shall be responsible for removing from site any unacceptable material to suitably licensed facilities before the completion of their works.

7.0 SUPERVISOR

- 7.1 In addition to the detailed description of the role of the Supervisor, as defined by the NEC 3 Engineering and Construction Contract (ISBN 978 07277 3382 5), the Supervisor shall be on site with regular attendance and undertake the following role:
 - i) Liaison with the Contractor, Project Manager and Employers Representative.
 - ii) Reviewing of testing activities, this does not replace or absolve the Contractor from the responsibilities set out in the Specification requirements.
 - iii) Observing and commenting on the quality of the earthworks activities. This does not replace or absolve the Contractor from the responsibilities set out in the Specification requirements.
 - iv) Reviewing of soil/fill sampling as required under the specification and advising the Contractor of the results in order to allow the satisfactory progress of the works.

8.0 CONTRACTOR'S VALIDATION AND VERIFICATION REPORT

- 8.1 The Contractor will maintain records of the works to include, but not be limited to, the following:
 - i) daily record sheets to include a summary of the day's activities;
 - ii) progress photographs (not less than weekly);
 - iii) weather conditions;
 - iv) plant, personnel and visitors present;
 - v) aspects relating to Health and Safety, Environmental Control; and
 - vi) test results (refer to Sections 7.0).
- 8.2 The Contractor will ensure that the requirements of this Specification are complied with. Upon receipt of satisfactory demonstration that all of the works have been undertaken in accordance with the Specification, the Contractor shall provide a validation report. This report will include relevant site records and illustrate that the remedial and ground preparation works have been carried out in accordance with the Specification.
- 8.3 During the works and in areas of excavation, compaction or fill placement the Contractor will be required to undertake weekly topographical survey of the earthworks profile to provide a continuous record of the earthworks operations.

- 8.4 A verification report in accordance with the RMS and MMP is required to be prepared by the Contractor on those aspects of the works they have completed and are responsible for. The Contractor's report will include, where appropriate, the following:
 - i) daily record sheets to include a summary of the day's activities;
 - ii) progress photographs;
 - iii) general description of the works completed, including any earthworks, excavations (including excavations of hard obstructions or foundations), placement and compaction methodology and plant used;
 - iv) detailed weather conditions;
 - v) formation and foundation treatment, including drainage and treatment of soft areas;
 - vi) plant, personnel and visitors present;
 - vii) aspects relating to Health and Safety, Environmental control;
 - viii) waste transfer notes;
 - ix) application of acceptability criteria and summary of control test results for each specific earthworks material placed during the earthworks operations;
 - x) chemical and geotechnical test certificates and monitoring data including location and level with associated drawings;
 - xi) as built surveys, including base of excavations to include drawings;
 - xii) coordinates, levels, invert levels and diameters of services remaining on site;
 - xiii) drawings showing the location and level of each specific earthworks material placed during the earthworks operations, any feature or operation relevant to the earthworks including any instrumentation and the location of trial areas and control tests; and
 - xiv) all correspondence with Statutory Authorities.

APPENDIX 6/1: REQUIREMENTS FOR ACCEPTABILITY AND TESTING ETC. OF EARTHWORKS MATERIALS

1.0 ACCEPTABLE LIMITS FOR FILLS

Earthworks materials are to comply in general with the 600 series of the Highways Agency 'The Manual of Contract Documents for Highway Works', BS 6031:2009 and with the specific requirements of this appendix. Permitted classes of construction materials are defined in the following tables:

- Table 6/1 Acceptable Earthworks Materials: Classification and Compaction Requirements
- SHW Table 6/2 Grading Requirements for Acceptable Earthworks Materials.
- Table 6/7 Material Sources and Source Codes for Imported Materials.

All earthworks materials are to meet the acceptability limits as set out in Table 6/1 and SHW Table 6/2

In general, engineered fill to raise site levels are to be constructed of Class 1 or Class 2 General Fill, Class 6 or Class 7Selected Fill with an upper 0.60m of hydraulically modified Class 9D unless otherwise indicated on the Drawings. Where relevant any restrictions on the use of Class 2 materials are detailed in Specification Appendix 6/3, 6/14 and 6/15.

- 1.1 Processed Class U1A or U1B material may be used as earthworks materials subject to meeting the target acceptability limits as set out in Table 6/1, SHW Table 6/2, Appendix 6/14, 6/15 and site specific requirements.
- 1.2 The Drawings show the general approach to where each Class of fill is to be used, including the requirements for zoning of general fill, selected fill and processed fill.
- 1.3 Earthworks materials derived from processed Class U1B material and used in the works are to be identified separately on the Contractor's drawings.
- 1.4 Where undrained shear strength is specified as the method of acceptability testing, the Contractor may use a hand vane provided that it is initially calibrated against the unconsolidated undrained shear strength laboratory triaxial test to BS 1377:Part 7, clause 8 on 100mm nominal diameter samples, and the MCV test in accordance with BS 1377:Part 4. Otherwise, shear strength testing requirements is to be as set out in 633 of the SHW.
- 1.5 Where 'recycled aggregate' is used in this Specification, the material shall be aggregate resulting from the processing of material used in a construction process. The aggregate shall have been tested in accordance with SHW Clause 710, and the content of other materials (Class X) including wood, plastic and metal shall not exceed 1% by mass.
- 1.6 Where 'recycled aggregate except recycled asphalt' is used in this Series, the aggregate shall have been tested in accordance with SHW Clause 710. Content of asphalt (mineral aggregate with a bituminous binder) shall not exceed 2% by mass, and the content of other materials (Class X) including wood, plastic and metal shall not exceed 1% by mass.

2.0 SPECIAL REQUIREMENTS FOR DETERMINING ACCEPTABILITY, WHO CLASSIFIES WHERE, AND WHETHER TRIAL PITTING IS REQUIRED

- 2.1 Acceptability testing is to be the responsibility of the Contractor and be carried out in accordance with Specification Appendix 6/1 and at the frequencies given in Appendix 1/5 in a UKAS accredited testing laboratory. The Contractor is to include the location for each sampling point or in situ test position with the relevant test result which shall have a unique identification number.
- 2.2 Where source approval of imported material is shown, the testing is to be the responsibility of the Contractor and be carried out in accordance with Specification Appendix 6/1. Source approval will comprise (as a minimum) 3 sets of the relevant test on each sub-unit of material to be used in the Contract.
- 2.3 The Contractor is to maintain full records on each sub-unit of imported materials including but not limited to, the location of the sources, the suppliers details, the acceptability testing and the location it has been incorporated within the works.
- 2.4 On completion of each site specific earthworks operations a Geotechnical Feedback Report (GFR) is to be prepared by the Contractor and submitted to the Project Manager and is to comply with the requirements of HD 22/08 and shall include as a minimum the following information:
 - a) General description of the earthworks, excavations, placement and compaction methodology and plant used;
 - b) Detailed weather conditions;
 - c) Formation and foundation treatment including ground improvement, drainage measures and treatment of soft areas;
 - d) Application of acceptability criteria and summary of the control test results for each specific earthworks material placed during the earthworks operations;
 - e) A copy of all relevant test results including grid location and level;
 - f) Drawings showing the location of each specific earthworks material placed during the earthworks operations, any feature or operation relevant to the earthworks including instrumentation and the location of the trial areas and control tests; and
 - g) An electronic copy of all the test results and monitoring associated with the earthworks operations
- 2.5 Should any material be placed which has not been given prior written approval from Hydrock, the Contractor will have done this at their own risk and they will be responsible for any and all remedial works required to rectify the situation. All costs associated with this remedial work are to be borne by the Contractor.

3.0 RENDERING UNACCEPTABLE MATERIAL ACCEPTABLE

- 3.1 The Engineer must be informed if Class U1B material is to be processed to meet the target acceptability limits as set out in Table 6/1 so that appropriate acceptability criteria for the control of contamination can be set and agreed upon by all parties before the commencement of such remedial works.
- 3.2 Earthworks materials generated by demolition works or from excavation of concrete hardstanding/foundations/piles, not classified as Class U1B or Class U2, are to be classified as Class U1A and be processed to meet the 'recycled aggregate' requirements of Clause 601.12 of SHW and the target acceptability limits as set out in Table 6/1, Table 6/2 and site specific requirements. As far as it is practical, the Contractor should process Class U1A Made Ground material or excavated material into Selected Fill in preference to General Fill.
- 3.3 Rendering Class U1A material acceptable by lime (quicklime) modification is permitted, subject to the requisite testing being completed and permissible values for sulfate (including Total Potential Sulfate, TPS) being achieved. For the purposes of this Specification, soils with a TPS content in excess of 1% shall be deemed to be unsuitable for treatment with hydraulic binders, including lime & quicklime.

4.0 REQUIREMENTS FOR GROUNDWATER LOWERING OR OTHER TREATMENT

- 4.1 The Contractor is responsible for all groundwater lowering where this is required for the purposes of the construction works. Based upon the available geotechnical records, it is not perceived that there will be a requirement for de-watering, however the underlying geology is known to contain relatively high permeability soils, therefore during periods of inclement weather temporary measures may be required for the control of groundwater.
- 4.2 The Contractor is responsible for obtaining all permits and/or licences required to undertake groundwater lowering and for treatment and/or disposal of said groundwater.
- 4.3 Where earthworks operations or ground improvement measures result in the expelling of groundwater into drainage layers or onto earthworks surfaces the discharged water shall be collected, treated if necessary and disposed of by the Contractor.
- 5.0 REQUIREMENTS FOR REMOVAL OFF SITE OF EXCAVATED ACCEPTABLE MATERIAL OR UNACCEPTABLE MATERIAL REQUIRING PROCESSING OR RETENTION OF SURPLUS MATERIAL ON SITE
- 5.1 No material is to be removed off site without the agreement of the Employer or NR.
- 5.2 Surplus material is to be temporarily stockpiled in areas designated for spoil storage. The earthworks design of the temporary stockpile is the responsibility of the Earthworks Contractor's Temporary Works Designer.
- 6.0 PERMITTED USE OF ACCEPTABLE MATERIAL OR UNACCEPTABLE MATERIAL REQUIRED TO BE PROCESSED FOR PURPOSES OTHER THAN GENERAL FILL

6.1 Earthworks materials derived from processed Class U1B material is to be used in the works only where shown on the Drawings or where agreed with the NR.

7.0 REQUIREMENTS FOR IN SITU RESISTIVITY TESTS

7.1 Where required, the determination of resistivity is to be measured by in situ testing.

8.0 REQUIREMENTS FOR IN SITU REDOX POTENTIAL TESTS

8.1 Where required, the determination of redox potential is to be measured by in situ testing.

9.0 REQUIREMENTS FOR THE ASSESSMENT OF THE EFFECTS OF WATER SOLUBLE (WS) SULPHATE, OXIDISABLE SULPHIDES AND TOTAL POTENTIAL SULPHATE IN ACCORDANCE WITH TRL 447, TEST NOS. 1 TO 5

9.1 Where required as part of any lime modification or improvement works, the water soluble (WS) sulphate, oxidisable sulphides (OS) and total potential sulphate (TPS) are to be determined in accordance with Clause 644 of SHW and HA 74/07.

10.0 RESPONSIBILITY FOR THE WORKS

- 10.1 The Contractor is be responsible for the works covered by the specification and is permitted to self certify the works, in accordance with the requirements of the specification. The right of self certification is not to be delegated or extended to any of the following parties:
 - Subcontractors, employed by the Contractor,
 - Service owners contractors undertaking backfilling of diverted service trenches,
 - Other third party contractors undertaking works on the site.

11.0 COMPACTION COMPLIANCE ENVELOPES

- 11.1 Table 6/1 defines the acceptability limits for the earthworks material to be used for this project. In order to clarify the requirements for the placement and compaction of the material, a series of compaction compliance envelopes have been developed for each of the major classes of fill material described in Table 6/1, including:
 - Figure 6/3-1: Compaction Compliance Envelope for Class 1A, Class 1B and Class 1C;
 - Figure 6/3-2: Compaction Compliance Envelope for Class 2A, and Class 2C;
 - Figure 6/3-3: Compaction Compliance Envelope for Class 2B;
 - Figure 6/3-4: Compaction Compliance Envelope for Class 6F1 and Class 6F2; and
 - Figure 6/3-5: Compaction Compliance Envelope for Class 6I, 6N and Class 6P.

Class			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Requir of Fill Materials in Clause 6	•		rements on Use	COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	SS	
			Description		Clause 601 and Appendix 6/1)	Property (See Exceptions	Defined and Tested	Acceptable lin	nits Within:	NOTES			
						in Previous Column)	in Accordance with:	Lower	Upper				
1	А	-	Well graded granular	General fill	Any material, or combination of material designated as Class 3 in	(i) grading	BS 1377-2	SHW Table 6/2	SHW Table 6/2	SHW Table 6/4 Method 2 modified as required to ensure	1	Α	
			material		the Contract. Recycled aggregate	(ii) uniformity coefficient	See note 5	10	-	minimum 95% of MDD			
						(iii) mc	BS 1377-2	OMC -2%	OMC +2%	OMC/MDD determined using Vibrating Hammer			
						(iv) OMC / MDD	BS 1377-4	-	-				
						(v) CBR at OMC	BS 1377-4	5%	-				
1	В	-	Uniformly graded	General fill	Any material, or combination of material designated as Class 3 in	(i) grading	BS 1377-2	SHW Table 6/2	SHW Table 6/2	SHW Table 6/4 Method 3 modified as required to ensure	1	В	
GRANULAR			granular material		the Contract. Recycled aggregate	(ii) uniformity coefficient	See note 5	-	10	minimum 95% MDD OMC/MDD determined using			
L GR			acc.iai			(iii) mc	BS 1377-2	OMC -2%	OMC +2%	Vibrating Hammer			
Y L						(iv) OMC / MDD	BS 1377-4	Declared	Declared				
GENERAL						(v) CBR at OMC	BS 1377-4	5%	-				

Class			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Requir of Fill Materials in Clause 6	• •	•	rements on Use	COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	ss	
			Description		Clause 601 and Appendix 6/1)	Property (See Exceptions	Defined and Tested	Acceptable lin	nits Within:	NOTES			
						in Previous Column)	in Accordance with:	Lower	Upper				
2	A	-	Wet cohesive material	General fill	Any material, or combination of materials other than material	(i) grading	BS 1377-2	SHW Table 6/2	SHW Table 6/2	SHW Table 6/4 Method 1 modified as required to ensure	2	А	
					designated as Class 3 in the contract	(ii) plasticity index (PI)	BS 1377-2	-	-	minimum 95% MDD or C of 50kN/m² whichever is the most			
						(iii) mc	BS 1377-2	105% MDD	Min c of 50kN/m²	onerous			
						(iv) undrained shear strength I	SHW Clause 633	50 kN/m²	-	OMC/MDD determined using 2.5kg Rammer			
						(v) OMC/MDD	BS 1377-4	-	-	Except for materials with liquid limit greater than 50, only			
						(vi) Particle Density	BS 1377-2	-	-	 deadweight tamping or vibratory tamping rollers or grid rollers shall be used 			
2	В	; -	Dry cohesive material	General fill	Any material, or combination of materials other than material	(i) grading	BS 1377-2	SHW Table 6/2	SHW Table 6/2	SHW Table 6/4 Method 2 modified as required to ensure	2	В	
					designated as Class 3 in the contract	(ii) plasticity index (PI)	BS 1377-2	-	-	95% MDD or minimum C of 80kN/m² whichever is the most			
						(iii) mc & MCV	BS 1377-2	105% MDD	Min c of 80kN/m²	onerous			
						(iv) undrained shear strength I	SHW Clause 633	80 kN/m²	-	OMC/MDD determined using 4.5kg Rammer			
						(vi) OMC/MDD	BS 1377-4	-	-				
						(vi) Particle Density	BS 1377-2	-	-				
		- 1	<u> </u>	1	I .	1	1	1	1		1		_

Class			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Requir of Fill Materials in Clause 6	•	•	rements on Use	COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	SS
			Description		Clause 601 and Appendix 6/1)	Property (See Exceptions	Defined and Tested	Acceptable lin	nits Within:	NOTES		
						in Previous Column)	in Accordance with:	Lower	Upper			
2	С	-	Stony cohesive	General fill	Any material, or combination of materials other than material	(i) grading	BS 1377-2	SHW Table 6/2	SHW Table 6/2	SHW Table 6/4 Method 2 modified as required to ensure	2	С
			material		designated as Class 3 in the contract	(ii) plasticity index (PI)	BS 1377-2	-	-	95% MDD or C of 50KN/m² whichever is the most onerous		
						(iii) mc	BS 1377-2	105% MDD	Min c of 50KN/m²	OMC/MDD determined using		
						(v) undrained shear strength I	SHW Clause 633	50 KN/m²	-	2.5kg Rammer.		
						(vi) OMC/MDD	BS 1377-4	-	-			
						(vii) Particle Density	BS 1377-2	Declared	Declared			
2	D	-	Silty cohesive material	General fill	Any material, or combination of materials other than material	(i) grading & sedimentation analysis	BS 1377-2	SHW Table 6/2	SHW Table 6/2	SHW Table 6/4 Method 3 modified as required to ensure	2	
					designated as Class 3 in the contract	(ii) plasticity index (PI)	BS 1377-2	-	-	95% MDD or C of 50KN/m² whichever is the most onerous		
						(iii) mc	BS 1377-2	105% MDD	Min c of 50KN/m²	OMC/MDD determined using 2.5kg Rammer.		
						(v) undrained shear strength I	SHW Clause 633	50 KN/m²	-	2.3kg kallillel.		
						(vi) OMC/MDD	BS 1377-4	-	-			
						(vii) Particle Density	BS 1377-2	-	-			

Class	S			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Requir of Fill Materials in Clause 6	• •	•	ments on Use	COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	SS	
				Description		Clause 601 and Appendix 6/1)	Property (See Exceptions	Defined and Tested	Acceptable lim	its Within:	NOTES			
							in Previous Column)	in Accordance with:	Lower	Upper				
	4	-	-	Various	Fill to landscape	Any material, or combination of	(i) grading	BS 1377-2	-	-	SHW Clause 620	4	-	-
					areas	materials	(ii) MC	BS 1377-2	-	Equivalent of C of 45KN/m²	Material to be placed to an appropriate method so as to			
LANDSCAPE FILL							(iii) undrained shear strength by HSV	Manufacturers Instruction	45KN/m²	150 KN/m²	ensure a minimum undrained shear of 45KN/m² is achieved in the placed and compacted material			
	5	А	-	Topsoil, or turf, or existing on site	Topsoiling	Topsoil designated as Class 5A in the Contract	(i) grading	SHW Clause 618	-	SHW Clause 618	-	5	А	-
TOPSOIL	5	В	-	Imported topsoil	Topsoiling	General purpose grade complying with BS 3882	-	-	-	-	-	5	В	-

ISS			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Requir of Fill Materials in Clause 6	•	•	irements on Use	COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	SS	
			Description		Clause 601 and Appendix 6/1)	Property (See Exceptions	Defined and Tested	Acceptable li	mits Within:	NOTES			
						in Previous Column)	in Accordance with:	Lower	Upper				
6	F	1	Selected	Capping	Any material, or combination of	(i) grading	BS 1377-2	Table 6/2	Table 6/2	SHW Table 6/4 Method 6	6	F	1
ľ	•	_	granular	Саррінів	materials (other than colliery	(ii) OMC/MDD	BS 1377-4: 3.7	-	-	modified as required to ensure		'	-
			material (fine grading)		spoil, argillaceous rock or chalk). Recycled aggregate	(iii) mc	BS 1377-2	OMC -2%	OMC	minimum 95% MDD			
			<i>3</i>		, 33 3	(iii) Los Angeles coefficient	SHW Clause 635	-	50	OMC/MDD to be determined using Vibrating Hammer			
6	F	2	Selected	Capping	Any material, or combination of	(i) grading	BS 1377-2	Table 6/2	Table 6/2	SHW Table 6/4 Method 6	6	F	2
	•	2	granular	Саррінів	materials (other than colliery	(ii) OMC/MDD	BS 1377-4: 3.7	-	-	modified as required to ensure		'	_
			material (fine grading)		spoil, argillaceous rock or chalk). Recycled aggregate	(iii) mc	BS 1377-2	OMC -2%	OMC	minimum 95% MDD			
			3,		, 33 3 4	(iii) Los Angeles coefficient	SHW Clause 635	-	50	OMC/MDD to be determined using Vibrating Hammer			

Class			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Requir of Fill Materials in Clause 6	01 and Testing in Clause	631		COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	ss	
			Description		Clause 601 and Appendix 6/1)	Property (See Exceptions in Previous Column)	Defined and Tested in Accordance with:	Acceptable lin	nits Within:	NOTES			
						,		Lower	Upper				
6	F	3	Selected granular	Capping (Not to be used below	Recycled bituminous road planings and granulated asphalt,	(i) grading and constituent parts	BS 1377-2 (on-site)	SHW Table 6/2	SHW Table 6/2	SHW Table 6/4 Method 6 modified as required to ensure	6	F	
			material	structures)	but excluding materials containing tar or tar-bitumen	·	BS EN 933-2 (Off-site)	SHW Table 6/5	SHW Table 6/5	minimum 95% MDD			
					binders. Recycled aggregates	(ii) OMC/MDD	BS 1377-4: 3.7	-	-	OMC/MDD to be determined using the Vibrating Hammer			
						(iii) mc	BS 1377-2	OMC -2%	ОМС	Maximum compacted layer			
						(iv) bitumen content	BS 598-102	-	10%	thickness shall be 200mm Constituent materials determined in accordance with SHW Clause 710			
6	F	4	Selected granular material (fine	Imported Capping	Unbound mixtures complying with BS EN 13285	Size designation and overall category	BS EN 13285- $0/31.5$ and $G_{\rm E}$	SHW Table 6/5	SHW Table 6/5	SHW Table 6/4 Method 6 modified as required to ensure minimum 95% MDD	6	F	
			grading)		Any material or combination of materials – including recycled	Maximum fines and oversize categories	BS EN 13285- <i>UF</i> ₁₅ and <i>OC</i> ₇₅	SHW Table 6/5	SHW Table 6/5	OMC/MDD to be determined in			
					aggregate, but excluding colliery	Los Angeles coefficient	BS EN 13242-LA ₆₀	-	60	accordance with BS EN 13285-			
					spoil, argillaceous rock, chalk, recycled bituminous planings and granulated asphalt	Volume stability of blast furnace slag	BS EN 13242	Free from dica		5.3			
					granulated aspiralt	Volume stability of steel (BOF) and EAF slag	BS EN 13242 – V ₅	-	-				
KANOL						Other aggregate requirements	BS EN 13242	Category NR (n	o requirement)				
SELECTED GRANULAR FILL						Laboratory dry density and OMC	BS EN 13285-Clause 5.3 -	-	-				
35.55						Water content	BS EN 1097-5	OMC-2%	OMC				

Class	5			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Requir of Fill Materials in Clause 6	•	•	rements on Use	COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	ss	
				Description		Clause 601 and Appendix 6/1)	Property (See Exceptions	Defined and Tested	Acceptable lin	nits Within:	NOTES			
							in Previous Column)	in Accordance with:	Lower	Upper				
	6	F	5	Selected granular material (fine	Imported Capping	Unbound mixtures complying with BS EN 13285	Size designation and overall category	BS EN 13285- 0/80 and <i>G</i> _E	SHW Table 6/5	SHW Table 6/5	SHW Table 6/4 Method 6 modified as required to ensure minimum 95% MDD	6	F	5
				grading)		Any material or combination of materials – including recycled aggregate, but excluding colliery	Maximum fines and oversize categories	BS EN 13285- <i>UF</i> ₁₂ and <i>OC</i> ₇₅	SHW Table 6/5	SHW Table 6/5	OMC to be determined in accordance with BS EN 13285-			
						spoil, argillaceous rock, chalk, recycled bituminous planings and	Los Angeles coefficient	BS EN 13242-LA ₅₀	-	50	5.3			
						granulated asphalt	Volume stability of blast furnace slag	BS EN 13242	Free from dica					
							Volume stability of steel (BOF) and EAF slag	BS EN 13242 − V ₅	-	-				
GRANULAR FILL							Other aggregate requirements	BS EN 13242	Category NR (n	o requirement)				
ED GRANU							Laboratory dry density and OMC	BS EN 13285-Clause 5.3 -	-	-				
SELECTED (Water content	BS EN 1097-5	OMC-2%	OMC-2%				

Class			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Require of Fill Materials in Clause 6	01 and Testing in Clause (531		COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	SS	
			Description		Clause 601 and Appendix 6/1)	Property (See Exceptions	Defined and Tested in Accordance with:	Acceptable lim	its Within:	NOTES			
						in Previous Column)	in Accordance with:	Lower	Upper				
6	1	-	Selected well	Fill to reinforced soil	Natural gravel, natural sand, crushed gravel, crushed rock,	(i) grading	BS EN 933-2	SHW Tab 6/5	SHW Tab 6/5	End product 95% MDD	6	I	-
			granular material	and anchored earth structures	crushed concrete, slag, well burnt colliery spoil or any combination	(ii) uniformity coefficient	See note 5	10	-	OMC/MDD determined using Vibrating Hammer			
					thereof. None of these constituents shall include any argillaceous rock. Recycled	(iii) Los Angeles coefficient	Clause 635	-	40				
					aggregate except recycled asphalt.	(iv) Effective angle of internal friction (φ')	Clause 636	φ' = 38º	-				
						(v) Coefficient of Friction & adhesion	Clause 639	δ = 15º	-				
						(vi) MC	BS 1377-2	OMC -2%	OMC +1%				
						(vii) OMC/MDD	BS 1377-4: 3.7	-	-				
						(viii)CBR at OMC	BS 1377-4	12%	-				
SELECTED GRANULAR FILL						(ix) Chloride, water soluble sulfate (WS), oxdisable sulfate (OS), total sulphur (S) and Total Potential Sulphate (TPS)	BS EN 1744-1	-	SHW Table 6/3				
ELECTED ((x) Organic content	BS 1377-3	-	SHW Table 6/3				

Class			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Require of Fill Materials in Clause 6			ements on Use	COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	SS	
			Description		Clause 601 and Appendix 6/1)	Property (See Exceptions	Defined and Tested	Acceptable lim	its Within:	NOTES			
						in Previous Column)	in Accordance with:	Lower	Upper				
6	N	-	Selected well	Fill to structures	Natural gravel, natural sand, crushed gravel, crushed rock,	(xi) grading	BS1377-2	SHW Tab 6/2	SHW Tab 6/2	End product 95% MDD	6	N	
			granular material		crushed concrete, slag, well burnt colliery spoil or any combination	(xii) uniformity coefficient	See note 5	10	-	OMC/MDD determined using Vibrating Hammer			
					thereof. None of these constituents shall include any argillaceous rock. Recycled	(xiii)Los Angeles coefficient	Clause 635	-	40				
					aggregate except recycled asphalt.	(xiv)Effective angle of internal friction (φ')	Clause 636	φ' _{pk} 37.5º	φ' _{pk} <u><</u> 44º				
								φ' _{crit} 31.5⁰	φ' _{crit} <u><</u> 38º				
						(xv) MC	BS 1377-2	OMC -2%	OMC +1%				
FIL						(xvi)OMC/MDD	BS 1377-4: 3.7	-	-				
GRANULAR FILL						(xvii)CBR at OMC	BS 1377-4	12%	-				
SELECTED GRA						(xviii) Sulphate (SO ₄) total sulphur (S) and Total Potential Sulphate (TPS)	TRL 447	-	SHW Clause 601				

Class			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of	Material Properties Require of Fill Materials in Clause 6	• •	•	ements on Use	COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	ISS
			Description		Clause 601 and Appendix 6/1)	Property (See Exceptions	Defined and Tested	Acceptable lim	its Within:	NOTES		
						in Previous Column)	in Accordance with:	Lower	Upper			
6	Р	-	Selected granular	Fill to structures	Natural gravel, natural sand, crushed gravel, crushed rock,	(i)grading	BS1377-2	SHW Tab 6/2	SHW Tab 6/2	End product 95% MDD	6	Р
			material		crushed concrete, slag, well burnt colliery spoil or any combination	(ii) uniformity coefficient	See note 5	5	-	OMC/MDD determined using Vibrating Hammer		
					thereof. None of these constituents shall include any argillaceous rock. Recycled	(iii) Los Angeles coefficient	Clause 635	-	60			
					aggregate except recycled asphalt.	(iv) Effective angle of internal friction (φ') and effective cohesion (c')	Clause 636	φ' = 38º	-			
						(v) MC	BS 1377-2	OMC -2%	OMC +1%			
H						(vi) OMC/MDD	BS 1377-4: 3.7	-	-			
GRANULAR						(vii) CBR at OMC	BS 1377-4	8%	-			
SELECTED GRA						(viii) Sulphate (S04) total sulphur (S) and Total Potential Sulphate (TPS)	TRL 447	-	SHW Clause 601			

Class		General Material	Typical Use	Permitted Constituents (All Subject to Requirements of Clause 601 and Appendix 6/1)	Material Properties Required for Acceptability In Addition to Requirements on Use of Fill Materials in Clause 601 and Testing in Clause 631				COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL		ISS		
		Description			Property (See Exceptions in Previous Column)	Defined and Tested in Accordance with:	Acceptable lim	ts Within: Upper	NOTES				
7	Α	-	Selected cohesive	Fill to structures	Any material, or combination of materials, other than argillaceous rock, chalk or colliery spoil	(i) grading	BS 1377-2	SHW Table 6/2	SHW Table 6/2	(whichever is the more	7	А	
			material			(ii) mc	BS 1377-2	Equivalent to 110% MDD and maximum of 5% air voids	Equivalent to 100% MDD and/or c of 80 KN/m ²				
						(iii) Sulphate (S04) total sulphur (S) and Total Potential Sulphate (TPS)	TRL 447	-	SHW Clause 601				
						(iv) undrained shear parameters (c and φ)	SHW Clause 633	c = 80 KN/m²	-				
COHESIVE FILL						(v) effective angle of friction (φ') and effective cohesion (c')	SHW Clause 636	c' = 2 kPa φ' = 25º	-	Table, the Contractor shall inform Hydrock for further guidance on the use of this material.			
ЕD СОН						(vi) liquid limit	BS 1377-2	-	² 45				
SELECTED						(vii) plasticity index	BS 1377-2	-	² 25				

Class	General Material	Typical Use	Permitted Constituents (All Subject to Requirements of Clause 601 and Appendix 6/1)	Material Properties Required for Acceptability In Addition to Requirements on Use of Fill Materials in Clause 601 and Testing in Clause 631				COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Class		
	Description			Property (See Exceptions in Previous Column)	Defined and Tested in Accordance with:	Acceptable lin	its Within: Upper	NOTES			
7 E -	Selected cohesive	For stabilisation with lime to	Any material, or combination of materials, other than unburnt colliery spoil	(i) grading	BS 1377-2	SHW Table 6/2	SHW Table	Not applicable	7	Е	Ī
	material	form capping (9D) and for the upper 0.60m of engineered fill below carriageway where Class 3 foundation is required		(ii) mc	BS 1377-2	As per Contractors Mix Design	As per Contractors Mix Design				
				(iii) MCV	SHW Clause 632	As per Contractors Mix Design	-				
				(iv) plasticity index	BS 1377-2	10	-				
				(v) organic matter	BS 1377-3	-	2%				
크				(vi) water soluble (WS) sulfate content	BS EN 1744-1 clause 10	-	300 mg/l				
COHESIVE FILL				(vii) Oxidisable sulphides (OS)	BS EN 1744-1 clause 13	-	0.06 %				
SELECTED ((viii) total potential sulfate (TPS) content	BS EN 1744-1 clause 11	-	1.0 %				

TABLE 6/1 (continued): ACCEPTABLE EARTHWORKS MATERIALS: CLASSIFICATION AND COMPACTION REQUIREMENTS (SEE FOOTNOTES)

Class		General Material	Typical Use	Permitted Constituents (All Subject to Requirements of Clause 601 and Appendix 6/1)	Material Properties Required for Acceptability In Addition to Requirements on Use of Fill Materials in Clause 601 and Testing in Clause 631			COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Cla	iss		
		Description			Property (See Exceptions in Previous Column)	Defined and Tested in Accordance with:	Acceptable limits Within:		NOTES			
							Lower	Upper				
7 1	cohesive with lime and	For stabilisation with lime and	* *	(i) grading	BS 1377-2	SHW Table 6/2	SHW Table 6/2	Not applicable	7	Е		
		material	capping (Class	colliery spoil	(ii) mc	BS 1377-2	As per Contractors Mix Design	As per Contractors Mix Design				
					(iii) MCV	SHW Clause 632	As per Contractors Mix Design	-				
					(iv) plasticity index	BS 1377-2	10	-				
					(v) organic matter	BS 1377-3	-	2%				
COHESIVE FILL					(vi) water soluble (WS) BS EN 1744-1 clause - 300 mg. (vii) Oxidisable sulphides (OS) BS EN 1744-1 clause - 0.06 %		-	300 mg/l				
						0.06 %						
SELECTED					(viii) total potential sulfate (TPS) content	BS EN 1744-1 clause 11	-	1.0 %				

TABLE 6/1 (continued): ACCEPTABLE EARTHWORKS MATERIALS: CLASSIFICATION AND COMPACTION REQUIREMENTS (SEE FOOTNOTES)

Class			General Material	Typical Use	Permitted Constituents (All Subject to Requirements of Clause 601 and Appendix 6/1)	Material Properties Required for Acceptability In Addition to Requirements on Use of Fill Materials in Clause 601 and Testing in Clause 631				COMPACTION REQUIREMENTS IN CLAUSE 612 & ADDITIONAL	Class		
		Description	Property (See Exceptions			Defined and Tested	Acceptable limits Within:		NOTES				
				in Previous Column)	in Accordance with:	Lower	Upper						
9	D) -	Lime	Capping and	Class 7E with addition of lime	(i) pulverisation	BS EN 13286-48	30%	-	SHW Table 6/4 Method 7,	9	D	
	cohesive	stabilised cohesive material	the upper 0.60m of earthworks fill below Class 3	according to SHW Clause 615	(ii) MCV immediately before compaction	SHW Clause 632	As per Contractors Mix Design	As per Contractors Mix Design	modified as required to achieve minimum 95% MDD				
			foundation		(iii) bearing ratio	BS EN 13286-47	10% -upper - 0.60m fill	-					
						15% - Capping							
					(iv) mc	BS EN 13286-2	As per Contractors Mix Design	As per Contractors Mix Design					
9	E	E - Lime and	Capping	Class 7I with addition of lime and	(i) pulverisation	BS EN 13286-48	30%	-	SHW Table 6/4 Method 7,	9	Е		
			cement stabilised cohesive material		cement according to SHW Clause 643	(ii) MCV immediately before compaction	SHW Clause 632	As per Contractors Mix Design	As per Contractors Mix Design	modified as required to achieve minimum 95% MDD			
					(iii) bearing ratio	BS EN 13286-47	15%	-					
					(iv) mc	BS EN 13286-2	As per Contractors Mix Design	As per Contractors Mix Design					

Footnotes to Table 6/1:

- 1. App = Appendix
- 2. Tab = Table
- 3. Where in the Acceptable Limits column reference is made to App 6/1, only those properties having limits ascribed to them in Appendix 6/1 shall apply. Where Appendix 6/1 gives limits for other properties not listed in this Table such limits shall also apply.
- 4. Where BS 1377:Part 2 is specified for mc, this shall mean BS 1377:Part 2 or BS EN 1097-5 as appropriate.
- 5. Uniformity coefficient is defined as the ratio of the particle diameters D60 to D10 on the particle-size distribution curve, where: D60 = particle diameter at which 60% of the soil by weight is finer and D10 = particle diameter at which 10% of the soil by weight is finer.
- 6. The limiting values for Class U1B material are given in Appendix 6/14 and Appendix 6/15.
- 7. Where undrained shear strength is specified as the method of acceptability testing, the Contractor may use a hand vane provided that it is initially calibrated against the unconsolidated undrained shear strength laboratory triaxial test to BS 1377:Part 7, clause 8 on 100mm nominal diameter samples, and the MCV test in accordance with BS 1377:Part 4. Otherwise, shear strength testing requirements is to be as set out in 633 of the Specification.
- 8. The contents of this table may be revised following periodic engineering assessments and design by the Project Manager.
- 9. Where supplementary clauses and tables are reference in Table 6/1 above, they shall refer to the equivalent clause or table from the Manual of Contract Documents for Highway Works, Specification for Highway Works: Volume 1: (SHW).

APPENDIX 6/2: REQUIREMENTS FOR DEALING WITH CLASS U1B AND CLASS U2 UNSUITABLE MATERIALS

1.0 General

- 1.1 Unacceptable material, Class U2 shall be defined as in SHW Clause 601.3. The Contractor is referred to the site specific earthworks and remediation method statements and specifications for the requirements regarding Class U1B and Class U2 Unacceptable Material.
- 1.2 If unacceptable material is encountered within the works, a risk assessment will be carried out and the contractor shall make all necessary arrangements for their safe handling and disposal after consultation with the appropriate environmental authority in accordance with SHW Clause 602. As such the Contractor shall put in place contingency measures to deal with U2 materials if encountered during the earthworks.
- 1.3 The Contractor shall make all necessary enquiries and arrangements for the transfer of U1B and U2 materials for their disposal off-site and shall liaise with the relevant regulatory bodies prior to initiating removal of any material from site.
- 1.4 Where Class U1B material is identified and are unsuitable for treatment on site, the Contractor shall undertake appropriate testing including Waste Acceptance Criteria (WAC) Tests to determine the waste type and whether the waste will comprise U2 material, i.e. Hazardous Waste.
- 1.5 The Contractor shall inform the Engineer immediately of the discovery of U1B or U2 materials, asbestos or other gross contamination. The Contractor shall define in their Method Statement the procedures for handling asbestos, U1B or U2 materials or other waste.
- 1.6 No groundwater or surface water encountered during excavation shall be discharged to foul or storm sewer, nor to watercourses without the prior written approval of the Sewer provider or the Environment Agency respectively.
- 1.7 The Contractor shall ensure at all times that:
 - The exposure of site personnel and the general public to hazards is avoided; and
 - Contamination or pollution migrating within the site or beyond the site boundaries is prevented.
- 20.8 Throughout the Works the Contractor shall pay particular attention to the following:

Handling and disposal of contaminated soils and water

a) Keep the waste safe. Holders should protect the waste both whilst in their possession and for its future handling requirements. Security precautions where waste is to be held prior to removal from site should prevent theft, vandalism, waste scavenging and fly tipping. Waste shall be removed from site in appropriate containers.

- b) Transfer to the correct person. Waste may only be handed on to authorised persons or to persons authorised for transport purposes. The Contractor shall pay due regard to Duty of Care and associated regulations.
- c) The Contractor shall ensure that waste is collected regularly. The maximum volume of material in a single stockpile on site at any time shall not exceed 500m³.
- d) The Contractor shall ensure that all waste is stockpiled in accordance with a method statement approved by the Engineer and shall as a minimum included for bunding, basal membrane and top cover membrane to prevent rainfall infiltration and run-off.
- e) The Contractor shall comply with Duty of Care Regulations and shall keep records of waste dispatched from site, including waste transfer notes. All records are to be made available to the Engineer and/or Regulator upon request. The Contractor shall ensure that all landfill gate receipts are copied to the Engineer within two working days of dispatch from site.
- (f) The Contractor shall ensure that all waste is taken to a disposal facility which is licensed to receive that specific waste type (as determined by chemical analyses and WAC tests).
- g) All waste leaving the site shall be sheeted, without holes or tears in the sheeting fabric. Where possible, the Contractor shall use self sheeting lorries to haul waste from the site. Where these are not available, the Contractor shall take appropriate measures to construct a safe and suitable sheeting gantry. Where sheets are to be laid over the container, they shall be secured in place. In the event of any loss of waste during transit, the Contractor shall ensure that the lost waste is collected and transported correctly to the receiving facility.
- h) The Contractor shall supply the Engineer with a schedule containing vehicle registration number, owner, weight (unladen and gross maximum permitted) and driver details of each vehicle used for transport of materials off-site.

Sub-contracting

20) In order to ensure compliance with the Duty of Care Regulations, the Contractor must nominate all Sub-Contractors before a contract is entered into for undertaking this work.

Site Monitoring

- a) The Contractor shall be responsible for all documentation of waste leaving the site and for validation of the chemical composition of waste.
- b) A designated person must be made responsible for co-ordinating and ensuring that all appropriate precautions are taken against the escape of hazardous substances. This designated person shall maintain an up to date site record. The Contractor shall demonstrate the competence of this person to the satisfaction of the Engineer.
- c) Only authorised persons shall be allowed access to the site. All site personnel shall be required to attend a site safety induction prior to commencement of works on the site.
- d) All persons entering the site must be made fully aware of the hazards and risks on site prior to entering the site. Instructions shall be issued by the Contractor regarding Health and

Safety precautions required. All persons will be required to sign a declaration of understanding and acceptance of site instructions. This is to protect both the individual and other personnel on the site. Non-compliance with this regime must in all cases result in refused entry to site.

- e) If any person fails to comply with the health and safety precautions that person is to be removed from site immediately. Return to site would be at the discretion of the Engineer. The Contractor shall ensure that any individual who deliberately flaunts the health and safety precautions is dismissed from site and not permitted to return to the site.
- f) In the instance of a possible danger occurring, safety on site shall be of utmost priority. Immediate action must be taken for the health and safety of all personnel on site. The location of the danger and any exclusion zone shall be evacuated immediately. The Contractor shall produce a method statement to set out the measures and steps to be followed in the event of such an occurrence and shall include, where applicable, for notification of emergency services, HSE, Planning Co-ordinator and the like.
- g) All persons entering the site shall wear appropriate Personal Protective Equipment (PPE), which is to include but not be limited to: safety Wellingtons or boots (steel mid-sole and toe caps); overalls and/or impermeable outer garments; nitrile or other suitable gloves; safety goggles; and ear defenders.
- h) First Aid facilities and suitably competent personnel shall be available at clearly identifiable locations on site.
- i) A Site Safety Officer shall be appointed by the Contractor and shall be responsible for health surveillance on the site.
- j) The Contractor shall take appropriate measures to avoid and prevent cross contamination of plant and personnel and also to ensure that all plant and personnel are free from contaminants and mud upon exiting the site.

APPENDIX 6/3: REQUIREMENTS FOR EXCAVATION, DEPOSITION, COMPACTION (OTHER THAN DYNAMIC COMPACTION)

1.0 EARTHWORKS GENERAL

- 1.1 Earthworks requirements including constraints on earthworks in relation to structures and water courses are shown on Drawings. The earthworks associated with the highways are part of a wider scheme, and as such any additional fill requirements are to be provided from cut materials from within the development plateaus, as identified on the drawings.
- 1.2 No ground disturbing activities, including any earthmoving activities, are to commence prior to the Contractor obtaining any necessary permits or licences relating to protected species or habitats. If a licence or permit for such works is granted, those works shall only be undertaken during the periods as stated on the licence or permit under the direction of the licence or permit holder. A copy of the licence and/or permit shall be provided to the Employer prior to commencement of the relevant activities.
- 1.3 Material excavated and designated for processing shall be transported to the appropriate process area for stockpiling and treatment. Clearly defined segregated stockpiles are required for different sub-classes of processed material. The maximum permitted height of stockpiles, excluding topsoil Class 5, shall be 5.0 m unless otherwise agreed. The maximum volume of any single stockpile shall not exceed 500m³ unless otherwise agreed.
- 1.4 For temporary storage of earthworks materials, except topsoil Class 5, maximum permitted height of stockpiles shall be 5.0 metres unless otherwise agreed, subject to other restrictions noted elsewhere in this specification. Earthworks materials requiring to be stockpiled shall be stored in individual stockpiles for each earthworks class and end-use.
- 1.5 On completion of a stockpile the slopes shall be trimmed to falls to shed rain water and the surface sealed to limit infiltration. Temporary drainage shall be provided at the base of the stockpile to collect runoff from the stockpile and to carry any surface water away from the base of the stockpile.
- 1.6 The Contractor shall provide and maintain such measures as necessary to eliminate the production of dust from the stockpile during the life of the stockpile.

2.0 CUTTING FACES

- 2.1 No specific limitations or restrictions on undercutting are included, but the Contractor shall comply with the Temporary Works Designer requirements when excavating trenches at the toe of any slopes.
- 2.2 Clearing loose material from cutting slopes by airline hose is not permitted.
- 2.3 The Contractor shall provide additional drainage measures to intercept and discharge seepages from cutting slopes in general accordance with the details provided in the Drawings. The Contractor is responsible for all drainage required to carry out the works and to protect them upon completion, which will include, where necessary, temporary drainage measures.

2.4 Cutting faces which are to have topsoil shall be made good prior to topsoil placement as shown on the Drawings. If the drawings do not show details then any of the methods set out in Clause 603.7 of SHW shall be used as required except that the use of concrete, grout, masonry infill and sprayed concrete is not permitted.

3.0 WATER COURSES

- 3.1 Details of regrading existing water courses, construction of new water courses and earthworks drainage ditches are shown on the Drawings.
- 3.2 Redundant watercourses shall be drained and cleaned as described on the Drawings. Excavated arisings are to be treated as described in Appendix 6/2. Watercourses shall be filled with earthworks materials as shown on the Drawings.
- 3.3 The Contractor shall provide for such measures as may be necessary to ensure that water, whether ground water, from precipitation or any other source does not accumulate in excavations or on subgrades.
- 3.4 The Contractor shall arrange for the rapid dispersal of water shed on to the surface of earthworks or completed formation during construction or which enters the earthworks from any other source.
- 3.5 The Contractor shall provide where necessary temporary watercourses, ditches, drains, pumping or other means of maintaining the earthworks free from water. Such provision shall include carrying out the work of forming the earthworks in such a manner that their surfaces have at all times a sufficient minimum cross-fall and, where practicable, a sufficient longitudinal gradient to enable them to shed water and prevent ponding. This shall include the provision of temporary measures to remove water expelled from the ground due to the change in imposed load from the construction or construction activities (including ground improvement).
- 3.6 All works and associated costs relating the control and management of water on site, from existing, proposed or redundant watercourses or from any other sources including groundwater, rainfall and surface water is the responsibility of the Contractor. All costs are to be borne by the Contractor and the Contractor is deemed to have read, understood and fully accounted for these costs within their Tender submission. Any uncertainty over the issues associated with water or groundwater control should be submitted to the Engineer for clarification, as soon as any such issue is noted or identified by any party.

4.0 CONSTRUCTION GENERAL REQUIREMENTS

- 4.1 Location of fill types are shown on the Drawings. In addition to this, General fill is only to be used in areas outside of the influence of the proposed structures. Any fill placed within the influencing zone of structures shall comply with the requirements of Class 6.
- 4.2 The Contractor is responsible for agreeing with the Supervising Engineer the extents of the General Fill and Selected Fill.
- 4.3 Locations of starter layers are shown on the BWB Drawings presented under a separate cover.

- 4.4 Details of benching are to be a maximum of 0.50m in height with the length of the bench cut to meet the profile of the excavation. In addition to this, where structural loads may span across an excavation where benching has been employed, the length of each bench must be at least twice the height.
- 4.5 The height of each bench shall reflect the thickness of the compacted layer, and shall be no more than 2 compacted layers in height.
- 4.6 All bench details shall be agreed with the Engineer.
- 4.7 Over-steepening of embankment side slopes shall only be permitted with the approval of the Engineer.

5.0 CONSTRUCTION OF FILL

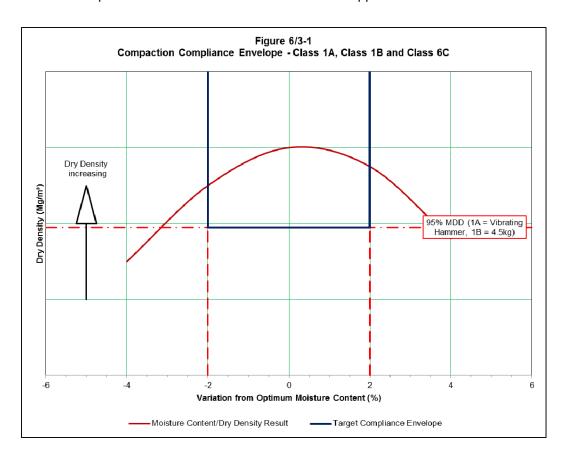
- 5.1 Embankment slopes shall not be constructed steeper than that shown on the Drawings. Temporary over-widening or steepening to achieve adequate compaction of the shoulders of the embankment is permitted.
- 5.2 Any areas requiring staged construction of fills, the details for the staged construction and hold periods are to be shown on the Drawings and are to be under the direction of the Engineer.
- 5.3 Any areas requiring surcharging, the relevant details including levels, time periods for surcharging, type of surcharge material are to be shown on the Drawings.
- 5.4 Any areas requiring protection of the formation or sub-formation against weather, shall be carried out in accordance with Clause 608.9(ii) of SHW, are shown on the Drawings.
- 5.5 Any areas requiring starter layer, together with class type and thicknesses are shown on the Drawings.
- 5.6 The proposed staged process of earthworks are as detailed within this Specification.
- 5.7 Formation for earthworks construction and cutting formations shall be proof-rolled using a minimum compactive effort as detailed in Specification Clause 613.11 and 613.12. This minimum compactive effort shall be increased for cutting formations where different compactive efforts, dependent on the type of follow-on earthworks operations, are required by the Specification. The identification of a 'soft spot' is qualitative and depends on the response of the ground to the compactive effort during the proof-rolling.
- 5.8 For the purposes of this contract, the definition of a soft area will correspond to a CBR of less than 2%. As a minimum excessive mattressing, bow-waving or ground heave shall be indicative of a 'soft spot' which will then require testing by the contractor to determine the CBR of the subgrade. The Contractor is to agree with the Supervising Engineer the extent of 'soft spot' treatment.

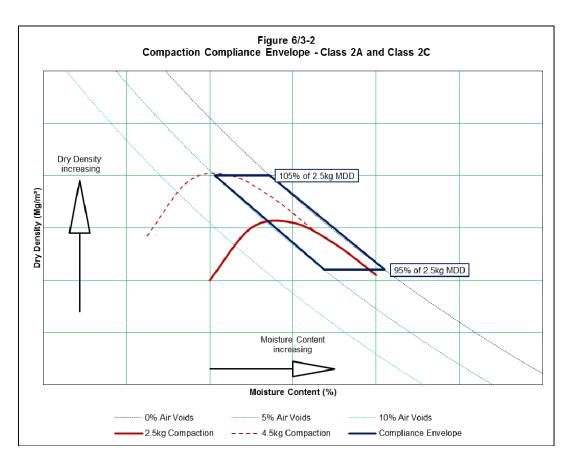
- 5.9 It is considered likely that localised 'soft spots' may occur during the during the proof rolling exercise and as such detailed discussion and agreement will be required with the Supervising Engineer at the outset in order to adopt a standardised procedure for dealing with this occurrence.
- 5.10 Where a soft-spot is identified, the sequence of activities shall include the following:
 - Delineation at the current formation the extent of soft spot.
 - Excavation of soft spot.
 - Inspection of the area of the soft spot post removal of affected material by the Geotechnical Supervisor (Hydrock).
 - In situ assessment on strength (hand vane shear strength in the case of cohesive soils) at the base and sides of the excavation.
 - Survey of the extent of the soft spot excavation by the Contractor.
 - Replacement of affected material with suitable engineered fill, compliant with the requirements of Appendix 1/5 and Table 6/1.
 - Where the depth of the soft spot exceeds 0.50m, the sides of the excavation shall be benched in, in accordance with Hydrock Drawing EMG-HYD-ZZ-XX-DR-GE-0649.
 - Records of extent of soft spots to be presented in accordance with the requirements set out in Appendix 1/24.

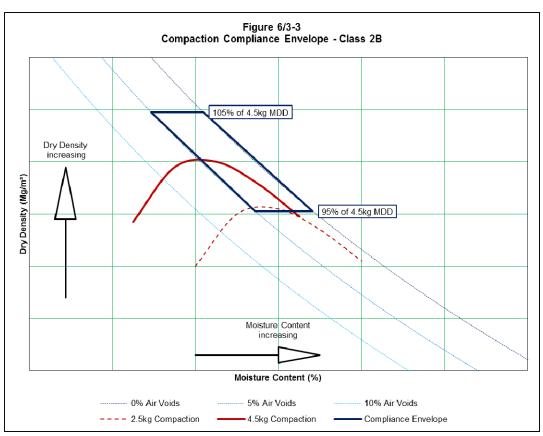
6.0 COMPACTION

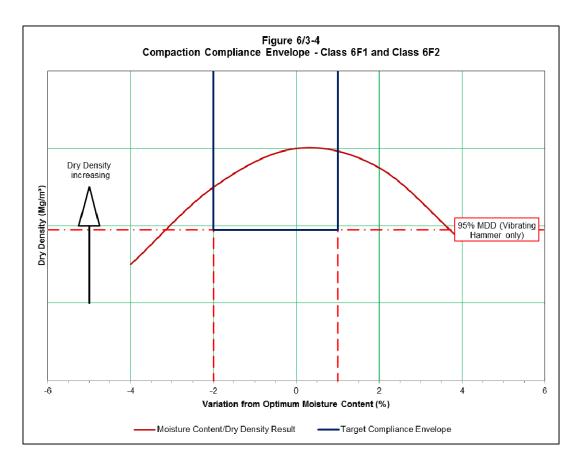
General

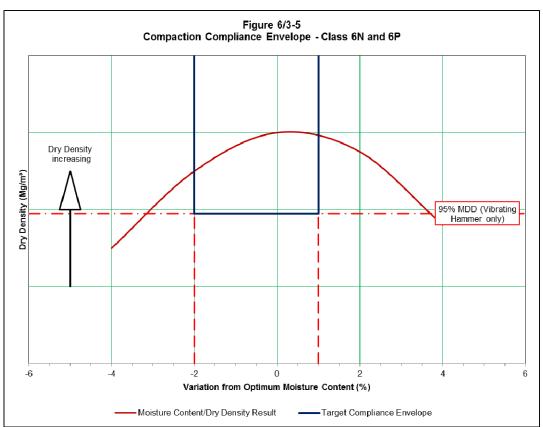
6.1 It is envisaged that most of the fill to be used on this site will be derived from site won materials which will either be classed as general fill to external areas, or as selected fill to form the capping below the sub base in the highway pavement. Requirements for compaction of earthworks materials shall comply with Clause 612 of SHW and HA 70. Compaction requirements shall be as described below.


Method Compaction


- 6.2 For method compaction of earthworks materials extra compaction in the top 600mm is required and this shall comprise an improved/modified material with a minimum subgrade stiffness modulus at the top of the material of 77 Mpa. Requirements for compaction of drainage material, if a geocomposite is not used, are shown on the Drawings. The frequency of field dry density testing shall be as set out in Appendix 1/5.
- 6.3 A series of Compaction Compliance Envelopes, presented as figures, have been produced which represent the requirements from Table 6/1 on the compaction requirements for the main types of fill to be used in this project. Reference shall be made to these figures and a source specific envelope shall be provided by the Contractor based upon the results of the classification testing for each material and shall be used in the assessment of compliance.


6.4 The *in situ* testing shall be undertaken in accordance with the frequency defined in Appendix 1/5 and shall demonstrate that the adopted method achieves the minimum end product performance detailed in Table 6/1. Where the testing identifies that the minimum end product performance is not being met, then the method of compaction shall change, and a new compaction trial shall be undertaken

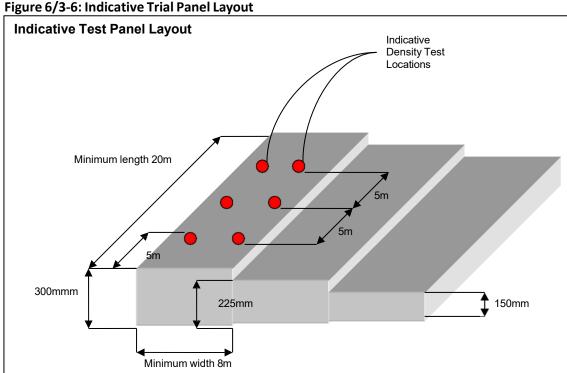

End Product Compaction


- 6.6 Where the compaction requirements specified in Table 6/1 state that End Product Compaction is required, the fill shall be tested in accordance with the frequency defined in Appendix 1/5.
- 6.7 The minimum compliance requirements to be met by fill placed to either Method Placement to End Product Compaction are defined in Section 6.26 of this Appendix.

Compaction Trial

- 6.8 A compaction trial is required to be completed for each compaction method to be used and for each source of material. Prior to undertaking the trial, the Contractor shall confirm to the Hydrock the following:
 - What method of compaction is to be used in the trial and whether or not it has been based upon the guidance from SHW Table 6/4.
 - What compaction plant is to be used, including but not limited to the type of equipment, manufacture, mass per meter width and any other relevant information which can be used to assess its suitability for the material to be compacted.
 - Confirmation of the source of material to be used, and whether or not there are any
 geotechnical results available from source suitability testing prior to the commencement of the
 trial.
 - Confirmation that they understand the minimum specification requirements for endperformance of the fill which are to be assessed and demonstrated during the trial.
 - The methodology for assessing fill, including test type and frequency and who will be undertaking the testing both on site and for the subsequent laboratory analysis.
 - Confirmation that all parties who are to attend the trial have been informed of when and where the trial will be undertaken.
- 6.9 For each Class of material as defined in Table 6/1, and each proposed compaction method, a number of test panels shall be constructed in order to allow a full assessment to be completed. Key criteria to identify during the compaction trial will be:
 - Change in density and air voids against number of passes.
 - Change in density and air voids against depth of layer.
 - Change in engineering performance against compactive effort.
 - Identification of point of over-compaction/softening of fill.
 - Comparative analysis between different plant [where more than one roller is proposed]
 - Suitability of material for use on site for the proposed end-use.
 - Confirmation of classification and engineering performance of material, including sampling, laboratory testing and classification of the material.
 - Comparison of actual performance of material against specification design values.
 - Calibration of testing equipment, in particular where the use of a Nuclear Density Gauge [NDG] is proposed for the monitoring of earthworks operation.

Selection of End Product Requirements to be Demonstrated during Compaction Trial


- 6.10 Reference shall be made to the Compaction Compliance Envelopes, presented as Figures 6/3-1 to 6/3-5 inclusive.
- 6.11 For the Class 1 General Fill material, it shall be placed and compacted at a moisture content equivalent to the OMC-2% to the OMC+2% and that it should achieve an *in situ* dry density greater than 95% of the MDD when determined using the Vibrating Hammer.
- 6.12 For Class 2A, 2C, 2D and 2E General Fill, it shall achieve an *in situ* dry density of at least 95% of the MDD determined using the 2.5kg Rammer and have a minimum undrained shear strength in accordance with Table 6/1 of this Specification.
- 6.13 For Class 2B and Class 7 selected fill, the degree of compaction shall be either 100% of the MDD from the 2.5kg Rammer or 95% of the MDD determined from the 4.5kg Rammer. The Contractor is to confirm with the Engineer/NR which method of laboratory compaction is to be used for Class 2B material before it is tested. Additional requirements for the fill such as strength, bearing capacity and settlement are shown on the Drawings.
- 6.14 This degree of compaction and additional requirements from Table 6/1 shall form the basis of the compaction specification of Class 1, Class 2, Class 6 and Class 7 fill used as part of the earthworks operation.
- 6.15 The Contractor shall carry out a compaction trial for each type of material and compaction method to be used to demonstrate that the required degree of compaction and additional requirements can be met. The site of the trials shall be clearly marked and levels taken to determine the thickness of each layer before and after compaction.

Construction of Compaction Trial Test Panels

- 6.16 For each material type, a number of test panels may be required in order that a full assessment of the material and compaction method can be completed, which would then constitute the Compaction Trial. Although the size of each panel will need to reflect the size of the compaction plant and methodology of work proposed, a minimum width of 8m by 20m in length is recommended, with a number of different layer depths as indicated in Figure 6/3-6.
- 6.17 Each test panel should be laid out and clearly identified and defined separately from any other test panel to avoid cross-contamination, accidental influence from adjacent works and located on site away from other works.
- 6.18 The depth of each layer forming the test panel should reflect the likely depth of compacted material, post completion of the compaction trial, i.e. sufficient material should be placed so that the final depth of the compacted layer is in accordance with the guidance provided in Table 6/4 of the SHW. In the unlikely event that a material is proposed to be compacted and it is not possible to classify the material in order to identify the most likely method of compaction, a significantly higher number of test panels will be required in order to identify the optimum plant, layer thickness and number of passes.

Compaction of Test Panels

- 6.19 Unless specifically instructed within the site specific documentation, earthmoving plant shall not be accepted as compaction equipment, nor the use of lighter compaction plant to provide any preliminary compaction prior to the use of heavier equipment.
- 6.20 Although the guidance from Table 6/4 of the SHW may indicate the optimum number of passes of the appropriate plant, it is important that the progression of improvement of the material is monitored throughout the compaction process. Therefore, after each and every two passes of the appropriate roller, *in situ* assessment of the density of the material is to be undertaken. One pass of the roller is defined as a single movement of the compaction plant, in one direction, over a given strip of the test panel.
- 6.21 Where the width of the test panel or roller requires a number of passes in order to ensure the full width of the surface is compacted, it is acceptable for the roller to overlap the previous strip by a small margin (no more than 25% of the maximum roller width). However it should be ensured that no in situ testing is undertaken in this zone to prevent the effect of over-compaction influencing the assessment of the performance of the plant and material.
- 6.22 The compaction of the test panel should continue incrementally until a clear indication has been obtained to show that the soil has either achieved a maximum density, i.e. where after a number of repeat passes is completed no change is identified or has been over compacted and the performance of the material begins to deteriorate. The exception to this will be where the final performance of the test panel is required to be confirmed using plate load testing, and in this instance it is recommended that a separate panel is constructed, to the same specification as has been identified during the compaction trial, in order that the assessment of the performance can be completed without the detrimental influence of over-compacted material.
- 6.23 Guidance on the point of over compaction may be readily identifiable on site from a number of key parameters:
 - Reduction in bulk density/dry density with increasing compaction.
 - Increase in moisture content, where the over-compaction of the material drives moisture up
 through the material to the surface [mobilisation of excess pore pressure]. This may also be
 observed during the passage of the roller, with material adhering to the roller, and/or the
 surface of the compacted layer beginning to tear.
 - Reduction in engineering performance of the material with increasing compaction.
 - Visible movement of the surface of the material during the passage of the compaction plant, typically exhibited as a 'bow wave' in front of the roller.

6.24 The importance of identifying the point at which the materials become over-compacted is important for a number of reasons. Should the material not be competent to undergo additional compaction and/or trafficking, then an engineering decision will be required by the Supervising Engineer prior to the commencement of the main earthworks program.

Assessment of Test Panels

- 6.25 In order to assess the compaction trials fully, a stringent series of in situ testing is to be undertaken after each incremental compactive effort. The type and nature of the tests which can be used to achieve this will be dependent upon the material type/class, proposed end-use of the material and the adopted specification requirements as detailed within this site documentation.
- 6.26 For each compaction increment the determination of in situ density should be completed with a minimum of 6 number of tests evenly spaced in two rows at distances of 5m, 10m and 15m along the test panel. Each row shall be separated by sufficient distance in order to prevent accidental influence from overlapping roller passes and adjacent test panels. Given the high number of tests that this requires and unless the nature of the material precludes its use, testing shall be undertaken using a Nuclear Density Gauge [NDG]. The results of this test are to be used to assess the following key engineering parameters:
 - **Bulk Density**;
 - Moisture Content;
 - Dry Density;

- Air Void Content; and
- Degree of Compaction, compared against the MDD.
- 6.27 In conjunction with the assessment of the density of the material, the following tests shall be included as part of the compaction trial:
 - 2 no bulk samples for lab classification, 1 to be sampled prior to compacting the test panel and 1 post completion of the test panel. In order to confirm the engineering characteristics of the material, each source should be sampled and submitted to the laboratory and the scope of testing shall be to determine the grading before and after compaction as well as the MDD using the using the method defined in Table 6/1.
 - For Class 1 General Granular Fill & Class 6 Selected Granular Fill, measurement of the CBR using the Mexe Probe equipment, completed at each and every location of the in situ density measurement.
 - For Class 2 General Cohesive Fill & Class 7 Selected Cohesive Fill, measurement of the undrained shear strength using the hand vane equipment, completed at each and every location of the in situ density measurement.
 - Plate Load Testing, to be completed at the end of the trial in order to define the following:
 - Equivalent CBR;
 - Modulus of Subgrade Reaction, k; and
 - o Modulus of Subgrade Reaction, k₇₆₀ based on 760mm diameter plate.
- 6.28 For the purposes of the compaction trials only, the plate load tests should be completed in accordance with IAN 73/06 in order to determine the Modulus of Sub-grade Reaction and Equivalent CBR value. This testing will require multiple cycles to be completed and as such consideration of the time element to complete each test should be taken.
- 6.29 In order to adopt a standard procedure for assessing compaction trials, Table 6/3-1 summarises the recommended testing requirements.
- 6.30 The purpose of the compaction trials will be to prove the engineering performance of the placed and compacted fill and the suitability of the method to be adopted by the Contractor. The method to be adopted for the main earthworks program should satisfy the following key criteria, which will be further reviewed upon receipt of the results of the compaction trials:
 - No single dry density result shall be less than 92% of the MDD, and no more than 20% of results of any one layer shall fall between 92% and 95% MDD. Where the 2.5kg rammer is used for Class 2B, the compliance requirement shall increase to no results less than 98% of the MDD and no more than 20% of results of any one layer shall fall between 98% and 100% MDD.
 - For Class 1 granular fill, the compliance criteria for CBR is no single result shall be less than 3% CBR, and no more than 20% of results of any one layer shall fall between 3% and 5% CBR.

- For Class 6 granular fill, the compliance criteria for CBR is no single result shall be less than 8% and no more than 20% of results of any one layer shall fall between 8% and 12% CBR.
- For Class 2A and Class 2C Cohesive fill, the compliance criteria for the Hand Vane shear strength shall be no single result below 45KN/m², and no more than 20% of results of any one layer shall fall between 45KN/m² and 50KN/m².
- For Class 2B and Class 7 cohesive fill, the compliance criteria for the Hand Vane shear strength shall be no single result below 70KN/m², and no more than 20% of results of any one layer shall fall between 70KN/m² and 80KN/m².
- For Class 2 and Class 7 Cohesive fill, no single air void content result shall be greater than 10%, and no more than 20% of results of any one layer shall fall between 5% and 10%.
- For Class 9D fill, minimum degree of compaction of 95% MDD.
- 6.31 Plate load test completed in accordance with IAN 73/06 Rev 1 and HD25/94 using cyclic loading and shall be used to assess the equivalent CBR value and compared against the data recorded using the other *in situ* apparatus.

Table 6/3-1 Compaction Trial Testing Requirements

Test Property	Recommended Frequency of Testing		
Bulk Sample before compaction	1 sample per material for MC, PSD, OMC and particle density		
Bulk Sample post compaction	1 sample per material for MC, PSD, OMC and particle density		
Bulk Sample for MC/MCV Calibration	1 sample per cohesive material		
Bulk Density	6 tests per compaction increment per layer using NDG		
Moisture Content	6 tests per compaction increment per layer using NDG		
Dry Density	6 tests per compaction increment per layer using NDG		
NDG Calibration	1 per material/test panel.		
CBR by Mexe Probe (Granular Fill)	1 test per density location.		
Cu by Hand Vane (Cohesive Fill)	1 test per density location.		
Plate Load Test to IAN 73/06	1 per trial panel, multiple cycles as defined in IAN 73/06		

Earthworks Testing

6.32 The Contractor will be required to undertake material acceptability testing of all earthworks materials used in the Works. The testing requirements, including the test type and frequency of testing, are described Appendix 1/5, 6/1 & 6/3 of the Earthworks Specification.

- 6.33 It should be noted that *in situ* testing will be required even where Method Placement is to adopted by the Contractor, in order to monitor and check that the adopted method is achieving the requisite end-performance. The testing to be undertaken is to demonstrate the method achieves the minimum requirements as detailed in Table 6/1 of this Specification.
- 6.34 The *in situ* measurement of the material will be required to confirm the applied loadings on the ground and the suitability of the imported material for subsequent inclusion within the permanent works.
- 6.35 The selected method of placement, depth of layer and selection of compaction plant may be derived initially from Table 6/1 and SHW Table 6/4 but will be subject to confirmation following site compaction trials to prove this method can achieve the required end-performance. Any necessary amendments to the guidance from SHW Table 6/4 to ensure the requisite end-performance of the fill material will be made and issued as part of the adopted earthworks specification.

Placing and Compacting Fill

- 6.36 Where different classes of fill material are to be employed, they shall be deposited in such a way that all parts of the fill area receive roughly equal amounts of a given material in roughly the same sequence, thus ensuring a uniform distribution of fill types over the whole fill thickness unless otherwise shown on the Drawings.
- 6.37 The Contractor shall take all necessary steps to ensure that the fill is placed at the moisture content necessary to achieve the compaction specification and shall, where necessary, add water to or dry the fill, in order to obtain this value. Where it is necessary to add water, this shall be done as a fine spray and in such a way that there is time for the water to be absorbed into the fill before being rolled by the plant.
- 6.38 Compaction plant and compaction method shall be selected having regard to the proximity of existing trenches, excavations, retaining walls or other structures and all work shall be performed in such a way as to ensure that their stability is not impaired. Any restrictions on size of compaction plant shall be shown on the Drawings. Each compaction method shall only be approved through the completion of a satisfactory compaction trial which can demonstrate that the minimum engineering performance can be met.
- 6.39 If the results of control tests indicate that the fill is being placed and compacted in such a way that the desired end product is not being achieved, the Contractor shall further compact or, if necessary, shall excavate the affected work and replace with new fill, compacted to meet the specification requirements.
- 6.40 If the results of control tests indicate that antecedent weather conditions (such as frost or heavy rain) have caused deterioration of finished work such that the work no longer meets specification, the Contractor shall take such steps as are necessary to bring the fill to the specification requirements.

Control Testing

- 6.41 The compliance of the fill meeting the compaction specification shall be demonstrated by undertaking the *in situ* and laboratory testing as detailed in Appendix 1/5 and meet the requirements of Table 6/1 and Appendix 6/3.
- 6.42 Plate bearing tests (in accordance with BS1377-9, 1990 method 4.1) shall be undertaken to demonstrate compliance with the additional requirements for the fill shown on the Drawing EMG-HYD-C4-M10B-DR-GE-0654. The test requirements for the plate loading tests are shown on the Drawings.
- 6.43 Test locations shall be evenly distributed throughout the fill area at the frequency defined in Table 1/5. The earthworks fill shall comply with the following minimum requirements:
 - No single dry density result shall be less than 92% of the MDD, and no more than 10% of results of any one layer shall fall between 92% and 95% MDD. Where the 2.5kg rammer is used for Class 2B, the compliance requirement shall increase to no results less than 98% of the MDD and no more than 10% of results of any one layer shall fall between 98% and 100% MDD.
 - For Class 1 granular fill, the compliance criteria for CBR is no single result shall be less than 3% CBR, and no more than 10% of results of any one layer shall fall between 3% and 5% CBR or where the fill is placed below adoptable highways, this shall be increased to no result below 12% and no more than 105 of the results for any layer between 12% and 15%.
 - For Class 6I and 6N granular fill, the compliance criteria for the Mexe Probe CBR is no single result shall be less than 8% and no more than 10% of results of any one layer shall fall between 8% and 12% CBR. For Class 6P, this shall be reduced to no single CBR below 5% and no more than 10% of results of any one layer shall be between 5% and 8%.
 - For Class 2A and Class 2C Cohesive fill, the compliance criteria for the Hand Vane shear strength shall be no single result below 45KN/m², and no more than 10% of results of any one layer shall fall between 45KN/m² and 50KN/m².
 - For Class 2B and Class 7 Cohesive fill, the compliance criteria for the Hand Vane shear strength shall be no single result below 70KN/m², and no more than 10% of results of any one layer shall fall between 70KN/m² and 80KN/m².
 - For Class 2 and Class 7 Cohesive fill, no single air void content result shall be greater than 10%, and no more than 10% of results of any one layer shall fall between 5% and 10%.
 - For Class 9D fill to the upper 0.60m, the minimum degree of compaction shall be 95% of the MDD, and a minimum subgrade surface stiffness at the top of the final layer of 77 Mpa.
- 6.44 All earthworks materials used shall comply with the earthworks specification. Prior to the commencement of the placement of the bulk fill, for each and every compaction method and each material source a compaction trial will be required to be completed.

7.0 ADDITIONAL LIMITATIONS OF DEPOSITION OF MATERIALS REFERRED TO IN 601.13, 601.14 AND 601.17

7.1 Cobbles having an equivalent diameter of more than 150mm shall not be deposited within 1.3 m of the finished surface at any location.

8.0 RESTRICTIONS ON BATTERING OF EXCAVATIONS FOR FOUNDATIONS AND TRENCHES AND REQUIREMENTS FOR BENCHING

8.1 No specific limitations or restrictions are included for the battering of excavations for foundations, but the Contractor shall comply with the Temporary Works Designer's requirements. Battered excavations are to be benched prior to backfilling. Benching requirements are shown on the Drawings.

9.0 EXCAVATION SUPPORTS TO BE LEFT IN PLACE

9.1 No excavation supports are to be left in place.

10.0 BENCHING OR SHAPING OF EARTHWORKS SLOPE FACES TO RECEIVE FILL

- 10.1. Where existing embankments are to be extended and where embankments are to be constructed on ground with a slope steeper than one in eight, such slope being measured at right angles across the width of the embankment, benching of the existing slope shall be formed as shown on the Drawings. Bench heights are to be a multiple of the relevant compaction layer thickness.
- 10.2 Fill material in areas of benching shall be carefully placed and compacted to ensure that no voids occur at the upright steps of the benching.
- 10.3 Placing and compaction of the fill material shall continue to a level above an adjacent bench before material is placed upon that bench.
- 10.4 Four additional passes of the roller shall be made on the area within two metres each side of the upright face immediately following the compaction of the first layer of fill material on each bench.

11.0 MIXING OF EXCAVATED MATERIALS

11.1 Mixing of acceptable and unacceptable excavated material is not permitted. All excavated material are to be stored in individual stockpiles, not exceeding 500m³.

12.0 FILL TO EXCAVATED VOIDS OR NATURAL VOIDS IN FOUNDATION EXCAVATIONS

12.1 Areas of inadequate strength shall be removed and backfilled. For small areas and depths, blinding concrete class ST1 shall be used. For more extensive areas and depths, backfill shall be 6N granular material compacted to Table 6/1 of the Specification unless otherwise shown on the drawings.

13 FILL TO LANDSCAPE AREAS

13.1 Where landscape fill material (Class 3D or Class 4) is to be used within approved locations on site, the material shall be placed in accordance with Clause 620 of the SHW.

APPENDIX 6/6: FILL TO STRUCTURES AND FILL ABOVE STRUCTURAL FOUNDATIONS

1. FILL TO STRUCTURES

- 1.1 Requirements and material classes for fill to structures and fill above structural foundations are shown on the relevant Cass Hayward substructure drawings (presented under a separate cover) and Hydrock drawing EMG-HYD-C4-M1OB-DR-GE-0654.
- 1.2 Prior to placing blinding concrete at the design foundation level, or immediately prior to filling the excavation where no blinding layer is required, the formation shall be investigated by the Contractor in the presence of the Supervising Engineer to confirm that the design assumptions with regard to formation strength have been met as follows:
 - i) Cohesive Soils: by use of a shear vane test to prove that the undrained shear strength value at a depth of 0.2m below excavation formation level is greater than the minimum stated on the substructure drawings.
 - ii) Granular Soils: by use of a Dynamic Probe to prove that the equivalent SPT 'N' value is greater than the minimum stated on the substructure drawings.
 - iii) Plate Load Testing using 600mm diameter plate, to the loads defined in Appendix 1/5 and on the drawings and to achieve the associated settlement requirements.
- 1.3 The tests referred to above shall be taken at representative locations across the formation in accordance with Appendix 1/5 or as directed by the Supervising Engineer. The tests shall undertake using suitably calibrated equipment. Additional tests shall be undertaken at any apparent areas of inadequate strength identified visually by the Supervisor.
- 1.4 The locations, results and correlation of the equipment used shall be recorded. The Contractor shall keep records of the inspections, testing and any subsequent remedial measures, including the test locations, test values and calibrations of the equipment used.

2. FULL SCALE DETERMINATION OF SLOPE STABILITY

2.1 Material for use as 'Fill to Structures' does not require full scale determination of slope stability in accordance with Clause 610.6 of SHW unless this is a specific requirement of the Contractors alternative design.

APPENDIX 6/7: SUB-FORMATION AND CAPPING AND PREPARATION AND SURFACE

20.8TREATMENT OF FORMATION

GENERAL REQUIREMENTS

- 1.1 The locations and required thickness of capping and/or sub-base thickness are shown on the Engineer's Drawings.
- 1.2 Cut to fill transitions zones shall be constructed as shown on the Engineer's Drawings.
- 1.3 Final preparation of the sub-formation and formation shall only be carried out after installation of the scheduled drainage at that location.
- 1.4 The minimum California Bearing Ratio (CBR) or undrained shear strength of the subgrade for each location is given on the Engineer's Drawings and in Table 6/1. Areas of subgrade that are below the minimum shall be improved by the methods shown on the Engineer's Drawings.
- 1.5 The CBR of the subgrade shall be determined at the frequency shown on the Drawings and as required by the Supervising Engineer. The Contractor shall test the subgrade to determine the CBR value using one of the following test methods appropriate to the subgrade material being tested in accordance with IAN 73/06 Rev 1:
 - Dual Cycles Static Plate Load Test (PLT)
 - Dynamic Plate Load Test.

2.0 ALLOWED SURFACE LEVEL TOLERANCES

2.1 Surface level tolerances shall comply with Clause 616.1

3.0 CAPPING MATERIALS

- 3.1 The permitted capping materials are shown as described in Clause 613.3 of SHW.
- 3.2 Material used within 450mm of the designated final road or external surface level shall not be frost susceptible.

4.0 PROCEDURE FOR CONSTRUCTION OF CAPPING FOR CUTTINGS AND EMBANKMENTS

4.1 The procedures for construction of capping for cuttings and embankments are as stated in Clauses 613.11 and 613.12 respectively of SHW unless otherwise shown on the Drawings.

5.0 DEMONSTRATION AREA AND TESTING

- 5.1 The Contractor shall provide a demonstration area to trial the proposed capping materials. If the trial area is outside the location of the permanent works the trial area formation shall be of similar strength and characteristics as to the permanent works formation. The laying and compaction methods used within the trial area shall be the same as those proposed for the permanent works.
- 5.2 The demonstration area may form part of the permanent works but shall only be accepted if the results of testing comply with the Specification.

6.0 SUB-FORMATION SHAPING

6.1 The sub-formation shall be shaped as Clause 613.8 of SHW unless shown otherwise on the Drawings.

7.0 LIME STABILISATION

7.1 Modification and stabilisation is permitted but shall not be undertaken without the prior written approval of the Supervising Engineer, and testing undertaken to demonstrate that the maximum permissible TPS is not exceeded.

8.0 TREATMENT OF FORMATION

- 8.1 Treatment of soft spots shall be completed prior to final preparation of sub-formation. Replacement of soft materials, to formation level, shall be with either additional approved Class 6F or Class 9 Selected Capping Material or as agreed with the Supervising Engineer using selected granular material with geosynthetic reinforcement.
- 8.2 Areas of formation that do not have a surface tolerance within the limits stated in Clause 616.1 of SHW are to be excavated to depths given on the Drawings and infilled with either additional approved capping or as agreed with the Supervising Engineer using selected granular material with geosynthetic reinforcement.
- 8.3 Details and locations of formation treatment and removal of soft material are to be kept by the Contractor.

9.0 RATE OF SPREAD OF LIME

9.1 Testing for the rate of lime spreading shall be in accordance with Clause 615.6 of SHW.

10.0 CHEMICAL ANALYSIS REPORTS

10.1 Chemical analysis reports for 'available lime' are to be provided weekly in accordance with Clause 615.4 of SHW.

11.0 PREPARATION OF FORMATION ON EXISTING SUB-BASE MATERIAL

11.1 Preparation of formation on existing sub-base material shall be in accordance with Clause 616 of SHW.

12.0 REQUIREMENTS FOR CEMENT TYPE IN LIME AND CEMENT STABILISATION

12.1 The level of sulphates is to be confirmed before the use of hydraulic binders can be approved. Modification and stabilisation shall not be undertaken without the prior written approval of the Supervising Engineer.

13.0 REQUIREMENTS FOR ALTERNATIVE THICKNESS OF LAYERS TO BE STABILISED

13.1 The layer thickness shall comply with the requirements of Clause 643.9 of SHW.

14.0 ALTERNATIVE TREATMENT REQUIREMENTS FOR LAYERS TO BE STABILISED

14.1 The treatment of layers to be stabilised shall comply with the requirements of Clauses 643.10 and 643.16 of SHW.

APPENDIX 6/8: TOPSOILING

- 1. Topsoiling shall be carried out using Class 5 material complying with Table 6/1 and in accordance with the requirements of the Written Landscape Scheme, Barry Chinn Associates document reference 148/14-RP01, presented under a separate cover.
- 2. The topsoil depth shall be as specified in .Written Landscape Scheme.
- 3. Imported topsoil shall comply with BS 3882:1994, General Purpose Grade.
- 4. No topsoil shall be supplied from any source until a sample of the topsoil from each source has been inspected and approved by the Engineer. All topsoil supplied must be of the same quality as the approved sample(s).
- 5. Topsoil shall be spread, graded and consolidated by hand or mechanical means.
- 6. Any materials deemed unsuitable by the Engineer, that are brought to the surface by the spreading, grading and consolidation of topsoil shall be collected up disposed of off site.
- 7. Topsoiled areas shall not be traversed by machinery or used for storage purposes

APPENDIX 6/9: EARTHWORK ENVIRONMENTAL BUNDS, LANDSCAPE AREAS & STRENGTHENING EMBANKMENTS

20.EARTHWORK ENVIRONMENTAL BUNDS

Location and types of construction

- 1.1 Requirements for Earthwork Environmental Bunds are shown on the Drawings.
- 1.2 Earthwork Environmental Bunds are to be constructed of materials as shown on the Drawings.

Requirements for etermine

- 1.3 Environmental Bunds that are to be topsoiled are shown on the Drawings and in agreement with the requirements of the Ecological Consultant and the Written Landscape Scheme, Barry Chinn Associates document reference 1484/14-TP01, presented under a spate cover.
- 1.4 All imported topsoil shall comply with the requirements for General Purpose in accordance with BS 3882.

2. LANDSCAPE AREAS

Locations

2.1 Locations of Landscape Areas are shown on the Drawings.

Requirements for Compaction

2.2 Class 4 material shall be compacted in accordance with Clause 620 of SHW.

Construction requirements

2.3 Construction requirements and contouring of Landscape Areas are shown on the Drawings.

Requirements for etermine

2.4 The requirements for etermine Landscape Areas are shown on the Drawings.

APPENDIX 6/12: INSTRUMENTATION AND MONITORING

1 LOCATION OF INSTRUMENTATION

- 1.1 All instrumentation and associated equipment shall be approved by the Hydrock and shall be suitable for installation at the locations described, notably where the thickness of fill is in excess of 2.50m. The alignment of each settlement marker shall be such that it falls within the verge of the final embankment, in the area of deepest fill.
- 1.2 Instrumentation shall be installed to measure vertical displacement of the subsoil and where the thickness of fill exceeds 2.50m a second installation shall be installed at mid-depth of the fill. Instrumentation shall remain operational during the construction contract.
- 1.3 The Contractor shall be responsible for and shall follow the manufacturers' instructions and the requirements of this Specification in the installation, calibration and testing of all measuring instruments and equipment, which shall be carried out in the presence of Hydrock.
- 1.4 The Contractor shall inform Hydrock at least 2 working days prior to undertaking installation of the equipment. The Contractor shall make due allowances in his construction programme for delays which may arise on account of the installation of the instruments and of their maintenance.
- 1.5 The Contractor shall provide suitably qualified and competent staff to take readings of instruments during construction and provide measurements/data at the time the instruments are read. The Contractor shall submit names and evidence of competence of personnel to carry out the instrumentation installation and commissioning for the approval of the Engineer before the commencement of the Works.
- 1.6 The Contractor shall maintain the instrumentation in working order throughout the Contract or until Hydrock informs them that monitoring is no longer required. The Contractor shall ensure that the frequency of monitoring is adequate and in compliance with all requirements for control of construction and associated monitoring of constructions, as detailed on the Drawings.
- 1.7 The Contractor shall agree with Hydrock the tolerances for the installation, and the instrument's calibration, accuracy and repeatability.
- 1.8 The Contractor shall be responsible for preparing a factual report (paper and pdf copy) of the instrumentation, installation and monitoring, and including graphical plots of the monitoring results. A draft report shall be forwarded to Hydrock for comment within 2 weeks following substantial completion of the Contract or Section of the Contract. All details of the instrumentation, installation and monitoring results shall be provided to the Supervisor electronically in AGS format with the factual report.
- 1.9 Details of instrumentation are given on the Drawings.

2 INSTRUMENTATION SCHEDULE

2.1 Details of the type, number and location of instruments are given on the Drawings.

3 HOUSING DETAILS

3.1 Housing details are given on the Drawings.

4 INSTALLATION DETAILS

- 4.1 The instruments shall be installed in accordance with this Appendix and the Drawings.
- 4.2 All instruments shall be labelled with their reference number at the location where readings or measurements are to be taken. The labelling shall be permanent using a method or material to be agreed with the Engineer.

Survey Equipment

4.3 All surveying equipment used in conjunction with the monitoring of instrumentation, including measuring tapes, levels and EDM shall be maintained and calibrated as required by the manufacturers and good surveying practice. Levels shall be checked every four weeks. Where the rate of settlement reduces to below 2mm per week, or as directed by the Engineer on site, the Contractor shall undertake all further levelling of instrumentation by precise levelling techniques.

Rod Settlement Gauges and Settlement Markers

- 4.4 The details of the Rod Settlement Gauges and Settlement Markers shall be as shown on the Drawings and the Contractor shall be responsible for the installation of all gauges and markers as works proceed. The Rod Settlement Gauge base plate and first length of rod shall be placed as early as possible during the earthworks, i.e. before any significant filling has taken place. Extension lengths shall be installed when the level of the compacted embankment is 250mm below the top of the preceding level.
- 4.5 Should a Rod Settlement Gauge or Settlement Marker be damaged or should the Contractor fail to extend the gauge when required, he shall stop all works in the vicinity of the gauge until the necessary remedial works have been completed. The Contractor shall be liable for any delay in his programme or any additional work that has to be done as a result of such damage.
- 4.6 Rod Settlement Gauges and Settlement Markers shall be monitored by levelling techniques as defined by this Appendix. Levels shall be taken of the top of the rod and the fill adjacent to the gauge on each occasion. When rods are extended, levels shall be measured immediately before and immediately after adding the extension. Good levelling practice should be observed.

Permanent Datum

4.7 Permanent datum is required to provide a reference for measurement of ground and instrument levels in areas of soft ground. The datum itself is to be fixed into deeper, competent ground and isolated from soft and compressible strata at shallower depth.

- 4.8 The Contractor shall be responsible for establishing a permanent datum at locations, and with depths and details, as specified and agreed with the Engineer. The installation of a permanent datum shall be completed prior to the installation of instruments and the commencement of earthworks.
- 4.9 A permanent datum shall consist of a 25mm galvanised steel pipe fixed into competent ground with a cement ground and shall penetrate the competent stratum by at least 3m. The datum pipe shall be isolated from the overlying soft ground by a 75mm diameter galvanised steel outer pipe bedded into the top 500mm of the cement grout.
- 4.10 The datum pipe shall, where necessary, be connected by screw threaded couplings, shall have a domed top and shall protrude 30mm to 50mm above the outer pipe. The outer pipe shall also be connected where necessary by screw threaded couplings. The portion of the outer pipe which passes through the soft ground shall be surrounded by a sand backfill from the top of the cement grout to the underside of the concrete plinth to be cast at ground level.
- 4.11 The plinth shall comprise a square concrete slab of not less than 0.06m3 of concrete (approximately 0.4m x 0.4m x 0.4m). The surface of the concrete plinth shall be scored with the reference for the individual permanent datum.
- 4.12 The level of the permanent datum shall be established by the levelling techniques set out in Section 8.0 of this Appendix, with reference to agreed benchmarks in the vicinity. Levelling shall be closed back to the benchmarks to check accuracy.
- 4.13 The level value and co-ordinate position shall be measured three times soon after installation of the datum and shall be checked at intervals to be established by the Engineer.

Installation Records

- 4.14 All records produced for the instrumentation must include the following data:
 - Project name.
 - Contract name and number.
 - Instrument reference number and type.
 - Dates of installation, reading or summary.
 - · Times of installation or reading.
 - Chainage and offset (or co-ordinates if appropriate).
 - Personnel responsible for undertaking the monitoring.
 - Any relevant comments or remarks.

- 4.15 The Contractor shall prepare an installation record sheet for each instrument installed. The format of the sheet shall be prepared by the Contractor and submitted to the Engineer for approval at least one week before installation commences. The record sheet shall include the following information in addition to the general information required:
 - Existing ground level at the time of installation, measured at 5m intervals in the case of hydrostatic profile gauges.
 - Location in plan and elevation Planned and 'As Built'.
 - Orientation Planned and 'As Built'.
 - Lengths, widths, diameters, depth and volumes of backfill Planned and 'As Built'.
 - Type of backfill used.
 - Weather conditions.
 - Space for notes, including problems encountered, delays, unusual features of the installation and any events that may have a bearing on instrument behaviour.
 - A record of commissioning information and readings.
 - Any colour coding used.
- 4.16 The Contractor shall submit to the Engineer three copies of each installation report sheet within one working day of completion of the installation, including taking of base readings.
- 4.17 The following data shall be recorded for the Settlement Gauges and similar settlement monitoring equipment:
 - Original ground level at the gauge location (m OD).
 - Reduced level of the top of the rod (m OD).
 - Reduced level of the ground adjacent to the gauge (m OD).
 - A record of the height of fill placed and the start/finish dates of filling.
 - The total thickness of the fill (m).
 - A record of extensions to the gauge, including before/after reduced levels of the gauge.
 - The settlement of the plate relative to base readings and previous readings (m).

- 4.18 The following data shall be recorded for a permanent datum/s:
 - Reduced level of datum (m OD).
 - Plan position.

5 CALIBRATION REQUIRMENTS

- 5.1 The Contractor shall test the whole instrumentation installation by taking three sets of base readings at suitable intervals and shall provide two copies of the results for the CGD and shall satisfy the CGD that all instruments are functioning correctly and readings are repeatable before the associated earthworks are commenced.
- 5.2 In cases where instruments are installed during earthworks, three sets of readings shall be taken in quick succession and the results compared. These results shall be used to provide base readings in a manner to be agreed with the Engineer

6 INSTRUMENTATION PROTECTION

- 6.1 The Contractor shall take measures to prevent damage to underground services and drains during boring, excavation and trenching for the installation of all instruments.
- 6.2 The Contractor shall take all necessary precautions to protect the instruments and maintain the instruments in good working order after commissioning. For all instruments which project through and above the fill, special precautions shall be taken to provide protection from vehicles and plant, including substantial and readily visible barriers at a distance of no less than 750mm around each instrument
- 6.3 Heavy compaction equipment shall not approach within 1.5m of projecting instruments. Any damage to instruments shall be reported to the Engineer within one working day of the damage occurring. Damaged instruments shall be replaced or repaired by the Contractor at his own expense within seven days of its reported damage.
- 6.4 Adequate protection measures shall be provided for all new and existing instrumentation to protect it from vandalism or damage during construction. All damaged instrumentation shall be replaced by the Contractor as soon as possible.

7.0 ELECTRICAL POWER REQUIREMENTS

7.1 The electric power requirements if required, are to be shown on the relevant Contractor's Drawings.

8.0 MONITORING FREQUENCY AND REPORTING REQUIREMENTS

8.1 The Contractor shall monitor the instruments and supply Hydrock with records of all readings and graphical plots thereof.

- 8.2 All earthworks instrumentation shall be installed, surveyed and monitored at least two weeks ahead of adjacent earthworks construction.
- 8.3 All equipment, shall be professionally monitored, including levelling of the surface of the fill, levelling of the settlement plates and settlement markers in accordance with Table 6/12-1, as required by the Supervising Engineer and as shown on the drawings.
- 8.4 All monitoring records shall be provided to the Supervising Engineer electronically as soon as they become available and at the request of the Supervising Engineer.

Table 6/12-1: Minimum frequency of levelling and monitoring

Period	Monitoring Frequency	Comments			
Before Fill Placed	Immediately after installation of Settlement Plates	Determination of base line ground level			
	Every week	Assessment of Immediate Settlement			
During Fill Placement	Before and after any extension added to settlement plate	Accurate measurement of any extension rod			
Week 1 to Week 4	Every week	Assessment of commencement of Primary Settlement			
Week 4 to Week 16	Every two weeks	Profile of Primary Settlement, compared to model settlement curves			
> Week 16	As agreed with Hydrock	End of Primary Settlement Stage and commencement of onset of Secondary Settlement			

APPENDIX 6/14: LIMITING VALUES FOR POLLUTION OF CONTROLLED WATERS

1.0 GENERAL

1.1 All Made Ground and secondary materials shall be assessed for contamination, at a rate of 1 test per 500m³ unless otherwise agreed with Hydrock, for the contamination suite defined in Table 6/14-1.

Table 6/14-1 Contaminant Suite

Source	Determinant	Maximum Permitted Concentration (ml/kg)
SGV report + CLEA 1.07	Arsenic	640
LQM/CIEH + CLEA 1.07	Beryllium	390
LQM/CIEH + CLEA 1.07	Boron	190000
SGV report + CLEA 1.07	Cadmium	220
LQM/CIEH + CLEA 1.07	Chromium (III)	8400
LQM/CIEH + CLEA 1.07	Chromium (VI)	33
LQM/CIEH + CLEA 1.07	Copper	69000
C4SL	Lead	2330
SGV report + CLEA 1.07	Mercury, inorganic	3600
Hydrock + CLEA 1.07	Nickel	1700
SGV report + CLEA 1.07	Selenium	13000
LQM/CIEH + CLEA 1.07	Vanadium	9000
LQM/CIEH + CLEA 1.07	Zinc	670000
Hydrock + CLEA 1.07	Cyanide (free)	16000
SGV report + CLEA 1.07	Phenol (total)	1500
LQM/CIEH + CLEA 1.07	Acenaphthene	97000
LQM/CIEH + CLEA 1.07	Acenaphthylene	97000
LQM/CIEH + CLEA 1.07	Anthracene	540000
LQM/CIEH + CLEA 1.07	Benz(a)anthracene	91
LQM/CIEH + CLEA 1.07	Benzo(a)pyrene	14
LQM/CIEH + CLEA 1.07	Benzo(b)fluoranthene	98
LQM/CIEH + CLEA 1.07	Benzo(ghi)perylene	640
LQM/CIEH + CLEA 1.07	Benzo(k)fluoranthene	140
LQM/CIEH + CLEA 1.07	Chrysene	140
LQM/CIEH + CLEA 1.07	Dibenz(a,h)anthracene	12
LQM/CIEH + CLEA 1.07	Fluoranthene	23000
LQM/CIEH + CLEA 1.07	Fluorene	68000
LQM/CIEH + CLEA 1.07	Indeno(1,2,3,cd)pyrene	59
LQM/CIEH + CLEA 1.07	Naphthalene	460
LQM/CIEH + CLEA 1.07	Phenanthrene	22000
LQM/CIEH + CLEA 1.07	Pyrene	54000
LQM/CIEH + CLEA 1.07	Aliphatics EC5-EC6	560
LQM/CIEH + CLEA 1.07	Aliphatics >EC6-EC8	320
LQM/CIEH + CLEA 1.07	Aliphatics >EC8-EC10	190

Source	Determinant	Maximum Permitted Concentration (ml/kg)
LQM/CIEH + CLEA 1.07	Aliphatics >EC10-EC12	120
LQM/CIEH + CLEA 1.07	Aliphatics >EC12-EC16	59
LQM/CIEH + CLEA 1.07	Aliphatics >EC16-EC35	1000000
LQM/CIEH + CLEA 1.07	Aliphatics >EC35-EC44	1000000
LQM/CIEH + CLEA 1.07	Aromatics EC5-EC7	2300
LQM/CIEH + CLEA 1.07	Aromatics >EC7-EC8	1900
LQM/CIEH + CLEA 1.07	Aromatics >EC8-EC10	1500
LQM/CIEH + CLEA 1.07	Aromatics >EC10-EC12	900
LQM/CIEH + CLEA 1.07	Aromatics >EC12-EC16	37000
LQM/CIEH + CLEA 1.07	Aromatics >EC16-EC21	28000
LQM/CIEH + CLEA 1.07	Aromatics >EC21-EC35	28000
LQM/CIEH + CLEA 1.07	Aromatics >EC35-EC44	28000

APPENDIX 6/15: LIMITING VALUES FOR HARM TO HUMAN HEALTH AND THE ENVIRONMENT

1.0 GENERAL

1.1 All Made Ground and secondary materials shall be assessed for contamination, at a rate of 1 test per 500m³ unless otherwise agreed with Hydrock, for the contamination suite defined in Table 6/15-1.

Table 6/15-1 Contaminant Suite.

Source	Determinant	Maximum Permitted Concentration (mg/kg)
SGV report + CLEA 1.07	Arsenic	640
LQM/CIEH + CLEA 1.07	Beryllium	390
LQM/CIEH + CLEA 1.07	Boron	190000
SGV report + CLEA 1.07	Cadmium	220
LQM/CIEH + CLEA 1.07	Chromium (III)	8400
LQM/CIEH + CLEA 1.07	Chromium (VI)	33
LQM/CIEH + CLEA 1.07	Copper	69000
C4SL	Lead	2330
SGV report + CLEA 1.07	Mercury, inorganic	3600
Hydrock + CLEA 1.07	Nickel	1700
SGV report + CLEA 1.07	Selenium	13000
LQM/CIEH + CLEA 1.07	Vanadium	9000
LQM/CIEH + CLEA 1.07	Zinc	670000
Hydrock + CLEA 1.07	Cyanide (free)	16000
SGV report + CLEA 1.07	Phenol (total)	1500
LQM/CIEH + CLEA 1.07	Acenaphthene	97000
LQM/CIEH + CLEA 1.07	Acenaphthylene	97000
LQM/CIEH + CLEA 1.07	Anthracene	540000
LQM/CIEH + CLEA 1.07	Benz(a)anthracene	91
LQM/CIEH + CLEA 1.07	Benzo(a)pyrene	14
LQM/CIEH + CLEA 1.07	Benzo(b)fluoranthene	98
LQM/CIEH + CLEA 1.07	Benzo(ghi)perylene	640
LQM/CIEH + CLEA 1.07	Benzo(k)fluoranthene	140
LQM/CIEH + CLEA 1.07	Chrysene	140
LQM/CIEH + CLEA 1.07	Dibenz(a,h)anthracene	12
LQM/CIEH + CLEA 1.07	Fluoranthene	23000
LQM/CIEH + CLEA 1.07	Fluorene	68000
LQM/CIEH + CLEA 1.07	Indeno(1,2,3,cd)pyrene	59
LQM/CIEH + CLEA 1.07	Naphthalene	460
LQM/CIEH + CLEA 1.07	Phenanthrene	22000
LQM/CIEH + CLEA 1.07	Pyrene	54000
LQM/CIEH + CLEA 1.07	Aliphatics EC5-EC6	560
LQM/CIEH + CLEA 1.07	Aliphatics >EC6-EC8	320
LQM/CIEH + CLEA 1.07	Aliphatics >EC8-EC10	190

Source	Determinant	Maximum Permitted Concentration (mg/kg)
LQM/CIEH + CLEA 1.07	Aliphatics >EC10-EC12	120
LQM/CIEH + CLEA 1.07	Aliphatics >EC12-EC16	59
LQM/CIEH + CLEA 1.07	Aliphatics >EC16-EC35	1000000
LQM/CIEH + CLEA 1.07	Aliphatics >EC35-EC44	1000000
LQM/CIEH + CLEA 1.07	Aromatics EC5-EC7	2300
LQM/CIEH + CLEA 1.07	Aromatics >EC7-EC8	1900
LQM/CIEH + CLEA 1.07	Aromatics >EC8-EC10	1500
LQM/CIEH + CLEA 1.07	Aromatics >EC10-EC12	900
LQM/CIEH + CLEA 1.07	Aromatics >EC12-EC16	37000
LQM/CIEH + CLEA 1.07	Aromatics >EC16-EC21	28000
LQM/CIEH + CLEA 1.07	Aromatics >EC21-EC35	28000
LQM/CIEH + CLEA 1.07	Aromatics >EC35-EC44	28000
-	Asbestos	<0.001%

ANNEX B

GEOSTRUCTURAL ANALYSIS REPORTS

ANNEX B.1 GEOTECHNICAL PARAMETERS

		GEOLOGIC	CAL LAYER						CHARACTERIS	SITIC DESIGN VAL	UE - GEOSTRUCT	URAL ANALYSIS			
Mercia Mudstone Group -	Re	educed Ground Lev m OD	el		th below Ground Level Bulk Unit . From top of Embankment Weight		Satruated Unit Weigth	Undrained Shear Strength	Effective Cohesion	Effective Angle of Internal Friction	Adhesion Strcut- soil	Angle of Friction Struct-Soil	Oedometric Modulus E _{oed}	Elastic Modulus Small Strain Es	Poisson's Ratio
Weathering Grade	From	То	Avergae	From	То	γь	γ _{sat}	Su	c'	φ'	α	δ	E _{oed}	Es	υ
	TIOH	10	Avergae	TION	10	kN/m³	kN/m³	kN/m²	kN/m²	0	kN/m²	0	MPa	MPa	
IVB	78.00 mOD	77.00 mOD	77.50 mOD	0.00 m BEGL	1.00 m BEGL	19.50 kN/m³	20.50 kN/m³	33 kN/m²	2 kN/m²	25 °	23 kN/m²	8.3 °	5.53 MN/m²	13.33 MN/m²	0.40
IVB	77.00 mOD	76.00 mOD	76.50 mOD	1.00 m BEGL	2.00 m BEGL	19.50 kN/m³	20.50 kN/m³	67 kN/m²	2 kN/m²	25 °	47 kN/m²	8.3 °	11.07 MN/m²	26.67 MN/m²	0.40
IVB	76.00 mOD	75.00 mOD	75.50 mOD	2.00 m BEGL	3.00 m BEGL	19.50 kN/m³	20.50 kN/m³	100 kN/m²	2 kN/m²	25 °	58 kN/m²	8.3 °	16.60 MN/m²	40.00 MN/m²	0.40
IVA	75.00 mOD	74.00 mOD	74.50 mOD	3.00 m BEGL	4.00 m BEGL	20.50 kN/m³	21.00 kN/m³	133 kN/m²	4 kN/m²	32 °	63 kN/m²	10.7 °	22.13 MN/m²	53.33 MN/m²	0.40
IVA	74.00 mOD	73.00 mOD	73.50 mOD	4.00 m BEGL	5.00 m BEGL	20.50 kN/m³	21.00 kN/m³	167 kN/m²	4 kN/m²	32 °	67 kN/m²	10.7 °	27.67 MN/m²	66.67 MN/m²	0.40
IVA	73.00 mOD	72.00 mOD	72.50 mOD	5.00 m BEGL	6.00 m BEGL	20.50 kN/m³	21.00 kN/m³	200 kN/m²	4 kN/m²	32 °	71 kN/m²	10.7 °	33.20 MN/m²	80.00 MN/m²	0.40
IVA	72.00 mOD	71.00 mOD	71.50 mOD	6.00 m BEGL	7.00 m BEGL	20.50 kN/m³	21.00 kN/m³	233 kN/m²	4 kN/m²	32 °	74 kN/m²	10.7 °	38.73 MN/m²	93.33 MN/m²	0.40
III	71.00 mOD	70.00 mOD	70.50 mOD	7.00 m BEGL	8.00 m BEGL	22.00 kN/m³	22.00 kN/m³	267 kN/m²	10 kN/m²	32 °	77 kN/m²	10.7 °	44.27 MN/m²	106.67 MN/m²	0.30
III	70.00 mOD	69.00 mOD	69.50 mOD	8.00 m BEGL	9.00 m BEGL	22.00 kN/m³	22.00 kN/m³	300 kN/m²	10 kN/m²	32 °	80 kN/m²	10.7 °	49.80 MN/m²	120.00 MN/m²	0.30
III	69.00 mOD	68.00 mOD	68.50 mOD	9.00 m BEGL	10.00 m BEGL	22.00 kN/m³	22.00 kN/m³	333 kN/m²	10 kN/m²	32 °	82 kN/m²	10.7 °	55.33 MN/m²	133.33 MN/m²	0.30
III	68.00 mOD	67.00 mOD	67.50 mOD	10.00 m BEGL	11.00 m BEGL	22.00 kN/m³	22.00 kN/m³	367 kN/m²	10 kN/m²	32 °	85 kN/m²	10.7 °	60.87 MN/m²	146.67 MN/m²	0.30
III	67.00 mOD	66.00 mOD	66.50 mOD	11.00 m BEGL	12.00 m BEGL	22.00 kN/m³	22.00 kN/m³	400 kN/m²	10 kN/m²	32 °	87 kN/m²	10.7 °	66.40 MN/m²	160.00 MN/m²	0.30
III	66.00 mOD	65.00 mOD	65.50 mOD	12.00 m BEGL	13.00 m BEGL	22.00 kN/m³	22.00 kN/m³	433 kN/m²	10 kN/m²	32 °	89 kN/m²	10.7 °	71.93 MN/m²	173.33 MN/m²	0.30
II	65.00 mOD	64.00 mOD	64.50 mOD	13.00 m BEGL	14.00 m BEGL	22.50 kN/m³	22.50 kN/m³	505 kN/m²	16 kN/m²	42 °	93 kN/m²	14.0 °	83.83 MN/m²	202.00 MN/m²	0.25
II	64.00 mOD	63.00 mOD	63.50 mOD	14.00 m BEGL	15.00 m BEGL	22.50 kN/m³	22.50 kN/m³	615 kN/m²	16 kN/m²	42 °	98 kN/m²	14.0 °	102.09 MN/m²	246.00 MN/m²	0.25
II	63.00 mOD	62.00 mOD	62.50 mOD	15.00 m BEGL	16.00 m BEGL	22.50 kN/m³	22.50 kN/m³	725 kN/m²	16 kN/m²	42 °	103 kN/m²	14.0 °	120.35 MN/m²	290.00 MN/m²	0.25
II	62.00 mOD	61.00 mOD	61.50 mOD	16.00 m BEGL	17.00 m BEGL	22.50 kN/m³	22.50 kN/m³	835 kN/m²	16 kN/m²	42 °	107 kN/m²	14.0 °	138.61 MN/m²	334.00 MN/m²	0.25
II	61.00 mOD	60.00 mOD	60.50 mOD	17.00 m BEGL	18.00 m BEGL	22.50 kN/m³	22.50 kN/m³	945 kN/m²	16 kN/m²	42 °	111 kN/m²	14.0 °	156.87 MN/m²	378.00 MN/m²	0.25
I	60.00 mOD	59.00 mOD	59.50 mOD	18.00 m BEGL	19.00 m BEGL	23.00 kN/m³	23.00 kN/m³	1097 kN/m²	25 kN/m²	42 °	116 kN/m²	14.0 °	182.14 MN/m²	438.89 MN/m²	0.25

Notes Refer to Hydrock Report EMG-HYD-HGT-C4-RP-GE-0014 Table 2.1 for Bulk and Saturated unit weights for each weathering grade

Refer to Hydrock Report EMG-HYD-HGT-C4-RP-GE-0014 Table 2.1 and Figure 2.1 for derivaiton of Effective Angle of Friction and Effectice Cohesion for each weathering grade

Refer to Hydrock Report EMG-HYD-HGT-C4-RP-GE-0014 Table 2.3 for regression analysis factors for conversion of reduced ground level in m OD to equivalent Undrained Shear Strength

Derivation of Adhesion between Structure and Soil based upon either $\alpha = S_u \times 0.7$ or $\alpha = S_u \times (15.346 \times (S_u ^-0.7108))$, as derived from Tomlinson et al. which ever is the lesser.

Derivation of Angle of Friction between Strcuture and Soil is based on a lower bound value of δ = 1/3 ϕ ' where δ is typically in the range of 1/3 ϕ ' to 2/3 ϕ '.

Refer to Hydrock Report EMG-HYD-HGT-C4-RP-GE-0014, Annex C for the derivation of equivalent Oedometric Modulus Eoed is based upon Su x 0.166, where Su is in kN/m² and Eoed is in MN/m².

Refer to Hydrock Report EMG-HYD-HGT-C4-RP-GE-0014, Annex C for the derivation of equivalent Elastic Modulus Es is based upon Su x 0.400, where Su is in kN/m² and Es is in MN/m².

Derivation of equivalent Poisson's Ratio is based upon the guidnace from CIRIA C570, Engineering in Mercia Mudstone

ANNEX B.2 EMG-HYD-C4-M10B-CA-GE-

0649

Spread footing verification

Input data

Settings

United Kingdom - EN 1997 Materials and standards

Concrete structures: EN 1992-1-1 (EC2)

Coefficients EN 1992-1-1: standard

Settlement

Analysis method: Analysis using oedometric modulus

Restriction of influence zone : by percentage of Sigma,Or

Coeff. of restriction of influence zone: 10.0 [%]

Spread Footing

Analysis for drained conditions: EC 7-1 (EN 1997-1:2003)

Analysis of uplift: Standard Allowable eccentricity: 0.333

Verification methodology: according to EN 1997

Design approach: 1 - reduction of actions and soil parameters

Design approach.									
		Partia	factors on	actions (A)					
	Permanent design situation								
		Combination 1				Combination 2			
		Unfavourab	le F	avourable	Unfavour	able Fa	avourable		
Permanent actions :	ψ _G =	1.35 [–]		1.00 [–]	1.00 [-	-]	1.00 [–]		
Partial factors for soil parameters (M)									
		Perma	anent desig	ın situation					
				Combir	nation 1	Combination 2			
Partial factor on internal	friction:		$\psi_{\phi} =$	1.00	[–]	1.25	[-]		
Partial factor on effective cohesion :			ψ _C =	1.00	[–]	1.25	[-]		
Partial factor on undrain	Partial factor on undrained shear strength :				[-]	1.40	[-]		
Partial factor on unconfi	ned streng	th :	ψν =	1.00	[–]	1.40	[-]		

Basic soil parameters - (effective stress-state)

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	ψ [kN/m³]	Ψsu [kN/m³]	δ [°]
2	Firm to stiff red brown silty CLAY - MMG IVB		25.00	2.00	19.50	10.50	7.50
3	Stiff red brown silty CLAY - MMG IVA		32.00	4.00	20.50	11.00	10.00
4	Weathered Mudstone - MMG III		32.00	10.00	22.00	12.00	10.00
5	Weathered Mudstone - MMG II		42.00	16.00	22.50	12.50	14.00
6	Intact Mudstone - MMG I		42.00	25.00	23.00	13.00	14.00
7	Bromsgrove Sandstone - Interbedded Mudstone & Sandstone	\	40.00	8.00	22.50	13.00	12.00
8	Existing Highway General Fill		25.00	2.00	19.50	10.50	10.00

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	Ψ [kN/m³]	Ψsu [kN/m³]	δ [°]
9	Class 2 Fill (Site Won MMG IV)		25.00	2.00	19.50	10.50	10.00
10	Class 6F Capping/Subbase/Surfacing		35.00	0.00	21.00	11.50	15.00
12	Terrace Sands & Gravels		35.00	0.00	22.00	12.50	15.00
13	Class 7A Selected Cohesive Fill		25.00	2.00	20.50	11.00	12.00
14	Class 7C Selected Cohesive Fill		25.00	2.00	20.50	11.00	12.00
15	Pre-existing Made Ground		25.00	0.00	19.00	9.50	8.00
16	Culvert		41.50	0.00	2.40	0.00	25.00
17	Granular Backfill to Culvert		41.50	0.00	18.00	8.00	16.00
18	Class 6N Selected Backfill to Structures		41.50	0.00	22.50	13.00	16.60
19	Redcued Level 78 - 77 m OD - MMG IVB		25.00	2.00	19.50	10.50	8.30
20	Redcued Level 77 - 76 m OD - MMG IVB		25.00	2.00	19.50	10.50	8.30
21	Redcued Level 76 - 75 m OD - MMG IVB		25.00	2.00	19.50	10.50	8.30
22	Redcued Level 75 - 74 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
23	Redcued Level 74 - 73 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
24	Redcued Level 73 - 72 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
25	Redcued Level 72 - 71 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
26	Redcued Level 71 - 70 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
27	Redcued Level 70 - 69 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
28	Redcued Level 69 - 68 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
29	Redcued Level 68 - 67 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
30	Redcued Level 67 - 66 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
31	Redcued Level 66 - 65 m OD - MMG III		32.00	10.00	22.00	12.00	10.70

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	ψ [kN/m³]	Ψsu [kN/m³]	δ [°]
32	Redcued Level 65 - 64 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
33	Redcued Level 64 - 63 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
34	Redcued Level 63 - 62 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
35	Redcued Level 62 - 61 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
36	Redcued Level 61 - 60 m OD - MMG II		42.00	16.00	22.50	12.50	14.00

Basic soil parameters - (total stress-state)

No.	Name	Pattern	c _u [kPa]	a [kPa]	Ψ [kN/m³]
1	Topsoil/Subsoil	<u></u>	35.00	28.00	16.50
11	Landscape Fill - Class 4		50.00	20.00	20.00
37	Redcued Level 60 - 59 m OD - MMG I		1097.00	116.00	23.00

Soil parameters to compute pressure at rest

No.	Name	Pattern	Type calculation	χπ _{ef} [°]	ς [–]	OCR [-]	K _r [–]
1	Topsoil/Subsoil	<u>, , , , , , , , , , , , , , , , , , , </u>	cohesionless	0.00	-	-	-
2	Firm to stiff red brown silty CLAY - MMG IVB		cohesive	-	0.40	-	-
3	Stiff red brown silty CLAY - MMG IVA		cohesive	-	0.40	-	-
4	Weathered Mudstone - MMG III		overconsolidated	-	-	2.00	-
5	Weathered Mudstone - MMG II		overconsolidated	-	-	3.00	-
6	Intact Mudstone - MMG I		overconsolidated	-	-	6.00	-
7	Bromsgrove Sandstone - Interbedded Mudstone & Sandstone	\	cohesionless	40.00	-	-	-
8	Existing Highway General Fill		cohesive	-	0.35	-	-
9	Class 2 Fill (Site Won MMG IV)		cohesive	-	0.35	-	-
10	Class 6F Capping/Subbase/Surfacing		cohesionless	35.00	-	-	-

No.	Name	Pattern	Type calculation	χπ _{ef} [°]	ς [-]	OCR [-]	K _r
11	Landscape Fill - Class 4		cohesive	-	0.40	-	-
12	Terrace Sands & Gravels		cohesionless	35.00	-	-	-
13	Class 7A Selected Cohesive Fill		cohesive	-	0.40	-	-
14	Class 7C Selected Cohesive Fill		cohesive	-	0.40	-	-
15	Pre-existing Made Ground		cohesive	-	0.35	-	-
16	Culvert		cohesionless	41.50	-	-	-
17	Granular Backfill to Culvert	0 0 0	cohesionless	41.50	-	-	-
18	Class 6N Selected Backfill to Structures		cohesionless	41.50	-	-	-
19	Redcued Level 78 - 77 m OD - MMG IVB		cohesive	-	0.40	-	-
20	Redcued Level 77 - 76 m OD - MMG IVB		cohesive	-	0.40	-	-
21	Redcued Level 76 - 75 m OD - MMG IVB		cohesive	-	0.40	-	-
22	Redcued Level 75 - 74 m OD - MMG IVA		cohesive	-	0.40	-	-
23	Redcued Level 74 - 73 m OD - MMG IVA		cohesive	-	0.40	-	-
24	Redcued Level 73 - 72 m OD - MMG IVA		cohesive	-	0.40	-	-
25	Redcued Level 72 - 71 m OD - MMG IVA		cohesive	-	0.40	-	-
26	Redcued Level 71 - 70 m OD - MMG III		overconsolidated	-	-	2.00	-
27	Redcued Level 70 - 69 m OD - MMG III		overconsolidated	-	-	2.00	-
28	Redcued Level 69 - 68 m OD - MMG III		overconsolidated	-	-	2.00	-
29	Redcued Level 68 - 67 m OD - MMG III		overconsolidated	-	-	2.00	-
30	Redcued Level 67 - 66 m OD - MMG III		overconsolidated	-	-	2.00	-
31	Redcued Level 66 - 65 m OD - MMG III		overconsolidated	-	-	2.00	-
32	Redcued Level 65 - 64 m OD - MMG II		overconsolidated	-	-	2.00	-

No.	Name	Pattern	Type calculation	χπ _{ef} [°]	ς [-]	OCR [-]	K _r [–]
33	Redcued Level 64 - 63 m OD - MMG II		overconsolidated	-	-	2.00	-
34	Redcued Level 63 - 62 m OD - MMG II		overconsolidated	_	-	2.00	-
35	Redcued Level 62 - 61 m OD - MMG II		overconsolidated	_	-	2.00	-
36	Redcued Level 61 - 60 m OD - MMG II		overconsolidated	-	-	2.00	-
37	Redcued Level 60 - 59 m OD - MMG I		overconsolidated	-	-	2.00	-

Soil parameters

Topsoil/Subsoil

Firm to stiff red brown silty CLAY - MMG IVB

Unit weight: 19.50 kN/m³ = $\chi \pi_{ef} =$ Angle of internal friction: 25.00° Cohesion of soil: Cef = 2.00 kPa Oedometric modulus: $E_{oed} =$ 44.00 MPa Saturated unit weight: ψ_{sat} = 20.50 kN/m3

Stiff red brown silty CLAY - MMG IVA

Unit weight : $\psi = 20.50 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{ef} = 32.00 \text{ °}$ Cohesion of soil : $c_{ef} = 4.00 \text{ kPa}$ Oedometric modulus : $E_{oed} = 68.00 \text{ MPa}$ Saturated unit weight : $\psi_{sat} = 21.00 \text{ kN/m}^3$

Weathered Mudstone - MMG III

Unit weight : $\psi = 22.00 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{ef} = 32.00 \text{ °}$ Cohesion of soil : $c_{ef} = 10.00 \text{ kPa}$ Oedometric modulus : $E_{oed} = 120.00 \text{ MPa}$ Saturated unit weight : $\psi_{sat} = 22.00 \text{ kN/m}^3$

Weathered Mudstone - MMG II

Intact Mudstone - MMG I

Unit weight: $\psi = 23.00 \text{ kN/m}^3$

Ian Gardner

Bromsgrove Sandstone - Interbedded Mudstone & Sandstone

Existing Highway General Fill

Class 2 Fill (Site Won MMG IV)

Class 6F Capping/Subbase/Surfacing

Unit weight : $\psi = 21.00 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{ef} = 35.00 \text{ }^{\circ}$ Cohesion of soil : $c_{ef} = 0.00 \text{ kPa}$ Oedometric modulus : $E_{oed} = 478.00 \text{ MPa}$ Saturated unit weight : $\psi_{sat} = 21.50 \text{ kN/m}^3$

Landscape Fill - Class 4

Unit weight : $\psi = 20.00 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{ef} = 25.00 \text{ °}$ Cohesion of soil : $c_{ef} = 1.00 \text{ kPa}$ Oedometric modulus : $E_{oed} = 8.50 \text{ MPa}$ Saturated unit weight : $\psi_{sat} = 20.50 \text{ kN/m}^3$

Terrace Sands & Gravels

Class 7A Selected Cohesive Fill

Unit weight: 20.50 kN/m3 = 25.00° Angle of internal friction: $\chi \pi_{ef}$ Cohesion of soil: = 2.00 kPa Cef Oedometric modulus: 20.00 MPa $E_{oed} =$ Saturated unit weight: 21.00 kN/m3 Ψsat

Class 7C Selected Cohesive Fill

Pre-existing Made Ground

Unit weight : $\psi = 19.00 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{ef} = 25.00 \text{ }^{\circ}$ Cohesion of soil : $c_{ef} = 0.00 \text{ kPa}$ Oedometric modulus : $E_{oed} = 17.50 \text{ MPa}$ Saturated unit weight : $\psi_{sat} = 19.50 \text{ kN/m}^3$

Culvert

Granular Backfill to Culvert

Class 6N Selected Backfill to Structures

Unit weight : ψ = 22.50 kN/m³ Angle of internal friction : $\chi \pi_{ef}$ = 41.50 ° Cohesion of soil : c_{ef} = 0.00 kPa Oedometric modulus : E_{oed} = 478.00 MPa Saturated unit weight : ψ_{sat} = 23.00 kN/m³

Redcued Level 78 - 77 m OD - MMG IVB

19.50 kN/m³ Unit weight: Angle of internal friction: $\chi \pi_{ef}$ = 25.00° Cohesion of soil: c_{ef} = 2.00 kPa Deformation modulus: $E_{def} =$ 10.00 MPa Poisson's ratio: 0.40 Saturated unit weight: Ψ_{sat} 20.50 kN/m³

Redcued Level 77 - 76 m OD - MMG IVB

Unit weight: 19.50 kN/m³ Angle of internal friction: $\chi \pi_{ef} =$ 25.00° Cohesion of soil: 2.00 kPa $c_{ef} =$ Deformation modulus: E_{def} = 20.00 MPa Poisson's ratio: 0.40 Saturated unit weight: 20.50 kN/m3 Ψsat

Redcued Level 76 - 75 m OD - MMG IVB

Ian Gardner

Unit weight: 19.50 kN/m³ Angle of internal friction: $\chi \pi_{ef} =$ 25.00° Cohesion of soil: c_{ef} = 2.00 kPa Deformation modulus: E_{def} = 30.00 MPa Poisson's ratio: 0.40 Ψsat = Saturated unit weight: 20.50 kN/m3

Redcued Level 75 - 74 m OD - MMG IVA

Unit weight: 20.50 kN/m3 Angle of internal friction: $\chi\pi_{ef}$ = 32.00° Cohesion of soil: $c_{ef} =$ 4.00 kPa Deformation modulus: $E_{def} =$ 40.00 MPa Poisson's ratio: 0.40 ς Saturated unit weight: Ψsat 21.00 kN/m³

Redcued Level 74 - 73 m OD - MMG IVA

20.50 kN/m³ Unit weight: Angle of internal friction: $\chi \pi_{ef} =$ 32.00° Cohesion of soil: 4.00 kPa $c_{ef} =$ Deformation modulus: E_{def} = 50.00 MPa Poisson's ratio: 0.40 Saturated unit weight: ψ_{sat} = 21.00 kN/m³

Redcued Level 73 - 72 m OD - MMG IVA

Saturated unit weight : $\psi_{sat} = 21.00 \text{ kN/m}^3$

Redcued Level 72 - 71 m OD - MMG IVA

Unit weight: 20.50 kN/m3 $\chi \pi_{ef} =$ Angle of internal friction: 32.00° Cohesion of soil: c_{ef} = 4.00 kPa Deformation modulus: E_{def} = 70.00 MPa Poisson's ratio: 0.40 = Saturated unit weight: 21.00 kN/m3 Ψsat

Redcued Level 71 - 70 m OD - MMG III

Unit weight: 22.00 kN/m3 Angle of internal friction: $\chi \pi_{ef} =$ 32.00° Cohesion of soil: c_{ef} = 10.00 kPa Deformation modulus: 80.00 MPa E_{def} = Poisson's ratio: 0.30 Saturated unit weight: 22.00 kN/m3 Ψsat

Redcued Level 70 - 69 m OD - MMG III

Saturated unit weight : $\psi_{sat} = 22.00 \text{ kN/m}^3$

Redcued Level 69 - 68 m OD - MMG III

Unit weight: 22.00 kN/m3 Angle of internal friction: $\chi \pi_{ef}$ = 32.00° Cohesion of soil: c_{ef} = 10.00 kPa Deformation modulus: $E_{def} =$ 100.00 MPa Poisson's ratio: 0.30 Saturated unit weight: ψ_{sat} = 22.00 kN/m3

Redcued Level 68 - 67 m OD - MMG III

Unit weight: 22.00 kN/m3 Angle of internal friction: $\chi \pi_{ef}$ = 32.00° Cohesion of soil: 10.00 kPa c_{ef} = Deformation modulus: 110.00 MPa $E_{def} =$ Poisson's ratio: 0.30 Saturated unit weight: ψ_{sat} = 22.00 kN/m3

Redcued Level 67 - 66 m OD - MMG III

Saturated unit weight : $\psi_{sat} = 22.00 \text{ kN/m}^3$

Redcued Level 66 - 65 m OD - MMG III

Unit weight: 22.00 kN/m3 $\chi \pi_{ef}$ = Angle of internal friction: 32.00° Cohesion of soil: c_{ef} = 10.00 kPa Deformation modulus: $E_{def} =$ 130.00 MPa Poisson's ratio: 0.30 Saturated unit weight: ψ_{sat} = 22.00 kN/m3

Redcued Level 65 - 64 m OD - MMG II

Unit weight: 22.50 kN/m3 Angle of internal friction: $\chi \pi_{ef} =$ 42.00° Cohesion of soil: c_{ef} = 16.00 kPa Deformation modulus: $E_{def} =$ 151.50 MPa Poisson's ratio: 0.25 Saturated unit weight: ψ_{sat} = 22.50 kN/m³

Redcued Level 64 - 63 m OD - MMG II

Unit weight: 22.50 kN/m3 Angle of internal friction: $\chi \pi_{ef} =$ 42.00° Cohesion of soil: c_{ef} = 16.00 kPa Deformation modulus: $E_{def} =$ 184.50 MPa Poisson's ratio: 0.25 Saturated unit weight: Ψsat = 22.50 kN/m3

Redcued Level 63 - 62 m OD - MMG II

Unit weight : $\psi = 22.50 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{\text{ef}} = 42.00 ^\circ$

Ian Gardner

Redcued Level 62 - 61 m OD - MMG II

Unit weight: 22.50 kN/m³ Angle of internal friction: $\chi \pi_{ef}$ = 42.00° Cohesion of soil: c_{ef} = 16.00 kPa Deformation modulus: $E_{def} =$ 250.50 MPa Poisson's ratio: = 0.25 ψ_{sat} = Saturated unit weight: 22.50 kN/m3

Redcued Level 61 - 60 m OD - MMG II

22.50 kN/m3 Unit weight: Angle of internal friction: $\chi \pi_{ef} =$ 42.00° Cohesion of soil: c_{ef} = 16.00 kPa Deformation modulus: $E_{def} =$ 283.50 MPa Poisson's ratio: 0.25 = $\psi_{sat} =$ Saturated unit weight: 22.50 kN/m³

Redcued Level 60 - 59 m OD - MMG I

Unit weight: 23.00 kN/m³ Angle of internal friction: 42.00° $\chi \pi_{ef} =$ Cohesion of soil: 25.00 kPa $c_{ef} =$ Deformation modulus: 329.17 MPa E_{def} = Poisson's ratio: 0.25 Saturated unit weight: Ψsat = 23.00 kN/m3

Foundation

Foundation type: strip footing

Depth from original ground surface $h_z = 10.30 \text{ m}$ Depth of footing bottom d = 1.75 mFoundation thickness t = 1.50 mIncl. of finished grade $s_1 = 0.00 ^\circ$ Incl. of footing bottom $s_2 = 0.00 ^\circ$ Unit weight of soil above foundation = 22.00 kN/m³

Geometry of structure

Foundation type: strip footing

Overall strip footing length = 21.00 mStrip footing width (x) = 7.00 mColumn width in the direction of x = 0.10 mVolume of strip footing = $10.50 \text{ m}^3/\text{m}$

Inserted loading is considered per unit length of continuous footing span.

Material of structure

Unit weight $\psi = 23.50 \text{ kN/m}^3$

Analysis of concrete structures carried out according to the standard EN 1992-1-1 (EC2).

Concrete: C 35/45

Cylinder compressive strength $f_{ck} = 35.00 \text{ MPa}$ Tensile strength $f_{ctm} = 3.20 \text{ MPa}$

Elasticity modulus $E_{cm} = 34000.00 \text{ MPa}$

Longitudinal steel: B500

Yield strength $f_{yk} = 500.00 \text{ MPa}$

Transverse steel: B500

Yield strength $f_{yk} = 500.00 \text{ MPa}$

Geological profile and assigned soils

No.	Layer [m]	Assigned soil	Pattern
1	1.00	Redcued Level 77 - 76 m OD - MMG IVB	
2	1.00	Redcued Level 76 - 75 m OD - MMG IVB	
3	1.00	Redcued Level 75 - 74 m OD - MMG IVA	
4	1.00	Redcued Level 74 - 73 m OD - MMG IVA	
5	1.00	Redcued Level 73 - 72 m OD - MMG IVA	
6	1.00	Redcued Level 72 - 71 m OD - MMG IVA	
7	1.00	Redcued Level 71 - 70 m OD - MMG III	
8	1.00	Redcued Level 70 - 69 m OD - MMG III	
9	1.00	Redcued Level 69 - 68 m OD - MMG III	
10	1.00	Redcued Level 68 - 67 m OD - MMG III	
11	1.00	Redcued Level 67 - 66 m OD - MMG III	
12	1.00	Redcued Level 66 - 65 m OD - MMG III	
13	1.00	Redcued Level 65 - 64 m OD - MMG II	
14	1.00	Redcued Level 64 - 63 m OD - MMG II	
15	1.00	Redcued Level 63 - 62 m OD - MMG II	
16	1.00	Redcued Level 62 - 61 m OD - MMG II	
17	1.00	Redcued Level 61 - 60 m OD - MMG II	
18	1.00	Redcued Level 60 - 59 m OD - MMG I	
19	-	Redcued Level 60 - 59 m OD - MMG I	

Load

No	Load		Name	Tyme	N	M _y	H _x
No.	new	change	Name	Type	[kN/m]	[kNm/m]	[kN/m]
1	Yes		LC 1	Design	3929.41	2763.85	-297.39
2	Yes		LC 2	Design	3447.81	3242.51	-482.42
3	Yes		LC 3	Design	3447.81	3206.42	-391.43
4	Yes		LC 4	Design	3447.81	3206.42	-391.43
5	Yes		LC 5	Service	3447.81	2977.85	-316.43

Surface surcharges in the vicinity of footing

ı	No.	Surcharge	rge Name		Уs	Х	у	q	α	h
		new change		[m]	[m]	[m]	[m]	[kPa]	[°]	[m]
	1	Yes	Embankment Backfill	10.50	0.00	20.00	21.00	212.50	0.00	0.00

Ground water table

The ground water table is at a depth of 11.00 m from the original terrain.

Global settings

Type of analysis: analysis for drained conditions

Settings of the stage of construction

Design situation : permanent

No. 1

Load case verification

Name	Self w.	e _x	e _y	α	R _d	Utilization	Is satisfied			
IVallie	in favor	[m]	[m]	[kPa]	[kPa]	[%]	is satisfied			
LC 1	Yes	-0.76	0.00	769.48	8207.39	9.38	Yes			
LC 1	No	-0.76	0.00	769.48	8207.39	9.38	Yes			
LC 2	Yes	-1.06	0.00	765.67	6754.32	11.34	Yes			
LC 2	No	-1.06	0.00	765.67	6754.32	11.34	Yes			
LC 3	Yes	-1.02	0.00	751.42	7228.24	10.40	Yes			
LC 3	No	-1.02	0.00	751.42	7228.24	10.40	Yes			
LC 4	Yes	-1.02	0.00	751.42	7228.24	10.40	Yes			
LC 4	No	-1.02	0.00	751.42	7228.24	10.40	Yes			
LC 5	Yes	-0.92	0.00	724.75	3051.66	23.75	Yes			
LC 5	No	-0.92	0.00	724.75	3051.66	23.75	Yes			

Analysis carried out with automatic selection of the most unfavourable load cases.

Computed self weight of strip foundation G = 246.75 kN/mComputed weight of overburden Z = 37.95 kN/m

Vertical bearing capacity check

Shape of contact stress: rectangle Most severe load case No. 5. (LC 5)

Parameters of slip surface below foundation:

Depth of slip surface $z_{sp} = 13.31 \text{ m}$ Length of slip surface $l_{sp} = 43.81 \text{ m}$

Design bearing capacity of found.soil R_d = 3051.66 kPa

Ian Gardner

Extreme contact stress

 α = 724.75 kPa

Bearing capacity in the vertical direction is SATISFACTORY

Verification of load eccentricity

Max. eccentricity in direction of base length $e_x = 0.152 < 0.333$ Max. eccentricity in direction of base width $e_y = 0.000 < 0.333$ Max. overall eccentricity $e_t = 0.152 < 0.333$

Eccentricity of load is SATISFACTORY

Horizontal bearing capacity check

Most severe load case No. 2. (LC 2)

Earth resistance: not considered

Horizontal bearing capacity $R_{dh} = 2381.08 \text{ kN}$ Extreme horizontal force H = 482.42 kN

Bearing capacity in the horizontal direction is SATISFACTORY

Bearing capacity of foundation is SATISFACTORY

No. 1

Settlement and rotation of foundation - input data

Analysis carried out with automatic selection of the most unfavourable load cases. Analysis carried out with accounting for coefficient K_1 (influence of foundation depth). Stress at the footing bottom considered from the finished grade.

Computed self weight of strip foundation G = 246.75 kN/mComputed weight of overburden Z = 37.95 kN/mSettlement of mid point of longitudinal edge = 14.6 mmSettlement of mid point of transverse edge 1 = 20.6 mmSettlement of mid point of transverse edge 2 = 13.7 mm

(1-max.compressed edge; 2-min.compressed edge)

Settlement and rotation of foundation - results

Foundation stiffness:

Computed weighted average modulus of deformation E_{def} = 262.10 MPa Foundation in the longitudinal direction is rigid (k=1.28) Foundation in the direction of width is rigid (k=437.81)

Verification of load eccentricity

 $\begin{array}{lll} \text{Max. eccentricity in direction of base length} & e_x = 0.132 < 0.333 \\ \text{Max. eccentricity in direction of base width} & e_y = 0.000 < 0.333 \\ \text{Max. overall eccentricity} & e_t = 0.132 < 0.333 \\ \end{array}$

Eccentricity of load is SATISFACTORY

Overall settlement and rotation of foundation:

Foundation settlement = 18.2 mm Depth of influence zone = 29.60 m

Rotation in direction of width = 0.978 (tan*1000); (5.6E-02°)

ANNEX B.3 EMG-HYD-C4-M10B-CA-GE-

0661

Slope stability analysis

Input data

Project

Task: EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE
Part: M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Description: M1 OVERBRIDGE LONG-TERM STABILITY - EXISTING M1 CUTTING

Customer: ROXHILL KEGWORTH LTD

Author: Ian Gardner

Date: 08/07/2017 16:38:13

Project ID: C14792

Project number: EMG-HYD-C4-M10B-CA-GE-0661-S4-P1

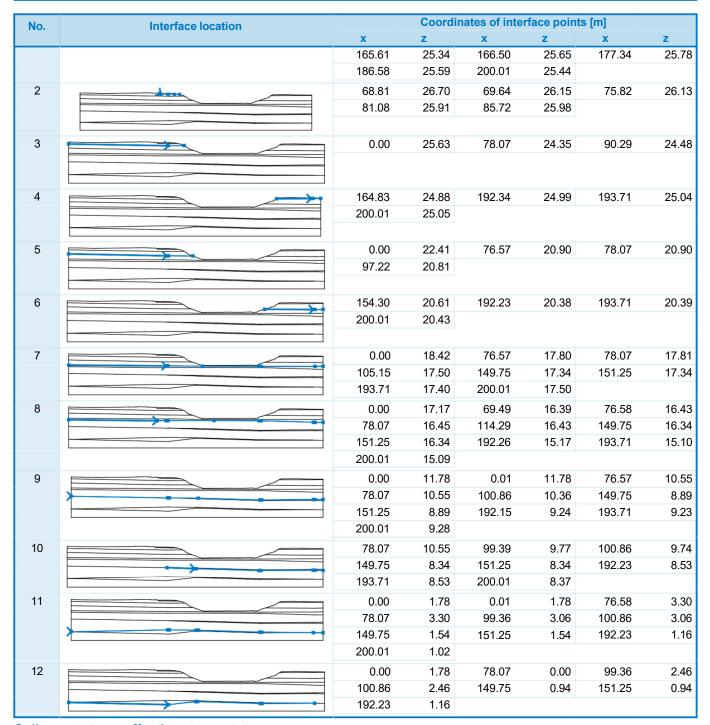
Settings

United Kingdom - EN 1997

Stability analysis

Earthquake analysis : Standard

Verification methodology: according to EN 1997


Design approach: 1 - reduction of actions and soil parameters

	Partial factors on actions (A)								
Permanent design situation									
		Combination 1				Combination 2			
		Unfavourable Favourable		Unfavo	Unfavourable Fa		rable		
Permanent actions :	ψ _G =	1.35	[-]	1.00	[-]	1.00	[-]	1.00	[–]
Variable actions :	ψQ =	1.50	[-]	0.00	[-]	1.30	[-]	0.00	[–]
Nater load : ψ _w = 1.35 [–]									

Partial factors for soil parameters (M) **Permanent design situation** Combination 2 Combination 1 Partial factor on internal friction: 1.25 [-] 1.00 [-] $\psi_{\phi} =$ Partial factor on effective cohesion: 1.00 [-] 1.25 [-] $\psi_{c} =$ 1.40 [-] Partial factor on undrained shear strength: 1.00 [-] $\psi_{\text{cu}} =$

Interface

Ne	Interfere legation		Coord	inates of inter	face poin	ts [m]	
No.	Interface location	x	Z	x	Z	x	z
1		0.00	27.19	20.20	26.82	48.22	27.14
		52.38	27.21	52.62	27.28	53.00	27.22
		54.50	27.26	54.81	27.38	57.90	27.36
		62.22	27.24	62.77	27.12	66.74	26.97
		67.08	27.09	67.31	27.06	68.81	26.70
		75.55	26.66	78.71	26.77	81.20	26.53
		83.12	26.53	85.72	25.98	87.25	25.67
		90.29	24.48	91.14	24.15	93.15	22.46
		94.54	21.65	97.22	20.81	99.55	20.01
		102.64	18.75	105.37	18.10	110.76	18.16
		118.47	18.25	125.01	18.28	134.80	18.25
		144.04	18.41	145.20	18.13	148.32	18.35
		150.11	19.37	151.27	19.68	152.44	19.98
		154.30	20.61	155.43	20.89	157.30	21.51
		158.91	22.21	159.63	22.26	162.52	23.22
		162.76	23.66	164.19	24.50	164.83	24.88

Soil parameters - effective stress state

N	О.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	ψ [kN/m³]
	1	Firm to stiff red brown silty CLAY - MMG IVB		25.00	2.00	19.50
2	2	Stiff red brown silty CLAY - MMG IVA		32.00	4.00	20.50

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	ψ [kN/m³]
3	Weathered Mudstone - MMG III		32.00	10.00	22.00
4	Weathered Mudstone - MMG II		42.00	16.00	22.50
5	Intact Mudstone - MMG I		42.00	25.00	23.00
6	Sandstone - Interbedded Mudstone & Sandstone		40.00	8.00	22.50
7	Existing Highway General Fill	_ o _ o _ o	25.00	2.00	19.50
8	Class 2 Fill (Site Won MMG IV)		25.00	2.00	19.50
9	Class 6F Capping/Subbase/Surfacing		35.00	0.00	21.00
10	Terrace Sands & Gravels		35.00	0.00	22.00
11	Class 7A Selected Cohesive Fill		25.00	2.00	20.50
12	Class 7C Selected Cohesive Fill		25.00	2.00	20.50
13	Pre-existing Made Ground		25.00	0.00	19.00
14	Culvert		41.50	0.00	2.40
15	Granular Backfill to Culvert		41.50	0.00	18.00
16	Class 6N Selected Backfill to Structures		41.50	0.00	22.50

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	ψ [kN/m³]
17	Redcued Level 78 - 77 m OD - MMG IVB		25.00	2.00	19.50
18	Redcued Level 77 - 76 m OD - MMG IVB		25.00	2.00	19.50
19	Redcued Level 76 - 75 m OD - MMG IVB		25.00	2.00	19.50
20	Redcued Level 75 - 74 m OD - MMG IVA		32.00	4.00	20.50
21	Redcued Level 74 - 73 m OD - MMG IVA		32.00	4.00	20.50
22	Redcued Level 73 - 72 m OD - MMG IVA		32.00	4.00	20.50
23	Redcued Level 72 - 71 m OD - MMG IVA		32.00	4.00	20.50
24	Redcued Level 71 - 70 m OD - MMG III		32.00	10.00	22.00
25	Redcued Level 70 - 69 m OD - MMG III		32.00	10.00	22.00
26	Redcued Level 69 - 68 m OD - MMG III		32.00	10.00	22.00
27	Redcued Level 68 - 67 m OD - MMG III		32.00	10.00	22.00
28	Redcued Level 67 - 66 m OD - MMG III		32.00	10.00	22.00
29	Redcued Level 66 - 65 m OD - MMG III		32.00	10.00	22.00
30	Redcued Level 65 - 64 m OD - MMG II		42.00	16.00	22.50

Ian Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	Ψ [kN/m³]
31	Redcued Level 64 - 63 m OD - MMG II		42.00	16.00	22.50
32	Redcued Level 63 - 62 m OD - MMG II		42.00	16.00	22.50
33	Redcued Level 62 - 61 m OD - MMG II		42.00	16.00	22.50
34	Redcued Level 61 - 60 m OD - MMG II		42.00	16.00	22.50
35	Redcued Level 60 - 59 m OD - MMG I		42.00	25.00	23.00

Soil parameters - uplift

No.	Name	Pattern	Ψsat [kN/m³]	Ψs [kN/m ³]	n [-]
1	Firm to stiff red brown silty CLAY - MMG IVB		20.50		
2	Stiff red brown silty CLAY - MMG IVA		21.00		
3	Weathered Mudstone - MMG III		22.00		
4	Weathered Mudstone - MMG II		22.50		
5	Intact Mudstone - MMG I		23.00		
6	Sandstone - Interbedded Mudstone & Sandstone		23.00		
7	Existing Highway General Fill	_ 0 _ 0 _ 0	20.50		
8	Class 2 Fill (Site Won MMG IV)		20.50		

No.	Name	Pattern	Ψsat [kN/m³]	Ψs [kN/m³]	n [−]
9	Class 6F Capping/Subbase/Surfacing		21.50		
10	Terrace Sands & Gravels		22.50		
11	Class 7A Selected Cohesive Fill		21.00		
12	Class 7C Selected Cohesive Fill		21.00		
13	Pre-existing Made Ground		19.50		
14	Culvert		2.40		
15	Granular Backfill to Culvert		18.00		
16	Class 6N Selected Backfill to Structures		23.00		
17	Redcued Level 78 - 77 m OD - MMG IVB		20.50		
18	Redcued Level 77 - 76 m OD - MMG IVB		20.50		
19	Redcued Level 76 - 75 m OD - MMG IVB		20.50		
20	Redcued Level 75 - 74 m OD - MMG IVA		21.00		
21	Redcued Level 74 - 73 m OD - MMG IVA		21.00		
22	Redcued Level 73 - 72 m OD - MMG IVA		21.00		

No.	Name	Pattern	Ψsat [kN/m³]	Ψs [kN/m³]	n [-]
23	Redcued Level 72 - 71 m OD - MMG IVA		21.00		
24	Redcued Level 71 - 70 m OD - MMG III		22.00		
25	Redcued Level 70 - 69 m OD - MMG III		22.00		
26	Redcued Level 69 - 68 m OD - MMG III		22.00		
27	Redcued Level 68 - 67 m OD - MMG III		22.00		
28	Redcued Level 67 - 66 m OD - MMG III		22.00		
29	Redcued Level 66 - 65 m OD - MMG III		22.00		
30	Redcued Level 65 - 64 m OD - MMG II		22.50		
31	Redcued Level 64 - 63 m OD - MMG II		22.50		
32	Redcued Level 63 - 62 m OD - MMG II		22.50		
33	Redcued Level 62 - 61 m OD - MMG II		22.50		
34	Redcued Level 61 - 60 m OD - MMG II		22.50		
35	Redcued Level 60 - 59 m OD - MMG I		23.00		

Soil parameters - total stress state

No.	Name	Pattern	c _u [kPa]	Ψ [kN/m³]
1	Topsoil/Subsoil	\(\frac{\text{V}}{\text{V}}\)\(\frac{\text{V}	35.00	16.50
2	Landscape Fill - Class 4		50.00	20.00

Soil parameters

Topsoil/Subsoil

Unit weight: $\psi = 16.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil: $c_u = 35.00 \text{ kPa}$

Firm to stiff red brown silty CLAY - MMG IVB

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

Stress-state: effective

 $\begin{array}{lll} \mbox{Angle of internal friction}: & \chi \pi_{\mbox{ef}} = & 25.00 \ ^{\circ} \\ \mbox{Cohesion of soil}: & \mbox{c}_{\mbox{ef}} = & 2.00 \ \mbox{kPa} \\ \mbox{Saturated unit weight}: & \mbox{$\psi_{\mbox{sat}}$} = & 20.50 \ \mbox{kN/m}^{3} \end{array}$

Stiff red brown silty CLAY - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00 \,\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 4.00 \,\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 21.00 \,\,\text{kN/m}^{3} \end{array}$

Weathered Mudstone - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00 \,\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 10.00 \,\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.00 \,\,\text{kN/m}^{3} \end{array}$

Weathered Mudstone - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 42.00\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 16.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.50\,\text{kN/m}^{3} \end{array}$

Intact Mudstone - MMG I

Unit weight : $\psi = 23.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 42.00 \,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 25.00 \,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 23.00 \,\text{kN/m}^{3} \end{array}$

Sandstone - Interbedded Mudstone & Sandstone

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE

Ian Gardner M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 40.00 \,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 8.00 \, \text{kPa} \end{array}$

Saturated unit weight : $\psi_{\text{sat}} = 23.00 \text{ kN/m}^3$

Existing Highway General Fill

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 2.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 20.50\,\text{kN/m}^{3} \end{array}$

Class 2 Fill (Site Won MMG IV)

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 2.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 20.50\,\text{kN/m}^{3} \end{array}$

Class 6F Capping/Subbase/Surfacing

Unit weight: $\psi = 21.00 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\chi \pi_{ef} = 35.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 0.00 \, \text{kPa}$ Saturated unit weight : $\psi_{sat} = 21.50 \, \text{kN/m}^3$

Landscape Fill - Class 4

Unit weight: $\psi = 20.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 50.00 \text{ kPa}$

Terrace Sands & Gravels

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 35.00\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 0.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.50\,\text{kN/m}^{3} \end{array}$

Class 7A Selected Cohesive Fill

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi \pi_{\text{ef}} = 25.00 \, ^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 2.00 \, \text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 21.00 \, \text{kN/m}^{3} \end{array}$

Class 7C Selected Cohesive Fill

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 2.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 21.00\,\text{kN/m}^3 \end{array}$

Pre-existing Made Ground

Unit weight: $\psi = 19.00 \text{ kN/m}^3$

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE

Ian Gardner M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Stress-state: effective

 $\begin{array}{lll} \mbox{Angle of internal friction:} & \chi \pi_{\mbox{\scriptsize ef}} = 25.00 \ ^{\circ} \\ \mbox{Cohesion of soil:} & \mbox{$c_{\mbox{\scriptsize ef}}$} = 0.00 \ \mbox{\scriptsize kPa} \\ \mbox{Saturated unit weight:} & \psi_{\mbox{\scriptsize sat}} = 19.50 \ \mbox{\scriptsize kN/m}^{3} \end{array}$

Culvert

Unit weight: $\psi = 2.40 \text{ kN/m}^3$

Stress-state : effective

 $\begin{array}{lll} \mbox{Angle of internal friction}: & \chi \pi_{\mbox{ef}} = 41.50 \ ^{\circ} \\ \mbox{Cohesion of soil}: & \mbox{c}_{\mbox{ef}} = 0.00 \ \mbox{kPa} \\ \mbox{Saturated unit weight}: & \mbox{$\psi_{\mbox{sat}}$} = 2.40 \ \mbox{kN/m}^{3} \end{array}$

Granular Backfill to Culvert

Unit weight: $\psi = 18.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi \pi_{\text{ef}} = 41.50 \, ^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00 \, \text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 18.00 \, \text{kN/m}^{3} \end{array}$

Class 6N Selected Backfill to Structures

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\chi \pi_{ef} = 41.50 \,^{\circ}$ Cohesion of soil : $c_{ef} = 0.00 \, \text{kPa}$ Saturated unit weight : $\psi_{sat} = 23.00 \, \text{kN/m}^3$

Redcued Level 78 - 77 m OD - MMG IVB

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00 \,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 2.00 \,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 20.50 \,\text{kN/m}^{3} \end{array}$

Redcued Level 77 - 76 m OD - MMG IVB

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00 \,\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 2.00 \,\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 20.50 \,\,\text{kN/m}^{3} \end{array}$

Redcued Level 76 - 75 m OD - MMG IVB

Unit weight : $\psi = 19.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00 \,\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 2.00 \,\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 20.50 \,\,\text{kN/m}^{3} \end{array}$

Redcued Level 75 - 74 m OD - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 4.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 21.00\,\text{kN/m}^3 \end{array}$

lan Gardner

Redcued Level 74 - 73 m OD - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00 \, ^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 4.00 \, \text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 21.00 \, \text{kN/m}^3 \end{array}$

Redcued Level 73 - 72 m OD - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 4.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 21.00\,\text{kN/m}^{3} \end{array}$

Redcued Level 72 - 71 m OD - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\chi \pi_{ef} = 32.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 4.00 \, \text{kPa}$ Saturated unit weight : $\psi_{sat} = 21.00 \, \text{kN/m}^3$

Redcued Level 71 - 70 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00 \,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 10.00 \, \text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.00 \, \text{kN/m}^{3} \end{array}$

Redcued Level 70 - 69 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state : effective

Angle of internal friction : $\chi \pi_{ef} = 32.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 10.00 \, \text{kPa}$ Saturated unit weight : $\psi_{sat} = 22.00 \, \text{kN/m}^3$

Redcued Level 69 - 68 m OD - MMG III

Unit weight : $\psi = 22.00 \text{ kN/m}^3$

Stress-state : effective Angle of internal friction : $\chi \pi_{ef} = 32.00^{\circ}$

Cohesion of soil : $c_{ef} = 10.00 \text{ kPa}$ Saturated unit weight : $v_{sat} = 22.00 \text{ kN/m}^3$

Redcued Level 68 - 67 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00 \, ^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 10.00 \, \text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.00 \, \text{kN/m}^{3} \end{array}$

Redcued Level 67 - 66 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 10.00\,\text{kPa} \end{array}$

Ian Gardner

Saturated unit weight : $\psi_{\text{sat}} = 22.00 \text{ kN/m}^3$

Redcued Level 66 - 65 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00 \,\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 10.00 \,\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.00 \,\,\text{kN/m}^{3} \end{array}$

Redcued Level 65 - 64 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\chi \pi_{ef} = 42.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 16.00 \, \text{kPa}$ Saturated unit weight : $\psi_{sat} = 22.50 \, \text{kN/m}^3$

Redcued Level 64 - 63 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 42.00 \,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 16.00 \, \text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.50 \, \text{kN/m}^{3} \end{array}$

Redcued Level 63 - 62 m OD - MMG II

Unit weight : $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

 $\begin{array}{lll} \mbox{Angle of internal friction}: & \chi \pi_{\mbox{ef}} = & 42.00 \ ^{\circ} \\ \mbox{Cohesion of soil}: & \mbox{c}_{\mbox{ef}} = & 16.00 \ \mbox{kPa} \\ \mbox{Saturated unit weight}: & \psi_{\mbox{sat}} = & 22.50 \ \mbox{kN/m}^{3} \end{array}$

Redcued Level 62 - 61 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\chi \pi_{ef} = 42.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 16.00 \, \text{kPa}$ Saturated unit weight : $\psi_{sat} = 22.50 \, \text{kN/m}^3$

Redcued Level 61 - 60 m OD - MMG II

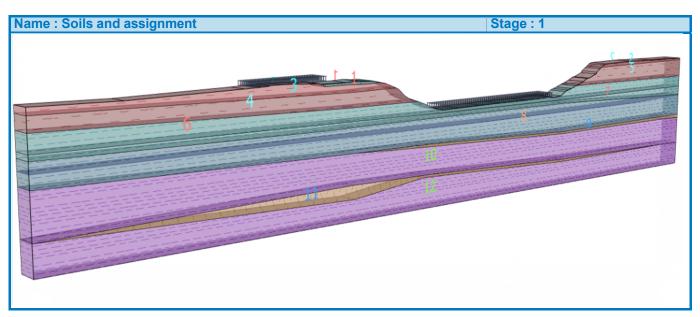
Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 42.00 \,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 16.00 \, \text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.50 \, \text{kN/m}^{3} \end{array}$

Redcued Level 60 - 59 m OD - MMG I

Unit weight: $\psi = 23.00 \text{ kN/m}^3$

 $\begin{array}{ll} \text{Stress-state:} & \text{effective} \\ \text{Angle of internal friction:} & \chi \pi_{\text{ef}} = 42.00\,^{\circ} \end{array}$


Cohesion of soil : $c_{ef} = 25.00 \text{ kPa}$ Saturated unit weight : $\psi_{sat} = 23.00 \text{ kN/m}^3$

Assigning and surfaces

No.	Curface position	Coordin	ates of su	ırface points [m]	Assigned
NO.	Surface position	X	Z	X	Z	soil
1	*	69.64	26.15	75.82	26.13	Topsoil/Subsoil
		81.08	25.91	85.72	25.98	Topson/Subson
		83.12	26.53	81.20	26.53	
		78.71	26.77	75.55	26.66	\(\langle \frac{1}{1} \langle \frac{1} \langle \frac{1}{1} \langle \frac{1} \langle \frac{1}{1} \langle \frac{1} \langle \frac{1}{1} \langle \frac{1}{1} \langle
		68.81	26.70			<u>M, M, M, M, M, M, M, M, M, M</u>
2		192.34	24.99	193.71	25.04	Firm to stiff red brown silty
		200.01	25.05	200.01	25.44	CLAY - MMG IVB
		186.58	25.59	177.34	25.78	
		166.50	25.65	165.61	25.34	
		164.83	24.88			
3		78.07	24.35	90.29	24.48	Firm to stiff red brown silty
		87.25	25.67	85.72	25.98	CLAY - MMG IVB
		81.08	25.91	75.82	26.13	
		69.64	26.15	68.81	26.70	_
		67.31	27.06	67.08	27.09	
		66.74	26.97	62.77	27.12	
		62.22	27.24	57.90	27.36	
		54.81	27.38	54.50	27.26	
		53.00	27.22	52.62	27.28	
		52.38	27.21	48.22	27.14	
		20.20	26.82	0.00	27.19	
		0.00	25.63			
4		76.57	20.90	78.07	20.90	
		97.22	20.81	94.54	21.65	MMG IVA
		93.15	22.46	91.14	24.15	
		90.29	24.48	78.07	24.35	
		0.00	25.63	0.00	22.41	
5		192.23	20.38	193.71	20.39	Stiff red brown silty CLAY -
		200.01	20.43	200.01	25.05	MMG IVA
		193.71	25.04	192.34	24.99	
		164.83	24.88	164.19	24.50	
		162.76	23.66	162.52	23.22	
		159.63	22.26	158.91	22.21	
		157.30	21.51	155.43	20.89	
		154.30	20.61			
6		76.57	17.80	78.07	17.81	Weathered Mudstone -
	, , , , , ,	105.15	17.50	149.75	17.34	MMG III
		151.25	17.34	193.71	17.40	
		200.01	17.50	200.01	20.43	
		193.71	20.39	192.23	20.38	
		154.30	20.61	152.44	19.98	
		151.27	19.68	150.11	19.37	
		148.32	18.35	145.20	18.13	
		144.04	18.41	134.80	18.25	
		125.01	18.28	118.47	18.25	
		110.76	18.16	105.37	18.10	
		102.64	18.75	99.55	20.01	
		97.22	20.81	78.07	20.90	

No. Surface position	
0.00 18.42 69.49 16.39 76.58 16.43 Weathered Mudston MMG III 149.75 16.34 151.25 16.34 192.26 15.17 193.71 15.10 200.01 15.09 200.01 17.50 193.71 17.40 151.25 17.34 149.75 17.34 105.15 17.50 78.07 17.81 76.57 17.80 0.00 18.42 0.00 17.17 8 0.01 11.78 76.57 10.55 Weathered Mudston MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	
69.49 16.39 76.58 16.43 Weathered Mudston 78.07 16.45 114.29 16.43 MMG III 149.75 16.34 151.25 16.34 192.26 15.17 193.71 15.10 200.01 15.09 200.01 17.50 193.71 17.40 151.25 17.34 149.75 17.34 105.15 17.50 78.07 17.81 76.57 17.80 0.00 18.42 0.00 17.17 8 0.01 11.78 76.57 10.55 Weathered Mudston MMG II 78.07 10.55 100.86 10.36 MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	
78.07 16.45 114.29 16.43 MMG III 149.75 16.34 151.25 16.34 192.26 15.17 193.71 15.10 200.01 15.09 200.01 17.50 193.71 17.40 151.25 17.34 149.75 17.34 105.15 17.50 78.07 17.81 76.57 17.80 0.00 18.42 0.00 17.17 8 0.01 11.78 76.57 10.55 Weathered Mudston MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	
149.75 16.34 151.25 16.34 192.26 15.17 193.71 15.10 200.01 15.09 200.01 17.50 193.71 17.40 151.25 17.34 149.75 17.34 105.15 17.50 78.07 17.81 76.57 17.80 0.00 18.42 0.00 17.17 8 0.01 11.78 76.57 10.55 Weathered Mudston MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	e -
192.26 15.17 193.71 15.10 200.01 15.09 200.01 17.50 193.71 17.40 151.25 17.34 149.75 17.34 105.15 17.50 78.07 17.81 76.57 17.80 0.00 18.42 0.00 17.17 8 0.01 11.78 76.57 10.55 Weathered Mudston 78.07 10.55 100.86 10.36 MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	e -
200.01 15.09 200.01 17.50 193.71 17.40 151.25 17.34 149.75 17.34 105.15 17.50 78.07 17.81 76.57 17.80 0.00 18.42 0.00 17.17 8 0.01 11.78 76.57 10.55 Weathered Mudston 78.07 10.55 100.86 10.36 MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	e -
193.71 17.40 151.25 17.34 149.75 17.34 105.15 17.50 78.07 17.81 76.57 17.80 0.00 18.42 0.00 17.17 8 0.01 11.78 76.57 10.55 Weathered Mudston 78.07 10.55 100.86 10.36 MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	e -
149.75 17.34 105.15 17.50 78.07 17.81 76.57 17.80 0.00 18.42 0.00 17.17 8 0.01 11.78 76.57 10.55 Weathered Mudston 78.07 10.55 100.86 10.36 MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	e -
78.07 17.81 76.57 17.80 0.00 18.42 0.00 17.17 8 0.01 11.78 76.57 10.55 Weathered Mudston 78.07 10.55 100.86 10.36 MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	e -
0.00 18.42 0.00 17.17 0.01 11.78 76.57 10.55 Weathered Mudston MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	e -
8 0.01 11.78 76.57 10.55 Weathered Mudston 78.07 10.55 100.86 10.36 MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	e - — —
78.07 10.55 100.86 10.36 MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	e -
78.07 10.55 100.86 10.36 MMG II 149.75 8.89 151.25 8.89 192.15 9.24 193.71 9.23	
192.15 9.24 193.71 9.23	
200 01 9 28 200 01 15 09 — — — —	
200.01 0.20 200.01 10.00	
193.71 15.10 192.26 15.17	
151.25 16.34 149.75 16.34	
114.29 16.43 78.07 16.45	
76.58 16.43 69.49 16.39	
0.00 17.17 0.00 11.78	
9 99.39 9.77 100.86 9.74 Sandstone - Interbed	lded
149.75 8.34 151.25 8.34 Mudstone & Sandsto	
192.23 8.53 193.71 8.53	/ _/.
200.01 8.37 200.01 9.28	\ \ \ \ \
193.71 9.23 192.15 9.24	'/
151.25 8.89 149.75 8.89	
100.86 10.36 78.07 10.55	
10 0.01 1.78 76.58 3.30 Late 4 March 12 and 12 and 13 and 14 and	MO I
78.07 3.30 99.36 3.06 Intact Mudstone - MI	VIG I
100.86 3.06 149.75 1.54	
151.25 1.54 192.23 1.16	
200.01 1.02 200.01 8.37	
193.71 8.53 192.23 8.53	
151.25 8.34 149.75 8.34	
100.86 9.74 99.39 9.77	
78.07 10.55 76.57 10.55	
0.01 11.78 0.00 11.78	
0.00 1.78	
11 78.07 0.00 99.36 2.46 Sandstone - Interbed	lded
100.86 2.46 149.75 0.94 Mudstone & Sandsto	
151.25 0.94 192.23 1.16	1 \ 1.
151.25 1.54 149.75 1.54	
100.86 3.06 99.36 3.06	- \
78.07 3.30 76.58 3.30	, ,
0.01 1.78 0.00 1.78	

No.	Surface position	Coordin	nates of su	Assigned		
NO.	Surface position	X	Z	X	Z	soil
12		151.25	0.94	149.75	0.94	Intest Mudstone MMC I
		100.86	2.46	99.36	2.46	Intact Mudstone - MMG I
		78.07	0.00	0.00	1.78	
		0.00	-5.00	200.01	-5.00	
		200.01	1.02	192.23	1.16	

Surcharge

No. Type	Tumo	Type of action	Location	Origin	Length	Width	Slope		Magnitude		
	NO.	Туре	Type of action	z [m]	x [m]	l [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
	1	strip	permanent	on terrain	x = 50.00	I = 20.00		0.00	20.00		kN/m ²
	2	strip	permanent	on terrain	x = 105.00	I = 40.00		0.00	20.00		kN/m ²

Surcharges

No.	Name
1	A453 Highway UDL
2	M1 Highway UDL

Water

Water type: GWT

No.	GWT location	Coordinates of GWT points [m]							
NO.		X	Z	X	Z	X	Z		
		0.00	14.74	59.68	14.51	121.33	14.05		
1		178.10	14.16	200.01	14.86				

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 1)

Analysis 1

Circular slip surface

Slip surface parameters									
Center:	x =	94.61	[m]	Angles :	α ₁ =	-61.23 [°]			
Center.	z =	28.23	[m]	Angles :	α2 =	-0.05 [°]			
Radius :	R=	6.60	[m]			<u> </u>			
The slip surface after optimization.									

Slope stability verification (Bishop)

Combination 1

Utilization: 65.1 %

Slope stability ACCEPTABLE

Combination 2

Utilization: 73.7 %

Slope stability ACCEPTABLE

Optimized slip surface for : Combination 2

Name : Analysis Stage - analysis : 1 - 1

Analysis 2

Polygonal slip surface

	Coordinates of slip surface points [m]												
x	Z	X	z	X	Z	X	Z	x	Z				
86.83	25.75	89.24	23.96	90.05	23.40	90.82	22.87	91.78	22.26				
92.75	21.84	93.74	21.65	94.55	21.65								
	The slip surface after optimization.												

Ian Gardner

Slope stability verification (Sarma)

Combination 1 Utilization: 66.6 %

Slope stability ACCEPTABLE

Combination 2 Utilization: 74.6 %

Slope stability ACCEPTABLE

Optimized slip surface for: Combination 2

Name : Analysis Stage - analysis : 1 - 2

Analysis 3

Circular slip surface

Slip surface parameters							
Center:	x =	161.90	[m]	Angles	α ₁ =	-1.26 [°]	
Center.	z =	28.83	[m]	Angles :	α2 =	57.18 [°]	
Radius :	R =	5.86	[m]			·	
The slip surface after optimization.							

Slope stability verification (Bishop)

Combination 1

Sum of active forces : $F_a = 38.05 \text{ kN/m}$ Sum of passive forces : $F_p = 65.24 \text{ kN/m}$ Sliding moment : $M_a = 195.57 \text{ kNm/m}$ Resisting moment : $M_p = 335.33 \text{ kNm/m}$

Utilization: 58.3 %

Slope stability ACCEPTABLE

Combination 2

Sum of active forces : $F_a = 34.52 \text{ kN/m}$ Sum of passive forces : $F_p = 52.39 \text{ kN/m}$ Sliding moment : $M_a = 202.27 \text{ kNm/m}$ Resisting moment : $M_p = 306.98 \text{ kNm/m}$

Utilization: 65.9 %

Slope stability ACCEPTABLE

Ian Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Name : Analysis Stage - analysis : 1 - 3

Name : Analysis Stage - analysis : 1 - 3

Analysis 4

Polygonal slip surface

	Coordinates of slip surface points [m]								
x	Z	x	Z	x	Z	X	Z	X	Z
161.82	22.99	162.56	22.91	163.44	23.16	164.18	23.48	164.92	23.91
165.62	24.43	166.33	25.06	166.96	25.66				
	The slip surface after optimization.								

Slope stability verification (Sarma)

Combination 1 Utilization: 59.0 %

Slope stability ACCEPTABLE

Combination 2 Utilization: 66.4 %

Slope stability ACCEPTABLE

ANNEX B.4 EMG-HYD-C4-M10B-CA-GE-

0662

Slope stability analysis

Input data

Project

Task: EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE
Part: M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Description: M1 OVERBRIDGE SHORT-TERM STABILITY - DURING CONSTRUCTION

Customer: ROXHILL KEGWORTH LTD

Author: Ian Gardner

Date: 03/08/2017 16:38:13

Project ID: C14792

Project number: EMG-HYD-C4-M10B-CA-GE-0662-S4-P2

Settings

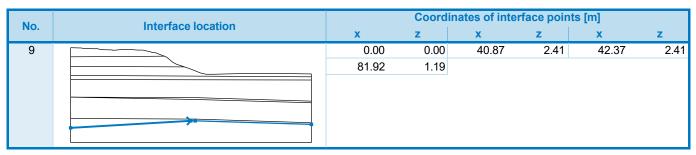
United Kingdom - EN 1997

Stability analysis

Earthquake analysis: Standard

Verification methodology: according to EN 1997

Design approach: 1 - reduction of actions and soil parameters


Partial factors on actions (A)									
Permanent design situation									
			Combination 1			Combination 2			
		Unfavo	urable	Favou	rable	Unfavo	urable	Favou	rable
Permanent actions :	ψ _G =	1.35	[-]	1.00	[-]	1.00	[-]	1.00	[-]
Variable actions :	ψQ =	1.50	[-]	0.00	[-]	1.30	[-]	0.00	[-]
Water load :	ψw =	1.35	[-]			1.00	[-]		

Partial factors for soil parameters (M)						
Permanent design situation						
Combination 1 Combination 2					ation 2	
Partial factor on internal friction :	$\psi_{\phi} =$	1.00 [–]		1.25	[-]	
Partial factor on effective cohesion :	ψ _c =	1.00 [–]		1.25	[-]	
Partial factor on undrained shear strength :	ψ _{cu} =	1.00 [–]		1.40	[-]	

Interface

No.	Interface location		Coord	inates of inter	face poin	ts [m]	
NO.	interface location	x	Z	x	Z	x	Z
1	1	0.00	27.29	0.06	27.29	3.58	27.18
		3.80	27.20	4.10	27.06	8.41	26.92
		8.59	27.04	8.71	27.03	10.35	26.65
		11.86	26.58	13.90	26.52	14.05	26.55
		14.20	26.52	14.29	26.40	14.76	26.43
		17.15	26.66	18.60	26.64	19.64	26.68
		20.28	26.71	22.71	26.48	22.91	26.46
		24.63	26.48	25.72	26.22	27.16	25.88
		27.85	25.61	28.65	25.64	28.76	25.62
		30.70	24.86	31.90	24.38	32.65	24.10
		33.65	23.25	34.66	22.41	36.05	21.60
		37.30	21.23	38.73	20.76	41.06	19.96
		44.15	18.70	46.09	18.23	48.68	18.23
		55.24	18.40	65.36	18.58	65.88	18.57
		81.92	18.34				

			Coordin	ates of inter	face points	[m]	
No.	Interface location	X	z	X	Z	X	Z
2		0.00	24.19	19.58	24.30	31.90	24.38
3		0.00	20.94	38.73	20.76		
4		0.00	17.89	81.92	17.36		
5		0.00	16.44	81.92	16.30		
6		0.00	10.49	42.37	10.31	94.00	0.10
0		0.00	10.49	42.37	10.51	81.92	9.12
	-						
7		0.00	10.49	40.90	9.72	81.92	8.55
,		0.00	10.40	40.00	0.12	01.02	0.00
	-						
8		0.00	3.24	40.87	3.01	42.37	3.01
		81.92	1.76	-	-	-	
	-						

Soil parameters - effective stress state

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	Ψ [kN/m³]
1	Intact Mudstone - MMG I		42.00	25.00	23.00
2	Sandstone - Interbedded Mudstone & Sandstone		40.00	8.00	22.50
3	Class 6F Capping/Subbase/Surfacing		35.00	0.00	21.00
4	Terrace Sands & Gravels		35.00	0.00	22.00
5	Culvert		41.50	0.00	2.40
6	Granular Backfill to Culvert		41.50	0.00	18.00
7	Class 6N Selected Backfill to Structures		41.50	0.00	22.50
8	Redcued Level 65 - 64 m OD - MMG II		42.00	16.00	22.50
9	Redcued Level 64 - 63 m OD - MMG II		42.00	16.00	22.50
10	Redcued Level 63 - 62 m OD - MMG II		42.00	16.00	22.50
11	Redcued Level 62 - 61 m OD - MMG II		42.00	16.00	22.50
12	Redcued Level 61 - 60 m OD - MMG II		42.00	16.00	22.50

Ian Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

N	о.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	Ψ [kN/m³]
1	3	Redcued Level 60 - 59 m OD - MMG I		42.00	25.00	23.00

Soil parameters - uplift

No.	Name	Pattern	Ψsat [kN/m³]	Ψs [kN/m³]	n [-]
1	Intact Mudstone - MMG I		23.00		
2	Sandstone - Interbedded Mudstone & Sandstone		23.00		
3	Class 6F Capping/Subbase/Surfacing		21.50		
4	Terrace Sands & Gravels		22.50		
5	Culvert		2.40		
6	Granular Backfill to Culvert		18.00		
7	Class 6N Selected Backfill to Structures		23.00		
8	Redcued Level 65 - 64 m OD - MMG II		22.50		
9	Redcued Level 64 - 63 m OD - MMG II		22.50		
10	Redcued Level 63 - 62 m OD - MMG II		22.50		
11	Redcued Level 62 - 61 m OD - MMG II		22.50		
12	Redcued Level 61 - 60 m OD - MMG II		22.50		

Ian Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

No.	Name	Pattern	Ψsat [kN/m³]	Ψs [kN/m³]	n [-]
13	Redcued Level 60 - 59 m OD - MMG I		23.00		

Soil parameters - total stress state

No.	Name	Pattern	c _u [kPa]	Ψ [kN/m³]
1	Topsoil/Subsoil	<u></u>	35.00	16.50
2	Firm to stiff red brown silty CLAY - MMG IVB		65.00	19.50
3	Stiff red brown silty CLAY - MMG IVA		90.00	20.50
4	Weathered Mudstone - MMG III		150.00	22.00
5	Weathered Mudstone - MMG II		225.00	22.50
6	Existing Highway General Fill	_ 0 _ 0 _ 0	60.00	19.50
7	Class 2 Fill (Site Won MMG IV)		50.00	19.50
8	Landscape Fill - Class 4		50.00	20.00
9	Class 7A Selected Cohesive Fill		100.00	20.50
10	Class 7C Selected Cohesive Fill		100.00	20.50
11	Pre-existing Made Ground		50.00	19.00
12	Redcued Level 78 - 77 m OD - MMG IVB		33.00	19.50

No.	Name	Pattern	c _u [kPa]	ψ [kN/m³]
13	Redcued Level 77 - 76 m OD - MMG IVB		67.00	19.50
14	Redcued Level 76 - 75 m OD - MMG IVB		100.00	19.50
15	Redcued Level 75 - 74 m OD - MMG IVA		133.00	20.50
16	Redcued Level 74 - 73 m OD - MMG IVA		167.00	20.50
17	Redcued Level 73 - 72 m OD - MMG IVA		200.00	20.50
18	Redcued Level 72 - 71 m OD - MMG IVA		233.00	20.50
19	Redcued Level 71 - 70 m OD - MMG III		267.00	22.00
20	Redcued Level 70 - 69 m OD - MMG III		300.00	22.00
21	Redcued Level 69 - 68 m OD - MMG III		333.00	22.00
22	Redcued Level 68 - 67 m OD - MMG III		367.00	22.00
23	Redcued Level 67 - 66 m OD - MMG III		400.00	22.00
24	Redcued Level 66 - 65 m OD - MMG III		433.00	22.00

Soil parameters

Topsoil/Subsoil

Unit weight : $\psi = 16.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 35.00 \text{ kPa}$

Firm to stiff red brown silty CLAY - MMG IVB

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 65.00 \text{ kPa}$

Stiff red brown silty CLAY - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil: $c_u = 90.00 \text{ kPa}$

Weathered Mudstone - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 150.00 \text{ kPa}$

Weathered Mudstone - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 225.00 \text{ kPa}$

Intact Mudstone - MMG I

Unit weight: $\psi = 23.00 \text{ kN/m}^3$

Stress-state : effective Angle of internal friction : $\chi \pi_{ef} = 42.00^{\circ}$

Cohesion of soil : $c_{ef} = 25.00 \text{ kPa}$ Saturated unit weight : $v_{sat} = 23.00 \text{ kN/m}^3$

Sandstone - Interbedded Mudstone & Sandstone

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 40.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 8.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 23.00\,\text{kN/m}^3 \end{array}$

Existing Highway General Fill

Unit weight : $\psi = 19.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 60.00 \text{ kPa}$

Class 2 Fill (Site Won MMG IV)

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 50.00 \text{ kPa}$

Class 6F Capping/Subbase/Surfacing

Unit weight: $\psi = 21.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi \pi_{\text{ef}} = 35.00 \, ^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00 \, \text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 21.50 \, \text{kN/m}^{3} \end{array}$

Landscape Fill - Class 4

Unit weight: $\psi = 20.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 50.00 \text{ kPa}$

Terrace Sands & Gravels

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: effective

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE

Ian Gardner M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

 $\begin{array}{lll} \mbox{Angle of internal friction}: & \chi \pi_{\mbox{\scriptsize ef}} = 35.00 \ ^{\circ} \\ \mbox{Cohesion of soil}: & \mbox{$c_{\mbox{\scriptsize ef}}$} = 0.00 \ \mbox{$kPa$} \\ \mbox{Saturated unit weight}: & \mbox{$\psi_{\mbox{\scriptsize sat}}$} = 22.50 \ \mbox{$kN/m}^3$ \\ \end{array}$

Class 7A Selected Cohesive Fill

Unit weight: $_{\text{W}} = 20.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 100.00 \text{ kPa}$

Class 7C Selected Cohesive Fill

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 100.00 \text{ kPa}$

Pre-existing Made Ground

Unit weight: $\psi = 19.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 50.00 \text{ kPa}$

Culvert

Unit weight: $\psi = 2.40 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\chi \pi_{ef} = 41.50 \,^{\circ}$ Cohesion of soil : $c_{ef} = 0.00 \, \text{kPa}$ Saturated unit weight : $\psi_{sat} = 2.40 \, \text{kN/m}^3$

Granular Backfill to Culvert

Unit weight: $\psi = 18.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 41.50~^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 0.00~\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 18.00~\text{kN/m}^{3} \end{array}$

Class 6N Selected Backfill to Structures

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 41.50~^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 0.00~\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 23.00~\text{kN/m}^{3} \end{array}$

Redcued Level 78 - 77 m OD - MMG IVB

Unit weight : $\psi = 19.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 33.00 \text{ kPa}$

Redcued Level 77 - 76 m OD - MMG IVB

Unit weight : $\psi = 19.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil: $c_u = 67.00 \text{ kPa}$

Redcued Level 76 - 75 m OD - MMG IVB

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 100.00 \text{ kPa}$

Ian Gardner

Redcued Level 75 - 74 m OD - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 133.00 \text{ kPa}$

Redcued Level 74 - 73 m OD - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil: $c_u = 167.00 \text{ kPa}$

Redcued Level 73 - 72 m OD - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 200.00 \text{ kPa}$

Redcued Level 72 - 71 m OD - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 233.00 \text{ kPa}$

Redcued Level 71 - 70 m OD - MMG III

Unit weight: $_{\text{W}} = 22.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil: $c_u = 267.00 \text{ kPa}$

Redcued Level 70 - 69 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 300.00 \text{ kPa}$

Redcued Level 69 - 68 m OD - MMG III

Unit weight: $y = 22.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_{ij} = 333.00 \text{ kPa}$

Redcued Level 68 - 67 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil: $c_u = 367.00 \text{ kPa}$

Redcued Level 67 - 66 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 400.00 \text{ kPa}$

Redcued Level 66 - 65 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_{ij} = 433.00 \text{ kPa}$

Redcued Level 65 - 64 m OD - MMG II

Unit weight : $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = & 42.00 \,\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = & 16.00 \,\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = & 22.50 \,\,\text{kN/m}^{3} \end{array}$

Redcued Level 64 - 63 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 42.00 \,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 16.00 \, \text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.50 \, \text{kN/m}^{3} \end{array}$

Redcued Level 63 - 62 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 42.00\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 16.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.50\,\text{kN/m}^{3} \end{array}$

Redcued Level 62 - 61 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

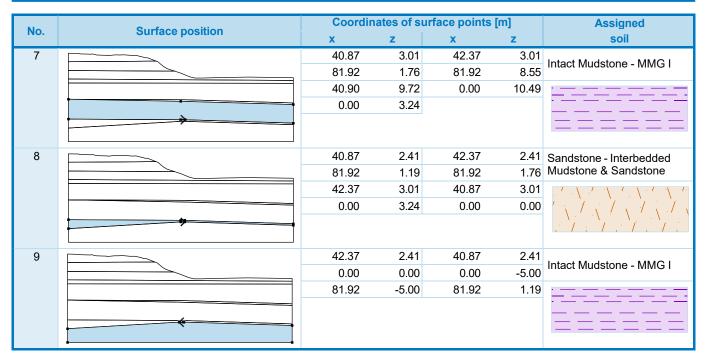
Angle of internal friction : $\chi \pi_{ef} = 42.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 16.00 \, \text{kPa}$ Saturated unit weight : $\psi_{sat} = 22.50 \, \text{kN/m}^3$

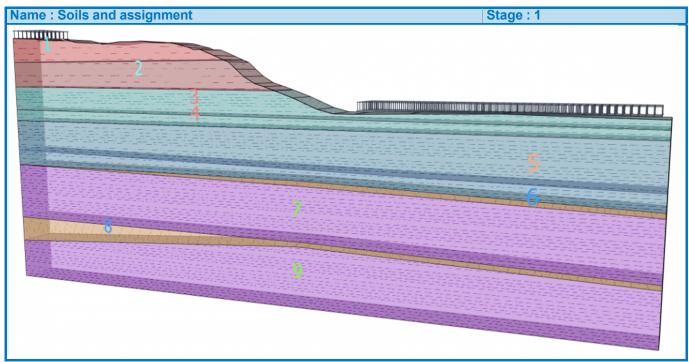
Redcued Level 61 - 60 m OD - MMG II

Unit weight : $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 42.00 \,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 16.00 \,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 22.50 \,\text{kN/m}^{3} \end{array}$

Redcued Level 60 - 59 m OD - MMG I


Unit weight : $\psi = 23.00 \text{ kN/m}^3$

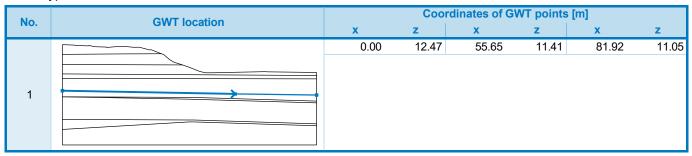

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 42.00\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 25.00\,\text{kPa} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 23.00\,\text{kN/m}^{3} \end{array}$

Rigid bodies

No.	Name	Sample	Ψ [kN/m³]
1	CONCRETE FOOTING		24.00
2	WING WALL		24.00
3	BRIDGE ABUTMENT		24.00

No.	Surface position	Coordin	ates of surf	face points	[m]	Assigned
	Curiado pocición	X	Z	X	Z	soil
1	************	19.58	24.30	31.90	24.38	Firm to stiff red brown silty
		30.70	24.86	28.76		CLAY - MMG IVB
		28.65	25.64	27.85	25.61	
		27.16	25.88	25.72	26.22	
		24.63	26.48	22.91	26.46	
		22.71	26.48	20.28	26.71	
		19.64	26.68	18.60	26.64	
		17.15	26.66	14.76	26.43	
		14.29	26.40	14.20	26.52	
		14.05	26.55	13.90	26.52	
		11.86	26.58	10.35	26.65	
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	
		3.80	27.20	3.58	27.18	
		0.06	27.29	0.00	27.29	
		0.00	24.19			
2		38.73	20.76	37.30	21.23	Stiff red brown silty CLAY -
		36.05	21.60	34.66	22.41	MMG IVA
		33.65	23.25	32.65	24.10	
		31.90	24.38	19.58	24.30	
		0.00	24.19	0.00	20.94	
3		81.92	17.36	81.92	18.34	Weathered Mudstone -
		65.88	18.57	65.36	18.58	MMG III
		55.24	18.40	48.68	18.23	
		46.09	18.23	44.15	18.70	
		41.06	19.96	38.73	20.76	
		0.00	20.94	0.00	17.89	
4		81.92	16.30	81.92		
7		0.00	17.89	0.00	16.44	Weathered Mudstone - MMG III
		0.00	17.09	0.00	10.44	
5		42.37	10.31	81.92	0 12	Weathered Mudstone -
3		81.92	16.30	0.00		MMG II
		0.00	10.49	0.00	10.44	
	•	0.00	10.43			
6		40.90	9.72	81.92	8 55	Sandstone - Interbedded
Ü		81.92	9.12	42.37	10.31	
		0.00	10.49	-r£.U1	10.01	
		0.00	10.40			

Surcharge


Na	Time	Type of action	Location	Origin	Length	Width	Slope		Magnitude	
No.	Type		z [m]	x [m]	l [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	strip	permanent	on terrain	x = 49.00	I = 32.00		0.00	20.00		kN/m ²
2	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m ²

Surcharges

No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic

Water

Water type: GWT

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation: permanent

Results (Stage of construction 1)

Analysis 1 (stage 1)

Circular slip surface

Slip surface parameters										
Center:	x =	36.82	[m]	Angles :	α ₁ =	-57.88 [°]				
Center.	z =	38.31	[m]	Aligies .	α ₂ =	24.20 [°]				
Radius:	R =	21.94	[m]			·				
	The slip surface after optimization.									

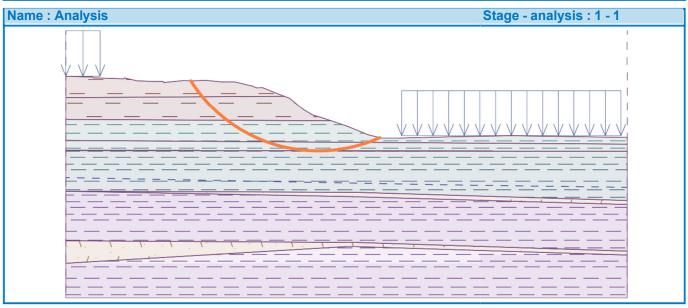
Slope stability verification (Bishop)

Combination 1

Sum of active forces : F_a = 1004.21 kN/m Sum of passive forces : F_p = 4076.13 kN/m Sliding moment : M_a = 20556.08 kNm/m Resisting moment : M_p = 83438.43 kNm/m

Utilization: 24.6 %

Slope stability ACCEPTABLE


Combination 2

Sum of active forces : $F_a = 735.47 \text{ kN/m}$ Sum of passive forces : $F_p = 2969.75 \text{ kN/m}$ Sliding moment : $M_a = 16136.29 \text{ kNm/m}$ Resisting moment : $M_p = 65156.35 \text{ kNm/m}$

Utilization: 24.8 %

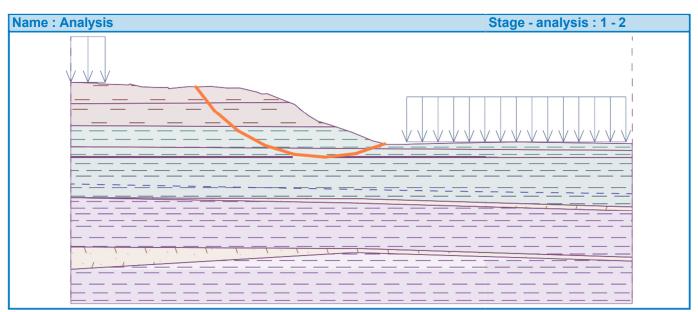
Slope stability ACCEPTABLE

Ian Gardner

Analysis 2 (stage 1)

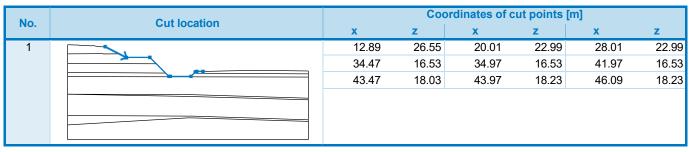
Polygonal slip surface

	Coordinates of slip surface points [m]											
X	X Z X Z X Z X Z X Z											
18.24	26.64	21.00	23.11	24.41	20.21	28.35	18.07	32.64	16.77			
37.11	16.37	41.56	16.89	45.81	18.30							
	The slip surface after optimization.											


Slope stability verification (Sarma)

Combination 1 Utilization: 23.6 %

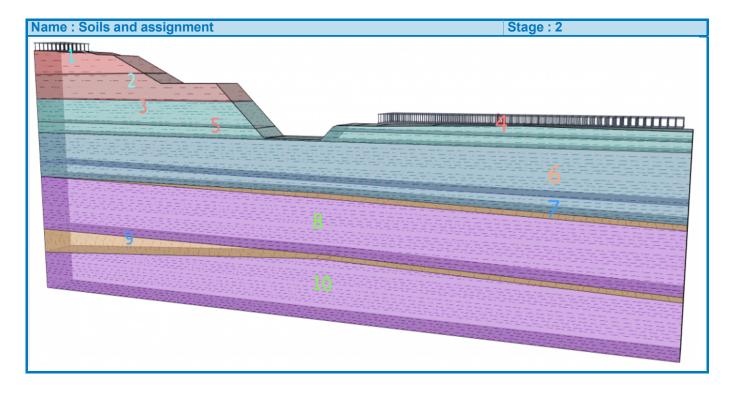
Slope stability ACCEPTABLE


Combination 2 Utilization: 23.8 %

Slope stability ACCEPTABLE

Input data (Stage of construction 2)

Earth cut



		Coordin	nates of su	rface points	[m]	Assigned
No.	Surface position	x	z	x	z	soil
1		17.41	24.29	12.89	26.55	Firm to stiff red brown silty
		11.86	26.58	10.35	26.65	
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	
		3.80	27.20	3.58	27.18	Ī
		0.06	27.29	0.00	27.29	
		0.00	24.19			
2		30.20	20.80	28.01	22.99	Stiff red brown silty CLAY -
		20.01	22.99	17.41	24.29	
		0.00	24.19	0.00	20.94	
						_
3		33.33	17.67	30.20	20.80	Weathered Mudstone -
		0.00	20.94	0.00	17.89	MMG III
						· – – – – – –
4		81.92	17.36	81.92	18.34	Weathered Mudstone -
		65.88	18.57	65.36	18.58	
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	· — — — — -
		43.47	18.03	43.05	17.61	
5		81.92	16.30	81.92	17.36	Weathered Mudstone -
		43.05	17.61	41.97	16.53	
		34.97	16.53	34.47	16.53	
		33.33	17.67	0.00	17.89	
		0.00	16.44			
6		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00	16.44	MMG II
		0.00	10.49			
	-					

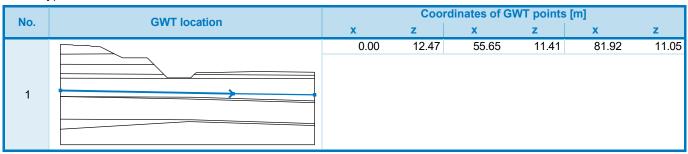
lan Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

No.	Curface nosition	Coordin	nates of su	rface points	[m]	Assigned
NO.	Surface position	x	Z	X	Z	soil
7		40.90	9.72	81.92	8.55	
		81.92	9.12	42.37	10.31	Mudstone & Sandstone
		0.00	10.49			$\begin{array}{cccccccccccccccccccccccccccccccccccc$

8		40.87	3.01	42.37	3.01	Intact Mudetone MMC I
		81.92	1.76	81.92	8.55	Intact Mudstone - MMG I
		40.90	9.72	0.00	10.49	
		0.00	3.24			
	*					
9		40.87	2.41	42.37	2.41	Sandstone - Interbedded
		81.92	1.19	81.92	1.76	Mudstone & Sandstone
		42.37	3.01	40.87	3.01	
		0.00	3.24	0.00	0.00	
	*					
10		42.37	2.41	40.87	2.41	Indeed Mindeles - MMO I
		0.00	0.00	0.00	-5.00	Intact Mudstone - MMG I
		81.92	-5.00	81.92	1.19	
	*					

Surcharge


	Surc	harge	Type of		Location	Origin	Length	Width	Slope		Magnitud	е
No.	new	change	Туре	Type of action	z [m]	x [m]	I [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m²

Surcharges

No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic

Water

Water type: GWT

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

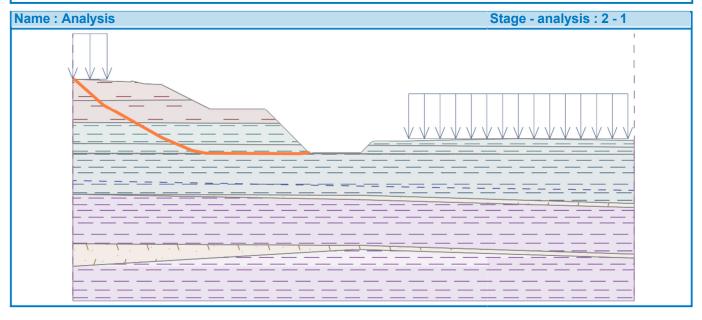
Results (Stage of construction 2)

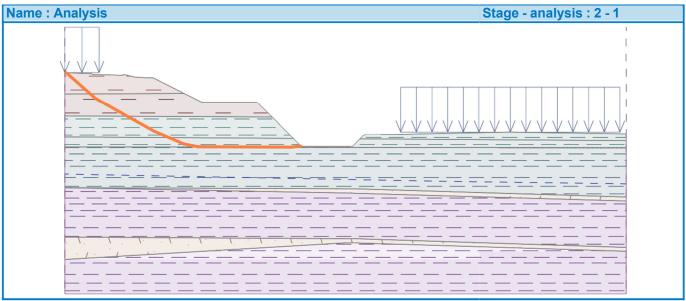
Analysis 1 (stage 2)

Polygonal slip surface

	Coordinates of slip surface points [m]											
х	z	X	Z	x	Z	x	Z	X	Z			
0.21	27.29	4.48	23.54	8.47	21.28	13.01	18.74	17.39	16.85			
19.39	16.46	33.00	16.40	34.45	16.55							
	The slip surface after optimization.											

Slope stability verification (Sarma)

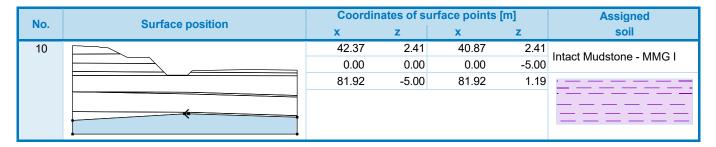

Combination 1 Utilization: 27.8 %

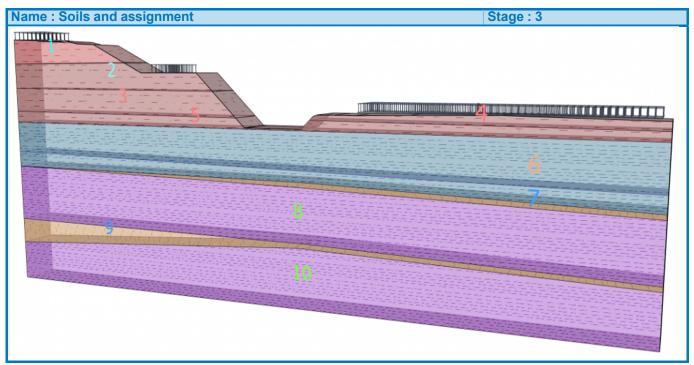

Slope stability ACCEPTABLE

Combination 2 Utilization: 27.9 %

Slope stability ACCEPTABLE

Ian Gardner





Input data (Stage of construction 3)

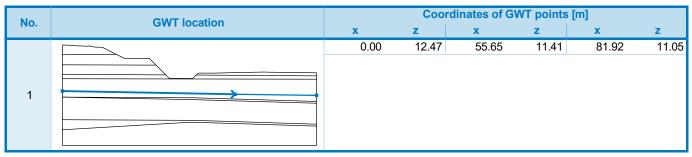
No.	Surface position	Coordin	ates of su	ırface points	[m]	Assigned
NO.	Surface position	X	Z	X	Z	soil
1		17.41	24.29	12.89		Firm to stiff red brown silty
		11.86	26.58	10.35	26.65	CLAY - MMG IVB
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	
		3.80	27.20	3.58	27.18	
		0.06	27.29	0.00	27.29	
		0.00	24.19			

	0.6	Coordin	ates of su	rface points	[m]	Assigned
No.	Surface position	X	Z	X	Z	soil
2		30.20	20.80	28.01		Stiff red brown silty CLAY -
		20.01	22.99	17.41	24.29	MMG IVA
		0.00	24.19	0.00	20.94	
						_
3		33.33	17.67	30.20	20.80	Weathered Mudstone -
		0.00	20.94	0.00	17.89	MMG III
4		81.92	17.36	81.92		Weathered Mudstone -
		65.88	18.57	65.36	18.58	MMG III
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.47	18.03	43.05	17.61	
_					4=	
5		81.92	16.30	81.92		Weathered Mudstone -
		43.05	17.61	41.97	16.53	MMG III
		34.97	16.53	34.47	16.53	
		33.33	17.67	0.00	17.89	
		0.00	16.44			
6		40.07	10.21	04.00	0.40	
6		42.37 81.92	10.31 16.30	81.92 0.00	16.44	Weathered Mudstone - MMG II
		0.00	10.30	0.00	10.44	· — — — — —
		0.00	10.43			
	·					
7		40.90	9.72	81.92	8.55	Sandstone - Interbedded
·		81.92	9.12	42.37	10.31	
		0.00	10.49			
	•					
						· / · / · / ·
8		40.87	3.01	42.37	3.01	Intest Mudeter - MAAO
		81.92	1.76	81.92	8.55	Intact Mudstone - MMG I
		40.90	9.72	0.00	10.49	
		0.00	3.24			
	*					
9		40.87	2.41	42.37	2.41	
		81.92	1.19	81.92	1.76	Mudstone & Sandstone
		42.37	3.01	40.87	3.01	
		0.00	3.24	0.00	0.00	
	*					

Surcharge

	Surcharge			Tymo of		Origin	Length	Width	Slope	ı	Magnitud	е
No.	new	change	Туре	Type of action	z [m]	x [m]	l [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m ²
3	No	No	strip	permanent	on terrain	x = 21.50	I = 3.50		0.00	20.00		kN/m ²

Surcharges


No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic
3	TEMPORARY - SITE PLANT 20 kN/m ²

Water

Water type: GWT

lan Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation: permanent

Results (Stage of construction 3)

Analysis 1 (stage 3)

Circular slip surface

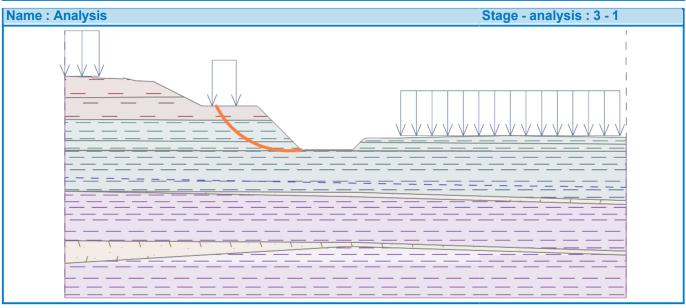
Slip surface parameters										
Center:	x =	32.60	[m]	Angles :	α ₁ =	-64.30 [°]				
Center.	z =	28.05	[m]	Allgles .	α2 =	9.22 [°]				
Radius:	R =	11.67	[m]							
	The slip surface after optimization.									

Slope stability verification (Bishop)

Combination 1

Utilization: 25.9 %

Slope stability ACCEPTABLE


Combination 2

Sum of active forces : $F_a = 389.59 \text{ kN/m}$ Sum of passive forces : $F_p = 1494.92 \text{ kN/m}$ Sliding moment : $M_a = 4546.49 \text{ kNm/m}$ Resisting moment : $M_p = 17445.70 \text{ kNm/m}$

Utilization: 26.1 %

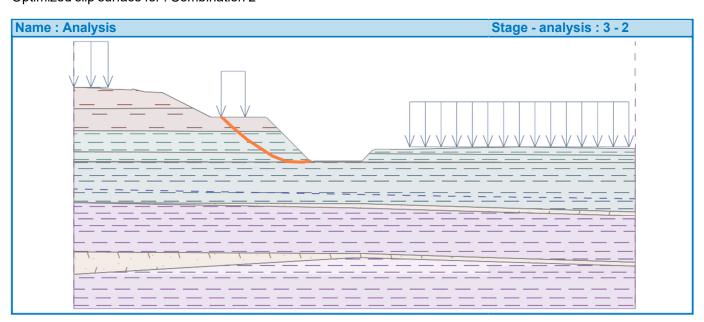
Slope stability ACCEPTABLE

Ian Gardner

Analysis 2 (stage 3)

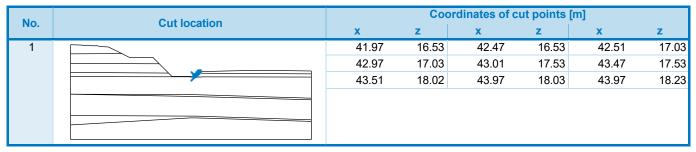
Polygonal slip surface

	Coordinates of slip surface points [m]											
х	z	x	Z	x	Z	x	Z	x	Z			
21.51	22.99	23.07	21.52	25.39	19.56	27.19	18.43	28.98	17.25			
31.06	16.46	33.31	16.38	34.47	16.53							
	The slip surface after optimization.											

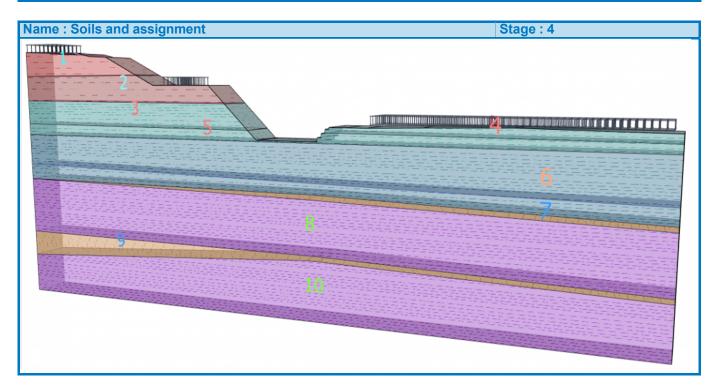

Slope stability verification (Sarma)

Combination 1 Utilization: 22.4 %

Slope stability ACCEPTABLE Combination 2


Utilization: 23.2 %

Slope stability ACCEPTABLE

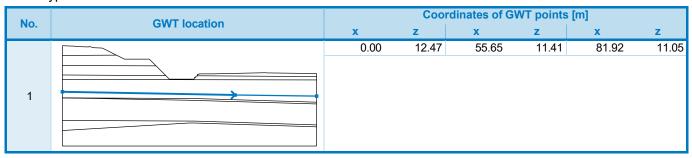

Input data (Stage of construction 4)

Earth cut

No	Cunface modified	Coordin	ates of su	rface points	[m]	Assigned
No.	Surface position	x	Z	X	Z	soil
1		17.41	24.29	12.89	26.55	Firm to stiff red brown silty
		11.86	26.58	10.35	26.65	
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	
		3.80	27.20	3.58	27.18	
		0.06	27.29	0.00	27.29	
		0.00	24.19			
2		30.20	20.80	28.01	22.99	Stiff red brown silty CLAY -
		20.01	22.99	17.41	24.29	MMG IVA
		0.00	24.19	0.00	20.94	
3		33.33	17.67	30.20	20.80	Weathered Mudstone -
		0.00	20.94	0.00	17.89	MMG III
4		81.92	17.36	81.92	18.34	Weathered Mudstone -
		65.88	18.57	65.36	18.58	MMG III
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
5		81.92	16.30	81.92	17.36	Weathered Mudstone -
		43.48	17.61	43.47	17.53	MMG III
		43.01	17.53	42.97	17.03	
		42.51	17.03	42.47	16.53	
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.33	17.67	
		0.00	17.89	0.00	16.44	
6		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00	16.44	MMG II
		0.00	10.49	2.22	···	· — — — — —
	•					

Na	Confess manifilms	Coordin	nates of su	rface points	[m]	Assigned
No.	Surface position	x	z	X	Z	soil
7		40.90	9.72	81.92	8.55	Sandstone - Interbedded
		81.92	9.12	42.37	10.31	Mudstone & Sandstone
		0.00	10.49			
	,					
8		40.87	3.01	42.37	3.01	
		81.92	1.76	81.92	8.55	Intact Mudstone - MMG I
		40.90	9.72	0.00	10.49	
		0.00	3.24			· — — — — — —
9		40.87	2.41	42.37	2.41	Carractoric interpoduca
		81.92	1.19	81.92	1.76	Mudstone & Sandstone
		42.37	3.01	40.87	3.01	
		0.00	3.24	0.00	0.00	
10		42.37	2.41	40.87	2.41	Intent Modeton - MMC I
		0.00	0.00	0.00	-5.00	Intact Mudstone - MMG I
		81.92	-5.00	81.92	1.19	
	*					

Surcharge


	Surcl	harge		Type of	Location	Origin	Length	Width	Slope	ı	Magnitud	е
No.	new	change	Туре	Type of action	z [m]	x [m]	l [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m²
3	No	No	strip	permanent	on terrain	x = 21.50	I = 3.50		0.00	20.00		kN/m²

Surcharges

No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic
3	TEMPORARY - SITE PLANT 20 kN/m ²

Water

Water type: GWT

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

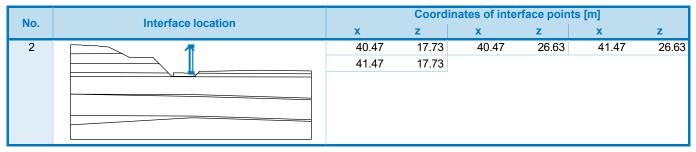
Design situation: permanent

Results (Stage of construction 4)

Analysis 1 (stage 4)

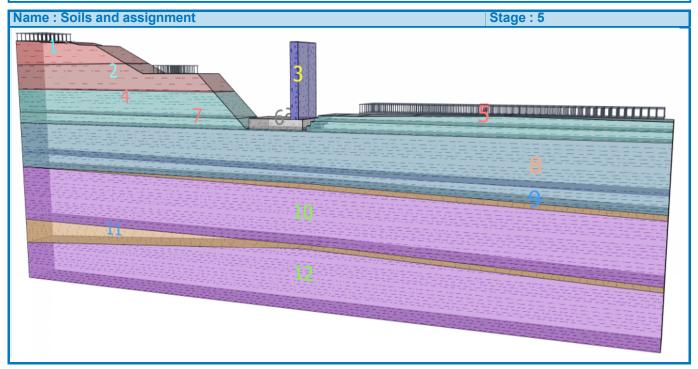
Circular slip surface

Slip surface is not specified


Slope stability verification (Bishop)

Analysis has not been performed.

Input data (Stage of construction 5)


Embankment interface

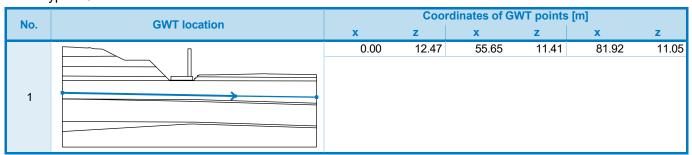
No.	Interface location	Coordinates of interface points [m]								
NO.		X	Z	X	Z	X	Z			
1		34.97	16.53	34.97	17.73	40.47	17.73			
		41.47	17.73	41.97	17.73	41.97	16.53			

N.	0	Coordin	ates of su	rface points	[m]	Assigned
No.	Surface position	x	z	X	z	soil
1		17.41	24.29	12.89	26.55	Firm to stiff red brown silty
		11.86	26.58	10.35	26.65	CLAY - MMG IVB
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	
		3.80	27.20	3.58	27.18	
		0.06	27.29	0.00	27.29	
		0.00	24.19			
2		30.20	20.80	28.01	22.99	Stiff red brown silty CLAY -
		20.01	22.99	17.41	24.29	MMG IVA
		0.00	24.19	0.00	20.94	
3	↑	41.47	17.73	41.47	26.63	BRIDGE ABUTMENT
		40.47	26.63	40.47	17.73	DIVIDUE ADDITIVE INT
4		33.33	17.67	30.20	20.80	Weathered Mudstone -
		0.00	20.94	0.00	17.89	MMG III
5		81.92	17.36	81.92	18.34	Weathered Mudstone -
		65.88	18.57	65.36	18.58	MMG III
	\(\frac{1}{2}\)	55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
6		41.97	17.73	41.47	17.73	CONCRETE FOOTING
		40.47	17.73	34.97	17.73	CONCRETE FOOTING
		34.97	16.53	41.97	16.53	PAAPAAPA
			'			

NI.	0	Coordin	ates of su	rface points	[m]	Assigned
No.	Surface position	x	z	X	Z	soil
7		81.92	16.30	81.92	17.36	Weathered Mudstone -
		43.48	17.61	43.47	17.53	MMG III
	7	43.01	17.53	42.97	17.03	
		42.51	17.03	42.47	16.53	
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.33	17.67	
		0.00	17.89	0.00	16.44	
8		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00	16.44	
		0.00	10.49			
						
9		40.90	9.72	81.92	8.55	Sandstone - Interbedded
		81.92	9.12	42.37	10.31	
		0.00	10.49			$\begin{array}{cccccccccccccccccccccccccccccccccccc$

10		40.87	3.01	42.37	3.01	late of Marketon and MAG
		81.92	1.76	81.92	8.55	Intact Mudstone - MMG I
		40.90	9.72	0.00	10.49	
		0.00	3.24			
	—					
11		40.87	2.41	42.37	2.41	
		81.92	1.19	81.92	1.76	Mudstone & Sandstone
		42.37	3.01	40.87	3.01	$\begin{bmatrix} I & I & I & I & I & I & I & I & I & I $
		0.00	3.24	0.00	0.00	
	,					
12		42.37	2.41	40.87	2.41	Intest Mudetons MMC
		0.00	0.00	0.00	-5.00	Intact Mudstone - MMG I
		81.92	-5.00	81.92	1.19	
	*					

Surcharge


	Surc	harge		Type of	Location	Origin	Length	Width	Slope	ľ	Magnitud	е
No.	new	change	Туре	Type of action	z [m]	x [m]	I [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m ²
3	No	No	strip	permanent	on terrain	x = 21.50	I = 3.50		0.00	20.00		kN/m ²

Surcharges

No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic
3	TEMPORARY - SITE PLANT 20 kN/m ²

Water

Water type: GWT

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 5)

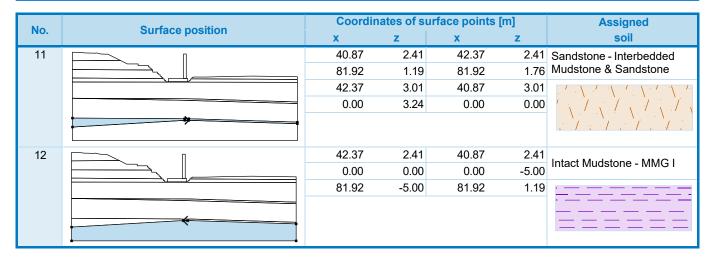
Analysis 1 (stage 5)

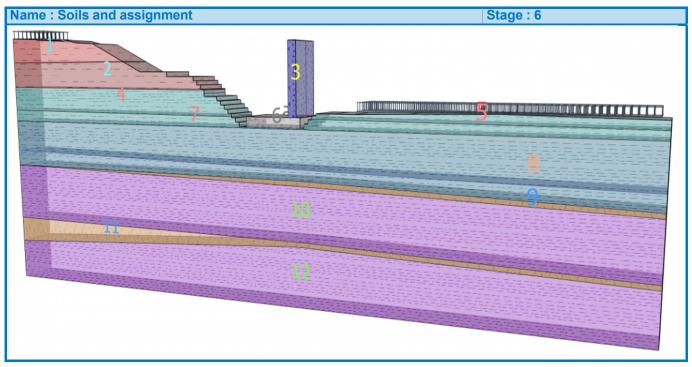
Circular slip surface

Slip surface is not specified

Slope stability verification (Bishop)

Analysis has not been performed.


Input data (Stage of construction 6)


Earth cut

No.	Cut location		Cod	ordinates of c	ut points	[m]	
NO.	Cut location	X	Z	X	Z	X	Z
1		23.92	22.99	23.92	22.41	27.70	22.41
		27.70	21.91	28.20	21.91	28.20	21.41
		28.70	21.41	28.70	20.91	29.20	20.91
		29.20	20.41	29.20	20.03	30.90	20.03
		30.97	19.53	31.42	19.52	31.47	19.03
		31.93	19.03	31.97	18.53	32.42	18.53
		32.47	18.03	32.94	18.03	32.97	17.53
		33.44	17.53	33.47	17.03	33.93	17.03
		33.97	16.53	34.47	16.53		

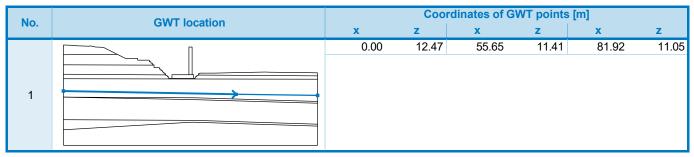
NI.	0	Coordin	ates of su	ırface points	[m]	Assigned
No.	Surface position	X	z	X	z	soil
1		17.41	24.29	12.89	26.55	,
		11.86	26.58	10.35	26.65	CLAY - MMG IVB
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	
		3.80	27.20	3.58	27.18	
		0.06	27.29	0.00	27.29	
		0.00	24.19			
2		29.20	20.80	29.20	20.91	J -
		28.70	20.91	28.70	21.41	MMG IVA
		28.20	21.41	28.20	21.91	
		27.70	21.91	27.70	22.41	_
		23.92	22.41	23.92	22.99	
		20.01	22.99	17.41	24.29	
		0.00	24.19	0.00	20.94	
3	↑	41.47	17.73	41.47	26.63	BRIDGE ABUTMENT
		40.47	26.63	40.47	17.73	BRIDGE ABOTMENT

No.	Surface position	Coordin	ates of surf	face points [m]	Assigned
140.	Our lace position	х	Z	Х	Z	soil
4		32.96	17.67	32.94		Weathered Mudstone -
		32.47	18.03	32.42		MMG III
		31.97	18.53	31.93	19.03	
		31.47	19.03	31.42	19.52	
		30.97	19.53	30.90	20.03	
		29.20	20.03	29.20	20.41	
		29.20	20.80	0.00	20.94	
		0.00	17.89			
5		81.92	17.36	81.92	18.34	Weathered Mudstone -
		65.88	18.57	65.36	18.58	MMG III
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
6	П	41.97	16.53	41.97	17.73	
		41.47	17.73	40.47	17.73	CONCRETE FOOTING
		34.97	17.73	34.97	16.53	
7		04.00	40.00	04.00	47.00	
7		81.92	16.30	81.92	17.30	Weathered Mudstone - MMG III
		43.48	17.61	43.47		WIVIG III
		43.01	17.53	42.97	17.03	
		42.51	17.03	42.47	16.53	
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.97	16.53	
		33.93	17.03	33.47	17.03	
		33.44	17.53	32.97	17.53	
		32.96 0.00	17.67 16.44	0.00	17.89	
0				04.00	0.40	
8		42.37	10.31	81.92	9.12	Weathered Mudstone - MMG II
		81.92 0.00	16.30 10.49	0.00	10.44	IVIIVIO II
		0.00	10.49			
9		40.90	9.72	81.92	8.55	Sandstone - Interbedded
Ū		81.92	9.12	42.37	10.31	Canadiano interpodada
		0.00	10.49			
		0.00	10.70			
10		40.87	3.01	42.37	3.01	Intact Mudstone - MMG I
		81.92	1.76	81.92	8.55	mact muustone - Ming I
		40.90	9.72	0.00	10.49	
	•	0.00	3.24			

Surcharge

	Surc	harge		Tymo of	Location	Origin	Length	Width	Slope		Magnitud	е
No.	new	change	Туре	Type of action	z [m]	x [m]	I [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m ²

Surcharges


No		Name
1	M1 Traffic UDL	
2	A453 Off-site Traffic	

Water

Water type: GWT

Ian Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation: permanent

Results (Stage of construction 6)

Analysis 1 (stage 6)

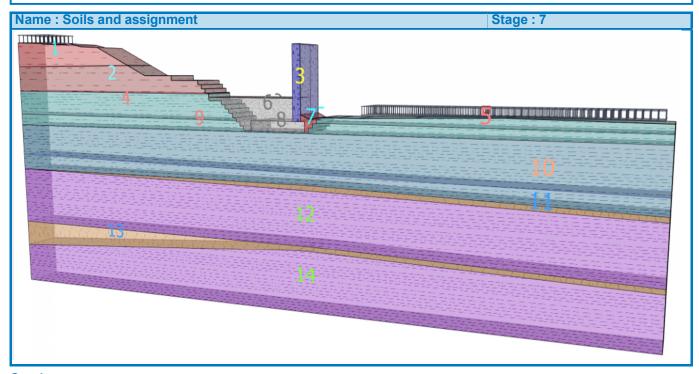
Circular slip surface

Slip surface is not specified

Slope stability verification (Bishop)

Analysis has not been performed.

Input data (Stage of construction 7)

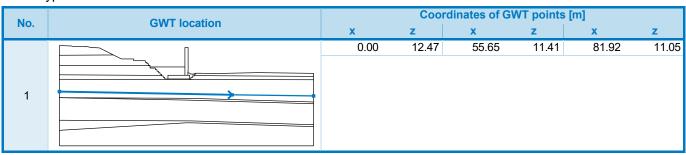

Embankment interface

No.	Interface location		Coordi	nates of inter	face point	ts [m]	
NO.	interface location	X	Z	X	Z	x	Z
1		29.20	20.41	40.47	20.41		
2		41.47	18.55	42.47	18.06	42.93	18.00
		43.76	18.19	43.97	18.23		

No.	Surface position	Coordin	ates of su	Assigned		
NO.	Surface position	X	Z	X	Z	soil
1		17.41	24.29	12.89		Firm to stiff red brown silty
		11.86	26.58	10.35	26.65	CLAY - MMG IVB
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	
		3.80	27.20	3.58	27.18	Ī
		0.06	27.29	0.00	27.29	
		0.00	24.19			

		Coordin	ates of su	ırface points [m]	Assigned
No.	Surface position	x	z	x	z	soil
2		29.20	20.80	29.20	20.91	Stiff red brown silty CLAY -
		28.70	20.91	28.70	21.41	
		28.20	21.41	28.20	21.91	
		27.70	21.91	27.70	22.41	_
		23.92	22.41	23.92	22.99	
		20.01	22.99	17.41	24.29	
		0.00	24.19	0.00	20.94	
3	"	41.47	17.73	41.47	18.55	
		41.47	26.63	40.47	26.63	BRIDGE ABUTMENT
		40.47	20.41	40.47	17.73	PAAAAA
4		32.96	17.67	32.94	18.03	Weathered Mudstone -
		32.47	18.03	32.42	18.53	
	A	31.97	18.53	31.93	19.03	
		31.47	19.03	31.42	19.52	
		30.97	19.53	30.90	20.03	
		29.20	20.03	29.20	20.41	
		29.20	20.80	0.00	20.94	
		0.00	17.89			
5		81.92	17.36	81.92	18.34	Weathered Mudstone -
		65.88	18.57	65.36	18.58	MMG III
	<u> </u>	55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
6		34.97	16.53	34.97	17.73	Class 6N Selected Backfill
		40.47	17.73	40.47	20.41	to Structures
		29.20	20.41	29.20	20.03	06060606
		30.90	20.03	30.97	19.53	
		31.42	19.52	31.47	19.03	
		31.93	19.03	31.97	18.53	
		32.42	18.53	32.47	18.03	
		32.94	18.03	32.96	17.67	
		32.97	17.53	33.44	17.53	
		33.47	17.03	33.93	17.03	
		33.97	16.53	34.47	16.53	
7		41.97	17.73	41.97		Class 2 Fill (Site Won MMG
		42.47	16.53	42.51	17.03	IV)
		42.97	17.03	43.01	17.53	\times
		43.47	17.53	43.48	17.61	
		43.51	18.02	43.97	18.03	$\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\!\times\!$
		43.97	18.23	43.76	18.19	
		42.93	18.00	42.47	18.06	
		41.47	18.55	41.47	17.73	

No.	Surface position			face points		Assigned
		X	Z 40.50	X 44.07	Z 47.70	soil
8		41.97	16.53	41.97	17.73	CONCRETE FOOTING
		41.47	17.73	40.47	17.73	
		34.97	17.73	34.97	16.53	
						1 1 1 1 1 1 1 1
						PANDA
9		81.92	16.30	81.92	17.36	Weathered Mudstone -
		43.48	17.61	43.47	17.53	MMG III
		43.01	17.53	42.97	17.03	
		42.51	17.03	42.47	16.53	
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.97	16.53	
		33.93	17.03	33.47	17.03	
		33.44	17.53	32.97	17.53	
		32.96	17.67	0.00	17.89	
		0.00	16.44			
10		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00	16.44	MMG II
		0.00	10.49			· — — — — —
	-					
11		40.90	9.72	81.92	8.55	Sandstone - Interbedded
		81.92	9.12	42.37	10.31	Mudstone & Sandstone
		0.00	10.49			1 1 1 1 1 1 1 1
	*					
12		40.87	3.01	42.37	3.01	Intact Mudstone - MMG I
		81.92	1.76	81.92	8.55	maci Mudstone - MMG I
		40.90	9.72	0.00	10.49	
		0.00	3.24			
	*					=====
13		40.87	2.41	42.37	2.41	Sandstone - Interbedded
		81.92	1.19	81.92	1.76	Mudstone & Sandstone
	7	42.37	3.01	40.87	3.01	$\begin{array}{c} I \\ I \end{array}$
		0.00	3.24	0.00	0.00	
	*					
14		42.37	2.41	40.87	2.41	Intact Mudstone - MMG I
		0.00	0.00	0.00	-5.00	mast madelene - min o
		81.92	-5.00	81.92	1.19	
	•					


	Surcharge			_ Type of		Origin	Length	Width	Slope	ľ	Magnitud	е
No.	new	change	Туре	action	z [m]	x [m]	I [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m ²

Surcharges

No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic

Water

Water type: GWT

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 7)

Analysis 1 (stage 7)

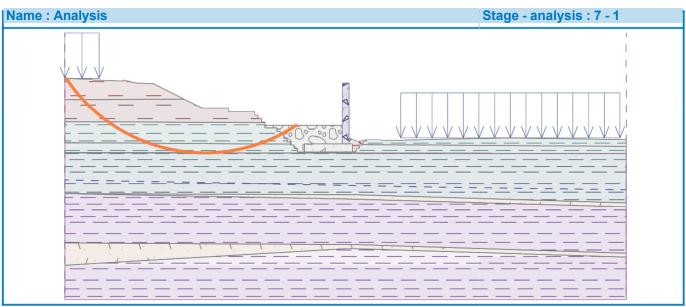
Circular slip surface

Slip surface parameters									
Center:	x =	20.43 [m]	Angles :	α ₁ =	-56.60 [°]				
Center.	z =	40.60 [m]	Angles .	α2 =	33.42 [°]				
Radius :	R =	24.19 [m]			'				
The slip surface after optimization.									

Slope stability verification (Bishop)

Combination 1

Utilization: 24.1 %


Slope stability ACCEPTABLE

Combination 2

Utilization: 23.4 %

Slope stability ACCEPTABLE

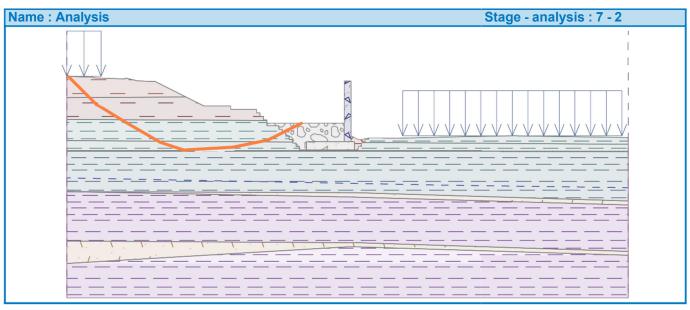
Optimized slip surface for: Combination 1

Analysis 2 (stage 7)

Polygonal slip surface

	Coordinates of slip surface points [m]												
X	Z	x	Z	X	Z	x	Z	X	Z				
0.23	27.28	4.40	23.12	8.17	20.79	13.65	17.62	17.06	16.51				
24.25	24.25 16.94 29.34 17.95 34.23 20.41												
	The slip surface after optimization.												

Slope stability verification (Sarma)


Combination 1 Utilization: 22.6 %

Slope stability ACCEPTABLE

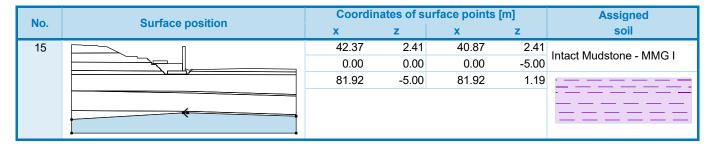
Combination 2 Utilization: 22.1 %

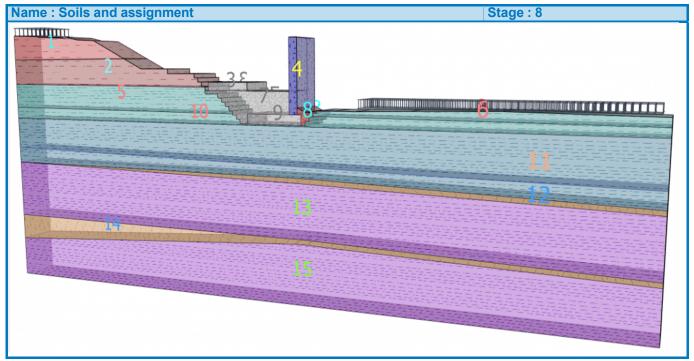
Slope stability ACCEPTABLE

Optimized slip surface for : Combination 1

Input data (Stage of construction 8)

Embankment interface


No.	Interface location	Coordinates of interface points [m]						
NO.	interface location	X	Z	X	Z	X	Z	
1		29.70	20.41	29.70	21.41	34.95	21.41	
		34.95	20.41					


No.	Surface position	Coordin	nates of si	urface points	[m]	Assigned
NO.	Surface position	X	Z	X	Z	soil
1		17.41	24.29	12.89		Firm to stiff red brown silty
		11.86	26.58	10.35	26.65	CLAY - MMG IVB
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	
		3.80	27.20	3.58	27.18	
		0.06	27.29	0.00	27.29	
		0.00	24.19			

		Coordin	ates of surf	ace points [m]	Assigned
No.	Surface position	X	Z	X	z	soil
2		29.20	20.80	29.20	20.91	Stiff red brown silty CLAY -
		28.70	20.91	28.70	21.41	MMG IVA
		28.20	21.41	28.20	21.91	
		27.70	21.91	27.70	22.41	_
		23.92	22.41	23.92	22.99	
		20.01	22.99	17.41	24.29	
		0.00	24.19	0.00	20.94	
3		34.95	20.41	34.95	21.41	
		29.70	21.41	29.70	20.41	CONCRETE FOOTING
4	T	41.47	17.73	41.47	18.55	BRIDGE ABUTMENT
		41.47	26.63	40.47	26.63	DRIDGE ADU I MEN I
		40.47	20.41	40.47	17.73	PAAAAA
5		32.96	17.67	32.94	18.03	Weathered Mudstone -
		32.47	18.03	32.42		MMG III
		31.97	18.53	31.93	19.03	
		31.47	19.03	31.42	19.52	
		30.97	19.53	30.90	20.03	
		29.20	20.03	29.20	20.41	
		29.20	20.80	0.00	20.94	
		0.00	17.89			
6		81.92	17.36	81.92	18.34	Weathered Mudstone -
		65.88	18.57	65.36		MMG III
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
7		34.97	16.53	34.97		Class 6N Selected Backfill
		40.47	17.73	40.47	_0	
		34.95	20.41	29.70	20.41	00000000
		29.20	20.41	29.20	20.03	
		30.90	20.03	30.97	19.53	00000000
		31.42	19.52	31.47	19.03	
		31.93	19.03	31.97	18.53	
		32.42	18.53	32.47	18.03	
		32.94	18.03	32.96	17.67	
		32.97	17.53	33.44	17.53	
		33.47	17.03	33.93	17.03	
		33.97	16.53	34.47	16.53	

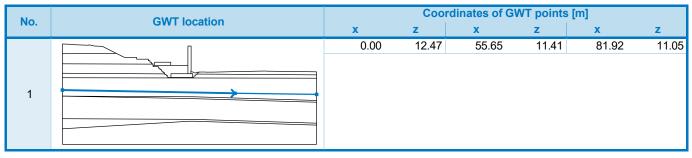
8 E	Surface position	x 41.97 42.47	z 17.73	rface points [x 41.97	z	Assigned soil
8			17.73	/ 11 07		
		42.47		+1.31	16.53	Class 2 Fill (Site Won MMG
	\		16.53	42.51	17.03	IV)
		42.97	17.03	43.01	17.53	$\times \times $
		43.47	17.53	43.48	17.61	
		43.51	18.02	43.97	18.03	
		43.97	18.23	43.76	18.19	
		42.93	18.00	42.47	18.06	
		41.47	18.55	41.47	17.73	
9		41.97	16.53	41.97	17.73	CONCRETE FOOTING
		41.47	17.73	40.47	17.73	CONCRETE FOOTING
	***	34.97	17.73	34.97	16.53	D A A A A A A
10		81.92	16.30	81.92	17.36	Weathered Mudstone -
		43.48	17.61	43.47	17.53	MMG III
		43.01	17.53	42.97	17.03	
		42.51	17.03	42.47	16.53	
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.97	16.53	
		33.93	17.03	33.47	17.03	
		33.44	17.53	32.97	17.53	
		32.96	17.67	0.00	17.89	
		0.00	16.44			
11		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00	16.44	
		0.00	10.49			
12		40.90	9.72	81.92	8.55	Sandstone - Interbedded
		81.92	9.12	42.37	10.31	Mudstone & Sandstone
		0.00	10.49			
13		40.87	3.01	42.37	3.01	Intact Mudstone - MMG I
		81.92	1.76	81.92	8.55	THEOLINIAGIONE - MINO
		40.90	9.72	0.00	10.49	<u></u>
	,	0.00	3.24			
14		40.87	2.41	42.37	2.41	Sandstone - Interbedded
1.7		81.92	1.19	81.92		
		42.37	3.01	40.87	3.01	
		0.00	3.24	0.00	0.00	
	,	0.00	J.27	3.00	3.00	

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Surcharge

	Surc	harge		Tymo of	Location	Origin	Length	Width	Slope		Magnitud	е
No.	new	change	Туре	Type of action	z [m]	x [m]	I [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m ²

Surcharges


No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic

Water

Water type: GWT

Ian Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation: permanent

Results (Stage of construction 8)

Analysis 1 (stage 8)

Circular slip surface

Slip surface is not specified

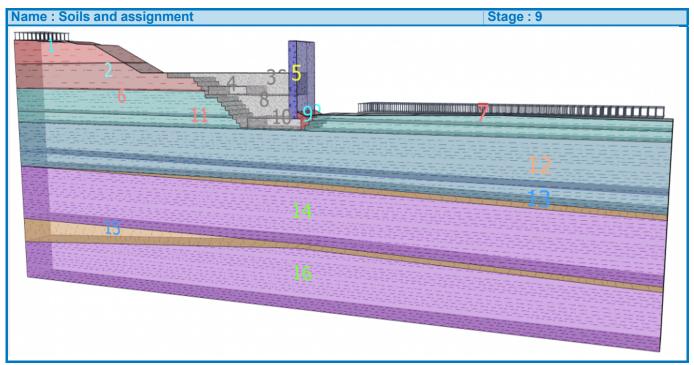
Slope stability verification (Bishop)

Analysis has not been performed.

Input data (Stage of construction 9)

Embankment interface

No.	Interface location	Coordinates of interface points [m]							
NO.	interface location	X	Z	x	Z	X	Z		
1		23.92	22.99	24.42	22.99	26.70	22.99		
		40.47	22.99						


No.	Surface position	Coordin	ates of su	urface points	[m]	Assigned
NO.	Surface position	x	Z	x	Z	soil
1		17.41	24.29	12.89	26.55	,
		11.86	26.58	10.35	26.65	CLAY - MMG IVB
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	_
		3.80	27.20	3.58	27.18	
		0.06	27.29	0.00	27.29	
		0.00	24.19			
2		29.20	20.80	29.20	20.91	Stiff red brown silty CLAY -
		28.70	20.91	28.70	21.41	MMG IVA
		28.20	21.41	28.20	21.91	
		27.70	21.91	27.70	22.41	_
		23.92	22.41	23.92	22.99	
		20.01	22.99	17.41	24.29	
		0.00	24.19	0.00	20.94	

N.	0	Coordin	ates of su	rface points [m]	Assigned
No.	Surface position	x	Z	x	Z	soil
3		29.70	20.41	29.70	21.41	Class 6N Selected Backfill
		34.95	21.41	34.95	20.41	to Structures
		40.47	20.41	40.47	22.99	06060606
		26.70	22.99	24.42	22.99	0.00.00.00.00.00
		23.92	22.99	23.92	22.41	
		27.70	22.41	27.70	21.91	
		28.20	21.91	28.20	21.41	
		28.70	21.41	28.70	20.91	
		29.20	20.91	29.20	20.80	
		29.20	20.41			
4		34.95	20.41	34.95	21.41	
	-	29.70	21.41	29.70	20.41	CONCRETE FOOTING
						PAAPAPA
5		41.47	17.73	41.47	18.55	
		41.47	26.63	40.47	26.63	BRIDGE ABUTMENT
		40.47	22.99	40.47	20.41	DATE OF STATE OF STAT
		40.47	17.73			
						For the LiA of Francisco
6		32.96	17.67	32.94	18.03	Weathered Mudstone -
		32.47	18.03	32.42	18.53	MMG III
		31.97	18.53	31.93	19.03	
		31.47	19.03	31.42	19.52	
		30.97	19.53	30.90	20.03	
		29.20	20.03	29.20	20.41	
		29.20	20.80	0.00	20.94	
		0.00	17.89			
7		81.92	17.36	81.92	18.34	Weathered Mudstone -
		65.88	18.57	65.36		MMG III
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
8	П	34.97	16.53	34.97	17.73	Class 6N Selected Backfill
		40.47	17.73	40.47	20.41	
		34.95	20.41	29.70	20.41	000000000
		29.20	20.41	29.20	20.03	
		30.90	20.03	30.97	19.53	000000000000000000000000000000000000000
		31.42	19.52	31.47	19.03	0 10 0 10 0 10 0 10
		31.93	19.03	31.97	18.53	
		32.42	18.53	32.47	18.03	
		32.94	18.03	32.96	17.67	
		32.97	17.53	33.44	17.53	
		33.47	17.03	33.93	17.03	
		33.97	16.53	34.47	16.53	
			. 5.55			

NI.	0.00	Coordin	ates of su	rface points [m]	Assigned
No.	Surface position	X	Z	X	Z	soil
9		41.97	17.73	41.97	16.53	Class 2 Fill (Site Won MMG
		42.47	16.53	42.51	17.03	IV)
	\ <u>\</u>	42.97	17.03	43.01	17.53	$\times \times $
		43.47	17.53	43.48	17.61	
		43.51	18.02	43.97	18.03	
		43.97	18.23	43.76	18.19	
		42.93	18.00	42.47	18.06	
		41.47	18.55	41.47	17.73	
10		41.97	16.53	41.97	17.73	CONCRETE FOOTING
		41.47	17.73	40.47	17.73	CONCINETETOOTING
		34.97	17.73	34.97	16.53	
11		81.92	16.30	81.92	17.36	Weathered Mudstone -
		43.48	17.61	43.47	17.53	MMG III
		43.01	17.53	42.97	17.03	
		42.51	17.03	42.47	16.53	· — — — — — —
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.97	16.53	
		33.93	17.03	33.47	17.03	
		33.44	17.53	32.97	17.53	
		32.96	17.67	0.00	17.89	
		0.00	16.44			
12		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00	16.44	MMG II
		0.00	10.49			<u></u>
13		40.90	9.72	81.92	8.55	NA LA CONTRACTOR CONTR
		81.92	9.12	42.37	10.31	Mudstone & Sandstone
		0.00	10.49			
14		40.87	3.01	42.37	3.01	Intact Mudstone - MMG I
		81.92	1.76	81.92	8.55	
		40.90	9.72	0.00	10.49	
	*	0.00	3.24			
15		40.87	2.41	42.37	2.41	
		81.92	1.19	81.92	1.76	Mudstone & Sandstone
	N - V	42.37	3.01	40.87	3.01	
	*	0.00	3.24	0.00	0.00	

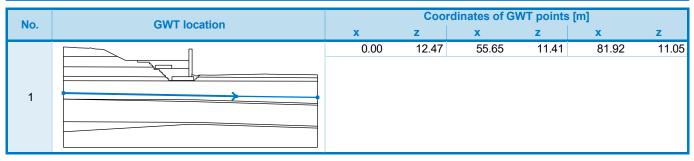
EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

No.	Surface position	Coordin	ates of su	Assigned		
NO.	Surface position	X	Z	x	Z	soil
16		42.37	2.41	40.87	2.41	Intact Mudstone - MMG I
		0.00	0.00	0.00	-5.00	mact Mudstone - MMG I
		81.92	-5.00	81.92	1.19	
	(

Surcharge

	Surc	harge		Type of	Location	Origin	Length	Width	Slope		Magnitud	е
No.	new	change	Туре	Type of action	z [m]	x [m]	I [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m²

Surcharges


No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic

Water

Water type: GWT

Ian Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation: permanent

Results (Stage of construction 9)

Analysis 1 (stage 9)

Circular slip surface

Slip surface parameters											
Center:	x =	13.32	[m]	Angles :	α ₁ =	-52.11 [°]					
Center.	z =	37.50	[m]	Aligies .	α2 =	29.25 [°]					
Radius: R = 16.63 [m]											
		The slip	surface	after optimization.							

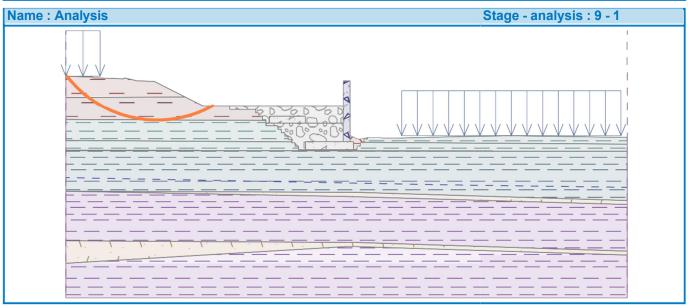
Slope stability verification (Bishop)

Combination 1

Utilization: 19.1 %

Slope stability ACCEPTABLE

Combination 2


Utilization: 22.3 %

Slope stability ACCEPTABLE

Optimized slip surface for : Combination 2

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

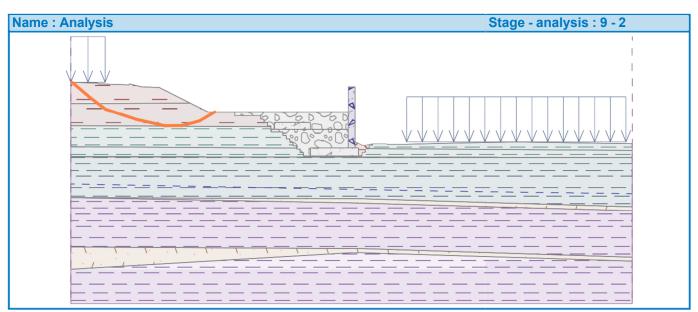
Ian Gardner

Analysis 2 (stage 9)

Polygonal slip surface

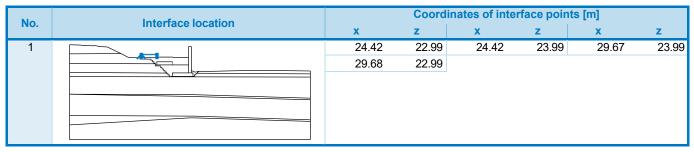
	Coordinates of slip surface points [m]											
X	X Z X Z X Z X Z X Z											
0.20	0.20 27.29 2.77 25.11 5.05 23.38 9.62 21.86 13.72											
16.25	20.96	18.77	21.64	21.02	22.99							
			The	slip surface afte	r optimizatio	n.						

Slope stability verification (Sarma)


Combination 1 Utilization: 21.5 %

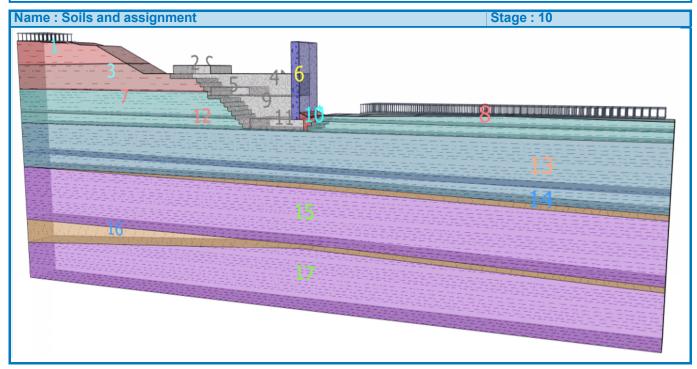
Slope stability ACCEPTABLE Combination 2

Utilization: 21.4 %


Slope stability ACCEPTABLE

Optimized slip surface for : Combination 1

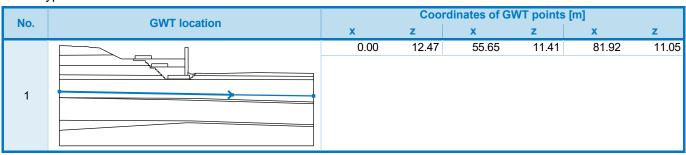
Input data (Stage of construction 10)


Embankment interface

		Coordin	nates of su	rface points	[m]	Assigned
No.	Surface position	x	z	x	z	soil
1		17.41	24.29	12.89	26.55	Firm to stiff red brown silty
		11.86	26.58	10.35	26.65	CLAY - MMG IVB
		8.71	27.03	8.59	27.04	
		8.41	26.92	4.10	27.06	
		3.80	27.20	3.58	27.18	
		0.06	27.29	0.00	27.29	
		0.00	24.19			
2		26.70	22.99	29.68	22.99	CONCRETE FOOTING
		29.67	23.99	24.42	23.99	CONCRETE FOOTING
	\ <u>\</u>	24.42	22.99			PAAPA
3		29.20	20.80	29.20	20.91	,
		28.70	20.91	28.70	21.41	MMG IVA
		28.20	21.41	28.20	21.91	
		27.70	21.91	27.70	22.41	
		23.92	22.41	23.92	22.99	
		20.01	22.99	17.41	24.29	
		0.00	24.19	0.00	20.94	
4		29.70	20.41	29.70	21.41	
		34.95	21.41	34.95		to Structures
		40.47	20.41	40.47	22.99	000000000
		29.68	22.99	26.70	22.99	
		24.42	22.99	23.92	22.99	
		23.92	22.41	27.70	22.41	
		27.70	21.91	28.20	21.91	
		28.20	21.41	28.70	21.41	
		28.70	20.91	29.20	20.91	
		29.20	20.80	29.20	20.41	
5		34.95	20.41	34.95	21.41	CONCRETE FOOTING
		29.70	21.41	29.70	20.41	CONCILIETOOTING

NI.	0	Coordin	ates of su	m]	Assigned	
No.	Surface position	x	Z	x	Z	soil
6		41.47	17.73	41.47	18.55	BRIDGE ABUTMENT
		41.47	26.63	40.47	26.63	BRIDGE ABOTMENT
		40.47	22.99	40.47	20.41	PAAPAAP
		40.47	17.73			DAADAA
						$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7		32.96	17.67	32.94	18.03	Weathered Mudstone -
		32.47	18.03	32.42	18.53	
		31.97	18.53	31.93	19.03	
		31.47	19.03	31.42	19.52	
		30.97	19.53	30.90	20.03	
		29.20	20.03	29.20	20.41	
		29.20	20.80	0.00	20.94	
		0.00	17.89			
8		81.92	17.36	81.92	18.34	Weathered Mudstone -
		65.88	18.57	65.36	18.58	
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
9		34.97	16.53	34.97	17.73	Class 6N Selected Backfill
		40.47	17.73	40.47	20.41	
	***	34.95	20.41	29.70	20.41	06060606
		29.20	20.41	29.20	20.03	0.00.00.00.0
		30.90	20.03	30.97	19.53	
		31.42	19.52	31.47	19.03	v v v v v v
		31.93	19.03	31.97	18.53	
		32.42	18.53	32.47	18.03	
		32.94	18.03	32.96	17.67	
		32.97	17.53	33.44	17.53	
		33.47	17.03	33.93	17.03	
		33.97	16.53	34.47	16.53	
10		41.97	17.73	41.97	16.53	Class 2 Fill (Site Won MMG
		42.47	16.53	42.51	17.03	IV)
		42.97	17.03	43.01	17.53	$\times \times $
		43.47	17.53	43.48	17.61	
		43.51	18.02	43.97	18.03	
		43.97	18.23	43.76	18.19	(, (, (, (, (, (, (, (, (, (, (, (, (, (
		42.93	18.00	42.47	18.06	
		41.47	18.55	41.47	17.73	
11		41.97	16.53	41.97	17.73	CONCRETE ECOTING
		41.47	17.73	40.47	17.73	CONCRETE FOOTING
		34.97	17.73	34.97	16.53	PAAAAAA
						DAADAA

Na	Confess assisting	Coordin	ates of sui	rface points	[m]	Assigned
No.	Surface position	x	Z	X	Z	soil
12		81.92	16.30	81.92		Weathered Mudstone -
		43.48	17.61	43.47	17.53	MMG III
		43.01	17.53	42.97	17.03	
		42.51	17.03	42.47	16.53	
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.97	16.53	
		33.93	17.03	33.47	17.03	
		33.44	17.53	32.97	17.53	
		32.96	17.67	0.00	17.89	
		0.00	16.44			
13		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00		MMG II
		0.00	10.49			
						
14		40.90	9.72	81.92	8.55	Sandstone - Interbedded
		81.92	9.12	42.37	10.31	
		0.00	10.49			
						, , , , , , , , , , , , , , , , , , , ,
15		40.87	3.01	42.37	3.01	lists at Mandatana - NAMO I
		81.92	1.76	81.92	8.55	Intact Mudstone - MMG I
		40.90	9.72	0.00	10.49	
		0.00	3.24			. — — — — —
	•					
16		40.87	2.41	42.37	2.41	
		81.92	1.19	81.92	1.76	Mudstone & Sandstone
	1 7	42.37	3.01	40.87	3.01	
		0.00	3.24	0.00	0.00	
	*					
17		42.37	2.41	40.87	2.41	Intact Mudstone - MMG I
		0.00	0.00	0.00	-5.00	III.act Muustone - MiMG I
	VI_V	81.92	-5.00	81.92	1.19	
						· — — — — —
	*					
	-					


	Surc	harge		Type of	Location	Origin	Length	Width	Slope	ľ	Magnitud	е
No.	new	change	Туре	action	z [m]	x [m]	I [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m ²

Surcharges

No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic

Water

Water type: GWT

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 10)

Analysis 1 (stage 10)

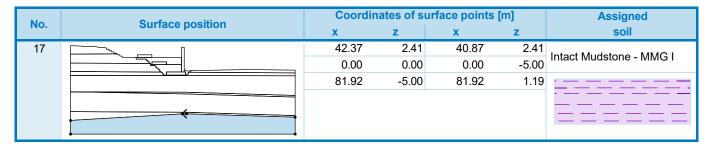
Circular slip surface

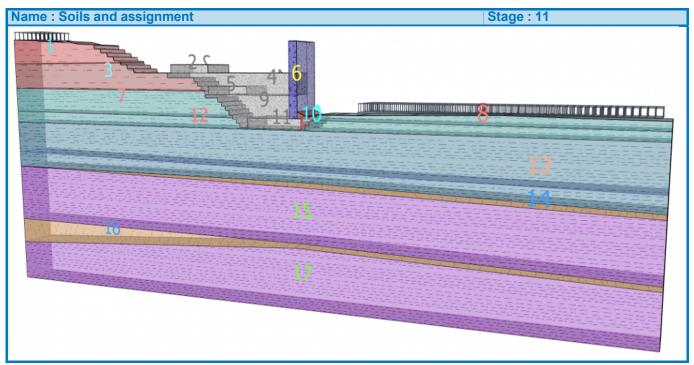
Slip surface is not specified

Slope stability verification (Bishop)

Analysis has not been performed.

Input data (Stage of construction 11)


Earth cut


No.	Cut location	Coordinates of cut points [m]							
140.	Cut location	X	Z	X	Z	x	Z		
1		13.01	26.49	13.01	25.99	13.97	25.99		
		14.01	25.49	14.92	25.49	15.01	24.99		
		15.88	24.99	16.01	24.49	16.89	24.48		
		17.01	23.99	17.91	23.98	18.01	23.49		
		18.88	23.49	19.01	22.99	20.01	22.99		

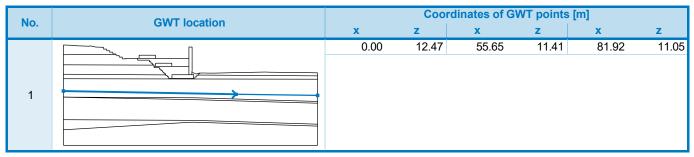
	ing and surfaces	Coordin	nates of su	urface points	[m]	Assigned
No.	Surface position	X	z	Х	Z	soil
1		16.94	24.29	16.89	24.48	Firm to stiff red brown silty
		16.01	24.49	15.88	24.99	CLAY - MMG IVB
	7	15.01	24.99	14.92	25.49	
		14.01	25.49	13.97	25.99	
		13.01	25.99	13.01	26.49	
		12.89	26.55	11.86	26.58	
		10.35	26.65	8.71	27.03	
		8.59	27.04	8.41	26.92	
		4.10	27.06	3.80	27.20	
		3.58	27.18	0.06	27.29	
		0.00	27.29	0.00	24.19	
2		26.70	22.99	29.68	22.99	CONCRETE FOOTING
		29.67	23.99	24.42	23.99	CONCRETE FOOTING
	, , , , , , , , , , , , , , , , , , ,	24.42	22.99			PAAPA
3		29.20	20.80	29.20	20.91	
		28.70	20.91	28.70	21.41	MMG IVA
		28.20	21.41	28.20	21.91	
		27.70	21.91	27.70	22.41	
		23.92	22.41	23.92	22.99	
		20.01	22.99	19.01	22.99	
		18.88	23.49	18.01	23.49	
		17.91	23.98	17.01	23.99	
		16.94	24.29	0.00	24.19	
		0.00	20.94			
						I .

		Coordin	ates of su	ırface points [m]	Assigned
No.	Surface position	x	z	x	Z	soil
4		29.70	20.41	29.70	21.41	Class 6N Selected Backfill
		34.95	21.41	34.95	20.41	to Structures
		40.47	20.41	40.47	22.99	060606060
		29.68	22.99	26.70	22.99	0.00.00.00.0
		24.42	22.99	23.92	22.99	
		23.92	22.41	27.70	22.41	
		27.70	21.91	28.20	21.91	
		28.20	21.41	28.70	21.41	
		28.70	20.91	29.20	20.91	
		29.20	20.80	29.20	20.41	
5		34.95	20.41	34.95	21.41	CONODETE FOOTING
		29.70	21.41	29.70	20.41	CONCRETE FOOTING
6		41.47	17.73	41.47	18.55	BRIDGE ABUTMENT
		41.47	26.63	40.47	26.63	DI NO GE / NO TIME! Y!
		40.47	22.99	40.47	20.41	PAAPAA
		40.47	17.73			
7		32.96	17.67	32.94		Weathered Mudstone -
		32.47	18.03	32.42		MMG III
		31.97	18.53	31.93	19.03	
		31.47	19.03	31.42	19.52	
		30.97	19.53	30.90	20.03	
		29.20	20.03	29.20	20.41	
		29.20	20.80	0.00	20.94	
		0.00	17.89			
8		81.92	17.36	81.92	18.34	
		65.88	18.57	65.36		MMG III
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
9		34.97	16.53	34.97		Class 6N Selected Backfill
		40.47	17.73	40.47	20.41	
		34.95	20.41	29.70	20.41	00000000
		29.20	20.41	29.20	20.03	0.00.00.00.00
		30.90	20.03	30.97	19.53	06060606
		31.42	19.52	31.47	19.03	
		31.93	19.03	31.97	18.53	
		32.42 32.94	18.53	32.47	18.03 17.67	
		32.94	18.03 17.53	32.96 33.44	17.57	
					17.53	
		33.47 33.97	17.03 16.53	33.93 34.47	16.53	
		33.81	10.55	34.41	10.53	

N.	0	Coordin	ates of su	ırface points	[m]	Assigned
No.	Surface position	x	z	X	Z	soil
10		41.97	17.73	41.97	16.53	Class 2 Fill (Site Won MMG
		42.47	16.53	42.51	17.03	IV)
		42.97	17.03	43.01	17.53	$\times \times $
		43.47	17.53	43.48	17.61	
		43.51	18.02	43.97	18.03	****
		43.97	18.23	43.76	18.19	
		42.93	18.00	42.47	18.06	
		41.47	18.55	41.47	17.73	
11		41.97	16.53	41.97	17.73	
		41.47	17.73	40.47	17.73	CONCRETE FOOTING
	1 1	34.97	17.73	34.97	16.53	PARA
12		81.92	16.30	81.92	17.36	Weathered Mudstone -
		43.48	17.61	43.47	17.53	MMG III
		43.01	17.53	42.97	17.03	
		42.51	17.03	42.47	16.53	· — — — — —
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.97	16.53	
		33.93	17.03	33.47	17.03	
		33.44	17.53	32.97	17.53	
		32.96	17.67	0.00	17.89	
		0.00	16.44			
13		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00	16.44	MMG II
		0.00	10.49			
	-					
14		40.90	9.72	81.92	8.55	Odridotorio interpedada
		81.92	9.12	42.37	10.31	Mudstone & Sandstone
	31	0.00	10.49			
15		40.87	3.01	42.37	3.01	Intact Mudstone - MMG I
		81.92	1.76	81.92	8.55	made maddione - mino i
		40.90	9.72	0.00	10.49	
	>	0.00	3.24			
16		40.07	0.44	40.07	0.44	0 14 14 1 1
16		40.87	2.41	42.37	2.41	
		81.92	1.19	81.92	•	widdstolle & Gallustolle
		42.37	3.01	40.87	3.01	
	•	0.00	3.24	0.00	0.00	

	Surc	harge		Tymo of	Location	Origin	Length	Width	Slope		Magnitud	е
No.	new	change	Туре	Type of action	z [m]	x [m]	I [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m ²

Surcharges


No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic

Water

Water type: GWT

Ian Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation: permanent

Results (Stage of construction 11)

Analysis 1 (stage 11)

Circular slip surface

Slip surface is not specified

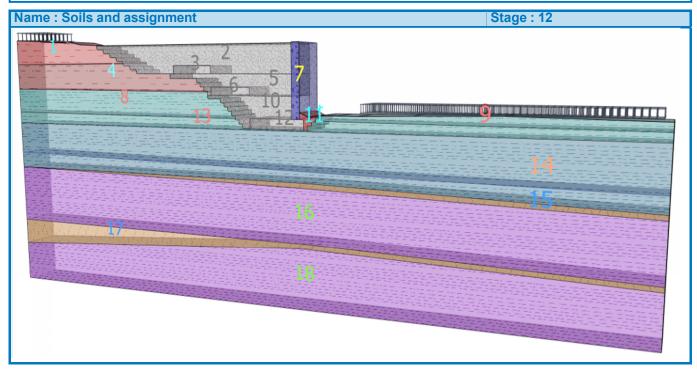
Slope stability verification (Bishop)

Analysis has not been performed.

Input data (Stage of construction 12)

Embankment interface

No.	Interface location	Coordinates of interface points [m]							
NO.	interface location	X	Z	X	Z	Х	Z		
1		13.01	26.49	40.47	26.52				

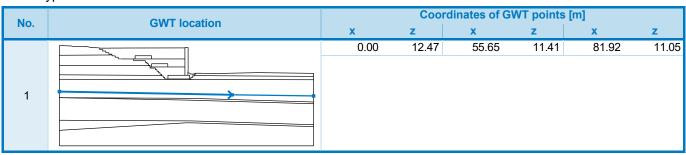

No.	Surface position	Coordin	nates of su	urface points	[m]	Assigned
NO.	Surface position	X	Z	x	Z	soil
1		16.94	24.29	16.89	24.48	Firm to stiff red brown silty
		16.01	24.49	15.88	24.99	CLAY - MMG IVB
		15.01	24.99	14.92	25.49	
		14.01	25.49	13.97	25.99	
		13.01	25.99	13.01	26.49	
		12.89	26.55	11.86	26.58	
		10.35	26.65	8.71	27.03	
		8.59	27.04	8.41	26.92	
		4.10	27.06	3.80	27.20	
		3.58	27.18	0.06	27.29	
		0.00	27.29	0.00	24.19	

No. 2	Surface position	x 24.42	Z	X	Z	soil
2	A CONTRACTOR OF THE PARTY OF TH	24 42				
			22.99	24.42		Class 6N Selected Backfill
		29.67	23.99	29.68	22.99	to Structures
		40.47	22.99	40.47	26.52	
		13.01	26.49	13.01	25.99	
		13.97	25.99	14.01	25.49	
		14.92	25.49	15.01	24.99	
		15.88	24.99	16.01	24.49	
		16.89	24.48	16.94	24.29	
		17.01	23.99	17.91	23.98	
		18.01	23.49	18.88	23.49	
		19.01	22.99	20.01	22.99	
		23.92	22.99			
3		26.70	22.99	29.68	22.99	
		29.67	23.99	24.42	23.99	CONCRETE FOOTING
_		24.42	22.99	24.42	20.00	a . Cl
_		24.42	22.99			
						1 1 1 1 1 1 1
4		29.20	20.80	29.20		
		28.70	20.91	28.70		MMG IVA
		28.20	21.41	28.20	21.91	
		27.70	21.91	27.70	22.41	
		23.92	22.41	23.92	22.99	
		20.01	22.99	19.01	22.99	
		18.88	23.49	18.01	23.49	
		17.91	23.98	17.01	23.99	
		16.94	24.29	0.00	24.19	
		0.00	20.94			
5	- Tanana (1)	29.70	20.41	29.70	21.41	Class 6N Selected Backfill
		34.95	21.41	34.95		
		40.47	20.41	40.47	22.99	06060606
_		29.68	22.99	26.70	22.99	
_		24.42	22.99	23.92	22.99	
		23.92	22.41	27.70	22.41	0 0 0 0 0 0 0 0 0
		27.70	21.91	28.20	21.91	
		28.20	21.41	28.70	21.41	
	-	28.70	20.91	29.20	20.91	
	-	29.20	20.80	29.20	20.41	
0 =						
6	The state of the s	34.95	20.41	34.95	21.41	CONCRETE FOOTING
		29.70	21.41	29.70	20.41	
7		41.47	17.73	41.47	18.55	BRIDGE ABUTMENT
		41.47	26.63	40.47	26.63	DI NIDOL ADO I WILIYI
	77.15	40.47	26.52	40.47	22.99	PAAAAA
		40.47	20.41	40.47	17.73	1000000
						A. F. A. F.

No.	Surface position	Coordin	ates of surf	face points [m]	Assigned
	Carrago position	X	Z	X	Z	soil
8		32.96	17.67	32.94		Weathered Mudstone -
		32.47	18.03	32.42	18.53	MMG III
		31.97	18.53	31.93	19.03	
		31.47	19.03	31.42	19.52	
		30.97	19.53	30.90	20.03	
		29.20	20.03	29.20	20.41	
		29.20	20.80	0.00	20.94	
		0.00	17.89			
9		81.92	17.36	81.92	18.34	
		65.88	18.57	65.36	18.58	MMG III
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
10		34.97	16.53	34.97	17.73	Class 6N Selected Backfill
		40.47	17.73	40.47	20.41	to Structures
		34.95	20.41	29.70	20.41	00000000
		29.20	20.41	29.20	20.03	00000000000
		30.90	20.03	30.97	19.53	
		31.42	19.52	31.47	19.03	
		31.93	19.03	31.97	18.53	
		32.42	18.53	32.47	18.03	
		32.94	18.03	32.96	17.67	
		32.97	17.53	33.44	17.53	
		33.47	17.03	33.93	17.03	
		33.97	16.53	34.47	16.53	
11		41.97	17.73	41.97	16.53	Class 2 Fill (Site Won MMG
		42.47	16.53	42.51	17.03	IV)
		42.97	17.03	43.01	17.53	××××××××××××××××××××××××××××××××××××××
		43.47	17.53	43.48	17.61	
		43.51	18.02	43.97	18.03	
		43.97	18.23	43.76	18.19	
		42.93	18.00	42.47	18.06	
		41.47	18.55	41.47	17.73	
12		41.97	16.53	41.97	17.73	CONODETE FOOTING
		41.47	17.73	40.47	17.73	CONCRETE FOOTING
		34.97	17.73	34.97	16.53	
			'			
13		81.92	16.30	81.92	17.36	Weathered Mudstone -
		43.48	17.61	43.47	17.53	MMG III
		43.01	17.53	42.97	17.03	. — — — — —
		42.51	17.03	42.47	16.53	
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.97	16.53	
		33.93	17.03	33.47	17.03	
		33.44	17.53	32.97	17.53	
		32.96	17.67	0.00	17.89	
		0.00	16.44			
			±			

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

		Coordin	ates of su	rface points	[m]	Assigned
No.	Surface position	X	z	X	Z	soil
14		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00	16.44	MMG II
		0.00	10.49			
		40.90	9.72	81.92	0 55	
15					8.55	Sandstone - Interbedded Mudstone & Sandstone
		81.92	9.12	42.37	10.31	Wudstone & Sandstone
		0.00	10.49			
16		40.87	3.01	42.37	3.01	
. •		81.92	1.76	81.92	8.55	Intact Mudstone - MMG I
		40.90	9.72	0.00	10.49	. — — — — —
		0.00	3.24			
	*					
17		40.87	2.41	42.37	2.41	Sandstone - Interbedded
		81.92	1.19	81.92	1.76	Mudstone & Sandstone
	3	42.37	3.01	40.87	3.01	
		0.00	3.24	0.00	0.00	
	*					
18		42.37	2.41	40.87	2.41	Intact Mudstone - MMG I
		0.00	0.00	0.00	-5.00	
		81.92	-5.00	81.92	1.19	


	Surc	harge		Type of	Location	Origin	Length	Width	Slope	ľ	Magnitude	€
No.	new	change	Туре	action	z [m]	x [m]	l [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
					terrairi	+3.00	02.00					

Surcharges

No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic

Water

Water type: GWT

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 12)

Analysis 1 (stage 12)

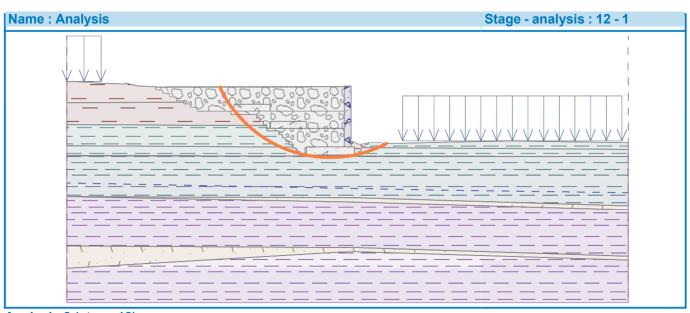
Circular slip surface

-	Slip surface parameters										
Contor	x =	38.40 [m]	Angles	α ₁ =	-65.48 [°]						
Center:	z =	33.83 [m]	Angles :	α2 =	27.95 [°]						
Radius :	R =	17.66 [m]			'						
The slip surface after optimization.											

Slope stability verification (Bishop)

Combination 1

Utilization: 29.3 %


Slope stability ACCEPTABLE

Combination 2

Utilization: 30.4 %

Slope stability ACCEPTABLE

Optimized slip surface for : Combination 2

Analysis 2 (stage 12)

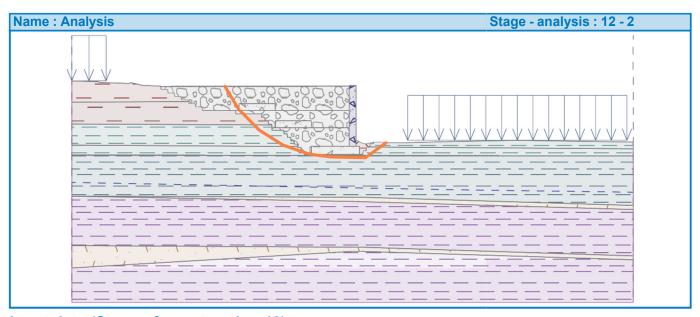
Polygonal slip surface

. , 5	<u>'</u>														
	Coordinates of slip surface points [m]														
x	Z	x	z	X	Z	x	z	x	Z						
22.33	26.50	24.46	22.99	27.34	20.06	30.81	17.88	34.70	16.56						
37.98	16.17	42.85	16.07	45.86	18.23		·								
			The	slip surface a	fter optimizat	ion.									

Slope stability verification (Sarma)

Combination 1 Utilization: 32.9 %

Slope stability ACCEPTABLE


One of the dividing planes cuts through the rigid body. The results can be overestimated.

Combination 2 Utilization: 35.0 %

Slope stability ACCEPTABLE

One of the dividing planes cuts through the rigid body. The results can be overestimated. Optimized slip surface for :

Combination 2

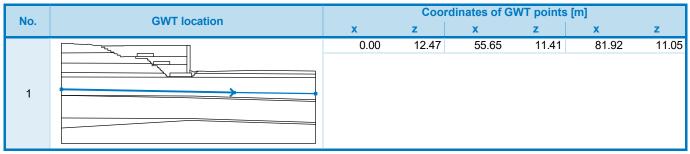

Input data (Stage of construction 13)

No.	Surface position	Coordin	nates of su	rface points	[m]	Assigned
NO.	Surface position	X	Z	x	Z	soil
1		16.94	24.29	16.89	24.48	Firm to stiff red brown silty
		16.01	24.49	15.88	24.99	CLAY - MMG IVB
	N. P.	15.01	24.99	14.92	25.49	
		14.01	25.49	13.97	25.99	
		13.01	25.99	13.01	26.49	
		12.89	26.55	11.86	26.58	
		10.35	26.65	8.71	27.03	
		8.59	27.04	8.41	26.92	
		4.10	27.06	3.80	27.20	
		3.58	27.18	0.06	27.29	
		0.00	27.29	0.00	24.19	
2		24.42	22.99	24.42	23.99	Class 6N Selected Backfill
		29.67	23.99	29.68	22.99	to Structures
		40.47	22.99	40.47	26.52	00000000
		13.01	26.49	13.01	25.99	0.00.00.00.00
		13.97	25.99	14.01	25.49	0,0,0,0
		14.92	25.49	15.01	24.99	
		15.88	24.99	16.01	24.49	
		16.89	24.48	16.94	24.29	
		17.01	23.99	17.91	23.98	

		Coordin	ates of su	rface points	[m]	Assigned
No.	Surface position	x	z	х .	z	soil
		18.01	23.49	18.88	23.49	
		19.01	22.99	20.01	22.99	
		23.92	22.99			
3		26.70	22.99	29.68	22.99	
3		29.67	23.99	24.42	23.99	CONCRETE FOOTING
		24.42	22.99	24.42	25.55	a
		24.42	22.99			
4		29.20	20.80	29.20	20.91	
		28.70	20.91	28.70	21.41	MMG IVA
		28.20	21.41	28.20	21.91	
		27.70	21.91	27.70	22.41	
		23.92	22.41	23.92	22.99	
		20.01	22.99	19.01	22.99	
		18.88	23.49	18.01	23.49	
		17.91	23.98	17.01	23.99	
		16.94	24.29	0.00	24.19	
		0.00	20.94			
5		29.70	20.41	29.70	21.41	Class 6N Selected Backfill
		34.95	21.41	34.95		to Structures
		40.47	20.41	40.47	22.99	040404040
		29.68	22.99	26.70	22.99	
		24.42	22.99	23.92	22.99	
		23.92	22.41	27.70	22.41	0 00 000 000000
		27.70	21.91	28.20	21.91	
		28.20	21.41	28.70	21.41	
		28.70	20.91	29.20	20.91	
		29.20	20.80	29.20	20.41	
6		34.95	20.41	34.95	21.41	
О		29.70		29.70	20.41	CONCRETE FOOTING
		29.70	21.41	29.70	20.41	
7		41.47	17.73	41.47	10 55	
,					18.55	BRIDGE ABUTMENT
		41.47	26.63	40.47	26.63	
		40.47	26.52	40.47	22.99 17.73	
		40.47	20.41	40.47	17.73	
8		32.96	17.67	32.94	18.03	Weathered Mudstone -
		32.47	18.03	32.42		MMG III
	, , , , , , , , , , , , , , , , , , , 	31.97	18.53	31.93	19.03	
		31.47	19.03	31.42	19.52	
		30.97	19.53	30.90	20.03	
		29.20	20.03	29.20	20.41	
		29.20	20.80	0.00	20.94	
		0.00	17.89			

No.	Surface position	Coordin	ates of sur	face points	[m]	Assigned
140.	ourrace position	х	Z	X	Z	soil
9		81.92	17.36	81.92		Weathered Mudstone -
		65.88	18.57	65.36	18.58	MMG III
		55.24	18.40	48.68	18.23	
		46.09	18.23	43.97	18.23	
		43.97	18.03	43.51	18.02	
		43.48	17.61			
10		34.97	16.53	34.97	17.73	Class 6N Selected Backfill
		40.47	17.73	40.47	20.41	
		34.95	20.41	29.70	20.41	06060606
		29.20	20.41	29.20	20.03	
		30.90	20.03	30.97	19.53	
		31.42	19.52	31.47	19.03	
		31.93	19.03	31.97	18.53	
		32.42	18.53	32.47	18.03	
		32.94	18.03	32.96	17.67	
		32.97	17.53	33.44	17.53	
		33.47	17.03	33.93	17.03	
		33.97	16.53	34.47	16.53	
11		41.97	17.73	41.97	16.53	Class 2 Fill (Site Won MMG
		42.47	16.53	42.51	17.03	IV)
		42.97	17.03	43.01	17.53	
		43.47	17.53	43.48	17.61	
		43.51	18.02	43.97	18.03	$\rightarrow \rightarrow $
		43.97	18.23	43.76	18.19	^/////////
		42.93	18.00	42.47	18.06	
		41.47	18.55	41.47	17.73	
12		41.97	16.53	41.97	17.73	
		41.47	17.73	40.47	17.73	CONCRETE FOOTING
		34.97	17.73	34.97	16.53	PAAAPA
13		81.92	16.30	81.92	17.36	Weathered Mudstone -
		43.48	17.61	43.47	17.53	MMG III
		43.01	17.53	42.97	17.03	
		42.51	17.03	42.47	16.53	
		41.97	16.53	34.97	16.53	
		34.47	16.53	33.97	16.53	
		33.93	17.03	33.47	17.03	
		33.44	17.53	32.97	17.53	
		32.96	17.67	0.00	17.89	
		0.00	16.44			
14		42.37	10.31	81.92	9.12	Weathered Mudstone -
		81.92	16.30	0.00		MMG II
		0.00	10.49			
	•					

Ne	Confess manifelian	Coordin	nates of su	rface points	[m]	Assigned
No.	Surface position	X	z	X	Z	soil
15		40.90	9.72	81.92	8.55	Sandstone - Interbedded
		81.92	9.12	42.37	10.31	Mudstone & Sandstone
	7	0.00	10.49			
	-					
40		40.07	0.04	40.07	0.04	
16		40.87	3.01	42.37	3.01	Intact Mudstone - MMG I
		81.92	1.76	81.92	8.55	
		40.90	9.72	0.00	10.49	
		0.00	3.24			
	*					
17		40.87	2.41	42.37	2.41	Carractoric interpodaca
		81.92	1.19	81.92	1.76	Mudstone & Sandstone
	7	42.37	3.01	40.87	3.01	
		0.00	3.24	0.00	0.00	
	*					
18		42.37	2.41	40.87	2.41	Intent Mindeton - MMO I
		0.00	0.00	0.00	-5.00	Intact Mudstone - MMG I
		81.92	-5.00	81.92	1.19	
	*					


	Surc	harge		Tunnant	Location	Origin	Length	Width	Slope	-	Magnitud	е
No.	new	change	Туре	Type of action	z [m]	x [m]	I [m]	b [m]	α [°]	q, q ₁ , f, F	q ₂	unit
1	No	No	strip	permanent	on terrain	x = 49.00	l = 32.00		0.00	20.00		kN/m ²
2	No	No	strip	permanent	on terrain	x = 0.00	I = 5.00		0.00	20.00		kN/m ²
3	No	No	strip	permanent	on terrain	x = 5.00	1 = 35.00		0.00	20.00		kN/m ²

Surcharges

No.	Name
1	M1 Traffic UDL
2	A453 Off-site Traffic
3	A6 Bypass Traffic onto new M1 Overbridge

Water

Water type: GWT

Tensile crack

Tensile crack not input.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation: permanent

Results (Stage of construction 13)

Analysis 1 (stage 13)

Circular slip surface

	Slip surface parameters											
Center :	x =	38.38 [[m]	Angles :	α ₁ =	-65.09 [°]						
Center.	z =	34.01 [[m]	Angles :	α2 =	27.75 [°]						
Radius:	R=	17.83 [[m]			·						
		The slip	The slip surface after optimization.									

Slope stability verification (Bishop)

Combination 1

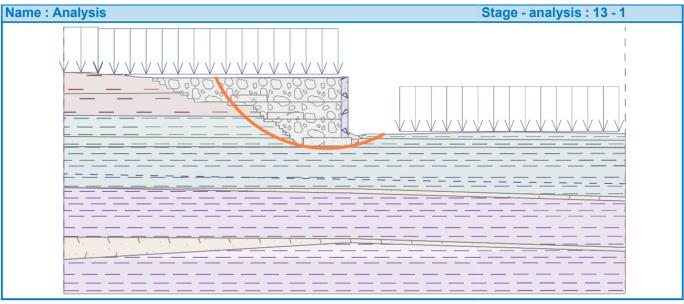
Sum of active forces : F_a = 1408.16 kN/m Sum of passive forces : F_p = 4178.97 kN/m Sliding moment : M_a = 25403.23 kNm/m Resisting moment : M_p = 75388.59 kNm/m

Utilization: 33.7 %

Slope stability ACCEPTABLE

Combination 2

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE


Ian Gardner

M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Utilization: 34.8 %

Slope stability ACCEPTABLE

Optimized slip surface for : Combination 2

Analysis 2 (stage 13)

Polygonal slip surface

	Coordinates of slip surface points [m]													
x	Z	x	z	x	Z	X	Z	x	Z					
20.98	26.50	24.36	22.98	27.70	21.65	31.62	18.67	34.87	16.57					
38.76	15.57	42.84	15.97	45.73	18.23									
			The	slip surface aft	er optimizati	on.								

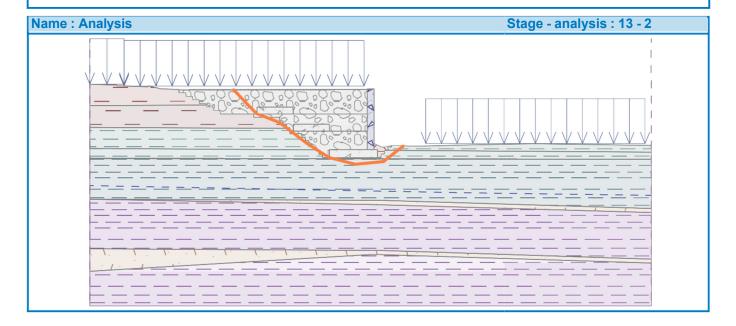
Slope stability verification (Sarma)

Combination 1 Utilization: 41.0 %

Slope stability ACCEPTABLE

One of the dividing planes cuts through the rigid body. The results can be overestimated.

Combination 2 Utilization: 40.1 %


Slope stability ACCEPTABLE

One of the dividing planes cuts through the rigid body. The results can be overestimated. Optimized slip surface for :

Combination 1

Ian Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

ANNEX B.5 EMG-HYD-C4-M10B-CA-GE-

0663

Cantilever wall analysis

Input data

Project

Task : EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE
Part : M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Description : M1 OVERBRIDGE RETAINING WALL ASSESSMENT

Customer : ROXHILL KEGWORTH LTD

Author : Ian Gardner
Date : 03/08/2017
Project ID : C14792

Project number: EMG-HYD-C4-M10B-CA-GE-0663-S4-P3

Settings

United Kingdom - EN 1997 Materials and standards

Concrete structures: EN 1992-1-1 (EC2)

Coefficients EN 1992-1-1: standard

Wall analysis

Active earth pressure calculation : Coulomb
Passive earth pressure calculation : Caquot-Kerisel
Earthquake analysis : Mononobe-Okabe
Shape of earth wedge : Calculate as skew

Base key: The base key is considered as inclined footing bottom

Allowable eccentricity: 0.333

Verification methodology: according to EN 1997

Design approach: 1 - reduction of actions and soil parameters

Partial factors on actions (A) Permanent design situation									
		Combination 1			Combination 2				
		Unfavourable		Favourable		Unfavourable		Favourable	
Permanent actions :	ψ _G =	1.35	[-]	1.00	[-]	1.00	[-]	1.00	[-]
Variable actions :	ψQ =	1.50	[-]	0.00	[-]	1.30	[-]	0.00	[-]
Water load :	$\psi_W =$	1.35	[-]			1.00	[-]		

Partial factors for soil parameters (M)								
Permanent design situation								
		Combination 1		Combination 2				
Partial factor on internal friction :	$\psi_{\phi} =$	1.00	[-]	1.25	[-]			
Partial factor on effective cohesion :	ψ _C =	1.00	[-]	1.25	[-]			
Partial factor on undrained shear strength :	ψ _{cu} =	1.00	[-]	1.40	[-]			
Partial factor on Poisson's ratio :	ψν =	1.00	[–]	1.00	[–]			

Partial factors for variable actions						
Permanent design situation						
Factor for combination value :	ψ0 =	0.70	[-]			
Factor for frequent value :	Ψ1 =	0.50	[-]			
Factor for quasi-permanent value :	ψ2 =	0.30	[-]			

Material of structure

Unit weight ψ = 23.00 kN/m³

Analysis of concrete structures carried out according to the standard EN 1992-1-1 (EC2).

Concrete: C 20/25

Cylinder compressive strength $f_{ck} = 20.00 \text{ MPa}$ Tensile strength $f_{ctm} = 2.20 \text{ MPa}$

Longitudinal steel: B500

Yield strength $f_{yk} = 500.00 \text{ MPa}$

Geometry of structure

No.	Coordinate	Depth
	X [m]	Z [m]
1	0.00	0.00
2	0.00	5.00
3	4.00	5.00
4	4.00	6.00
5	-1.00	6.00
6	-1.00	5.00
7	-1.00	0.00

The origin [0,0] is located at the most upper right point of the wall. Wall section area = 10.00 m^2 .

Basic soil parameters - (effective stress-state)

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	Ψ [kN/m³]	Ψsu [kN/m³]	0 [°]
2	Firm to stiff red brown silty CLAY - MMG IVB		25.00	2.00	19.50	10.50	7.50
3	Stiff red brown silty CLAY - MMG IVA		32.00	4.00	20.50	11.00	10.00
4	Weathered Mudstone - MMG III		32.00	10.00	22.00	12.00	10.00
5	Weathered Mudstone - MMG II		42.00	16.00	22.50	12.50	14.00
6	Intact Mudstone - MMG I		42.00	25.00	23.00	13.00	14.00
7	Bromsgrove Sandstone - Interbedded Mudstone & Sandstone	\	40.00	8.00	22.50	13.00	12.00
8	Existing Highway General Fill		25.00	2.00	19.50	10.50	10.00
9	Class 2 Fill (Site Won MMG IV)		25.00	2.00	19.50	10.50	10.00
10	Class 6F Capping/Subbase/Surfacing		35.00	0.00	21.00	11.50	15.00
12	Terrace Sands & Gravels		35.00	0.00	22.00	12.50	15.00
13	Class 7A Selected Cohesive Fill		25.00	2.00	20.50	11.00	12.00
14	Class 7C Selected Cohesive Fill		25.00	2.00	20.50	11.00	12.00

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	ψ [kN/m³]	Ψsu [kN/m³]	0 [°]
15	Pre-existing Made Ground		25.00	0.00	19.00	9.50	8.00
16	Culvert		41.50	0.00	2.40	0.00	25.00
17	Granular Backfill to Culvert		41.50	0.00	18.00	8.00	16.00
18	Class 6N Selected Backfill to Structures		41.50	0.00	22.50	13.00	16.60
19	Redcued Level 78 - 77 m OD - MMG IVB		25.00	2.00	19.50	10.50	8.30
20	Redcued Level 77 - 76 m OD - MMG IVB		25.00	2.00	19.50	10.50	8.30
21	Redcued Level 76 - 75 m OD - MMG IVB		25.00	2.00	19.50	10.50	8.30
22	Redcued Level 75 - 74 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
23	Redcued Level 74 - 73 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
24	Redcued Level 73 - 72 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
25	Redcued Level 72 - 71 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
26	Redcued Level 71 - 70 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
27	Redcued Level 70 - 69 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
28	Redcued Level 69 - 68 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
29	Redcued Level 68 - 67 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
30	Redcued Level 67 - 66 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
31	Redcued Level 66 - 65 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
32	Redcued Level 65 - 64 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
33	Redcued Level 64 - 63 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
34	Redcued Level 63 - 62 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
35	Redcued Level 62 - 61 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
36	Redcued Level 61 - 60 m OD - MMG II		42.00	16.00	22.50	12.50	14.00

Basic soil parameters - (total stress-state)

No.	Name	Pattern	c _u [kPa]	a [kPa]	Ψ [kN/m³]
1	Topsoil/Subsoil	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	35.00	28.00	16.50
11	Landscape Fill - Class 4		50.00	20.00	20.00
37	Redcued Level 60 - 59 m OD - MMG I		1097.00	116.00	23.00

Soil parameters to compute pressure at rest

No.	Name	Pattern	Type calculation	χπ _{ef} [°]	ς [–]	OCR [-]	K _r [–]
1	Topsoil/Subsoil	<u> </u>	cohesionless	0.00	-	-	-
2	Firm to stiff red brown silty CLAY - MMG IVB		cohesive	-	0.40	-	-
3	Stiff red brown silty CLAY - MMG IVA		cohesive	-	0.40	-	-
4	Weathered Mudstone - MMG III		overconsolidated	-	-	2.00	-
5	Weathered Mudstone - MMG II		overconsolidated	-	-	3.00	-
6	Intact Mudstone - MMG I		overconsolidated	-	-	6.00	-
7	Bromsgrove Sandstone - Interbedded Mudstone & Sandstone	\	cohesionless	40.00	-	-	-
8	Existing Highway General Fill		cohesive	-	0.35	-	-
9	Class 2 Fill (Site Won MMG IV)		cohesive	-	0.35	-	-
10	Class 6F Capping/Subbase/Surfacing		cohesionless	35.00	-	-	-
11	Landscape Fill - Class 4		cohesive	-	0.40	-	-
12	Terrace Sands & Gravels		cohesionless	35.00	-	-	-
13	Class 7A Selected Cohesive Fill		cohesive	-	0.40	-	-
14	Class 7C Selected Cohesive Fill		cohesive	-	0.40	-	-
15	Pre-existing Made Ground		cohesive	-	0.35	-	-
16	Culvert		cohesionless	41.50	-	-	-
17	Granular Backfill to Culvert		cohesionless	41.50	-	-	-

No.	Name	Pattern	Type calculation	χπ _{ef} [°]	ς [–]	OCR [-]	K _r [–]
18	Class 6N Selected Backfill to Structures		cohesionless	41.50	-	-	-
19	Redcued Level 78 - 77 m OD - MMG IVB		cohesive	-	0.40	-	-
20	Redcued Level 77 - 76 m OD - MMG IVB		cohesive	-	0.40	-	-
21	Redcued Level 76 - 75 m OD - MMG IVB		cohesive	-	0.40	-	-
22	Redcued Level 75 - 74 m OD - MMG IVA		cohesive	-	0.40	-	-
23	Redcued Level 74 - 73 m OD - MMG IVA		cohesive	-	0.40	-	-
24	Redcued Level 73 - 72 m OD - MMG IVA		cohesive	-	0.40	-	-
25	Redcued Level 72 - 71 m OD - MMG IVA		cohesive	-	0.40	-	-
26	Redcued Level 71 - 70 m OD - MMG III		overconsolidated	-	-	2.00	-
27	Redcued Level 70 - 69 m OD - MMG III		overconsolidated	-	-	2.00	-
28	Redcued Level 69 - 68 m OD - MMG III		overconsolidated	-	-	2.00	-
29	Redcued Level 68 - 67 m OD - MMG III		overconsolidated	-	-	2.00	-
30	Redcued Level 67 - 66 m OD - MMG III		overconsolidated	-	-	2.00	-
31	Redcued Level 66 - 65 m OD - MMG III		overconsolidated	-	-	2.00	-
32	Redcued Level 65 - 64 m OD - MMG II		overconsolidated	-	-	2.00	-
33	Redcued Level 64 - 63 m OD - MMG II		overconsolidated	-	-	2.00	-
34	Redcued Level 63 - 62 m OD - MMG II		overconsolidated	-	-	2.00	-
35	Redcued Level 62 - 61 m OD - MMG II		overconsolidated	-	-	2.00	-
36	Redcued Level 61 - 60 m OD - MMG II		overconsolidated	-	-	2.00	-
37	Redcued Level 60 - 59 m OD - MMG I		overconsolidated	-	-	2.00	-

Soil parameters

Topsoil/Subsoil

Unit weight: $\psi = 16.50 \text{ kN/m}^3$

Stress-state: total

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE

Ian Gardner M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Cohesion of soil: 35.00 kPa $c_u =$ Adhesion struc.-soil: a = 28.00 kPa Soil: cohesionless

Firm to stiff red brown silty CLAY - MMG IVB

Unit weight: $w = 19.50 \text{ kN/m}^3$

effective Stress-state: Angle of internal friction: $\chi \pi_{ef} =$ 25.00° Cohesion of soil: 2.00 kPa $c_{ef} =$ Angle of friction struc.-soil: 7.50° Soil: cohesive

Poisson's ratio: 0.40 ψ_{sat} = Saturated unit weight: 20.50 kN/m³

Stiff red brown silty CLAY - MMG IVA

Unit weight: 20.50 kN/m3

Stress-state: effective Angle of internal friction: 32.00° $\chi \pi_{ef} =$ Cohesion of soil: 4.00 kPa $c_{ef} =$ Angle of friction struc.-soil: = 10.00° 0 Soil: cohesive Poisson's ratio: = 0.40 Saturated unit weight: ψ_{sat} = 21.00 kN/m3

Weathered Mudstone - MMG III

= 22.00 kN/m3 Unit weight:

Stress-state: effective

32.00° Angle of internal friction: $\chi \pi_{ef}$ = Cohesion of soil: 10.00 kPa = Cef Angle of friction struc.-soil: = 10.00° 0 Soil: overconsolidated Overconsolidation ratio: OCR = 2.00

Saturated unit weight: Ψsat = 22.00 kN/m3

Weathered Mudstone - MMG II

Unit weight: 22.50 kN/m3

Stress-state: effective

Angle of internal friction: 42.00° = $\chi \pi_{ef}$ Cohesion of soil: = 16.00 kPa Cef Angle of friction struc.-soil: 14.00° Soil: overconsolidated Overconsolidation ratio: OCR = 3.00 Saturated unit weight: ψ_{sat} = 22.50 kN/m3

Intact Mudstone - MMG I

Unit weight: = 23.00 kN/m3

Stress-state: effective

Angle of internal friction: 42.00° = $\chi \pi_{ef}$ 25.00 kPa Cohesion of soil: = Cef Angle of friction struc.-soil: = 14.00° Soil: overconsolidated Overconsolidation ratio: OCR = 6.00 Saturated unit weight: 23.00 kN/m3 Ψsat

Bromsgrove Sandstone - Interbedded Mudstone & Sandstone

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi \pi_{\text{ef}} = 40.00 \, ^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 8.00 \, \text{kPa} \end{array}$

Angle of friction struc.-soil : $0 = 12.00^{\circ}$ Soil : cohesionless

Saturated unit weight : $\psi_{\text{sat}} = 23.00 \text{ kN/m}^3$

Existing Highway General Fill

Ian Gardner

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi \pi_{\text{ef}} = 25.00 \, ^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 2.00 \, \text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 10.00 \, ^{\circ} \\ \text{Soil}: & \text{cohesive} \end{array}$

Poisson's ratio : $\varsigma = 0.35$ Saturated unit weight : $\psi_{\text{sat}} = 20.50 \text{ kN/m}^3$

Class 2 Fill (Site Won MMG IV)

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

Saturated unit weight : $\psi_{\text{sat}} = 20.50 \text{ kN/m}^3$

Class 6F Capping/Subbase/Surfacing

Unit weight: $\psi = 21.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 35.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 15.00\,^{\circ} \\ \text{Soil}: & \text{cohesionless} \end{array}$

Saturated unit weight : $\psi_{\text{sat}} = 21.50 \text{ kN/m}^3$

Landscape Fill - Class 4

Unit weight: $\psi = 20.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 50.00 \text{ kPa}$ Adhesion struc.-soil : a = 20.00 kPa

Soil : cohesive Poisson's ratio : $\varsigma = 0.40$

Terrace Sands & Gravels

Unit weight : $\psi = 22.00 \text{ kN/m}^3$ Stress-state : effective

Angle of internal friction : $\chi \pi_{ef} = 35.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 0.00 \, \text{kPa}$

Angle of friction struc.-soil : $0 = 15.00^{\circ}$ Soil : cohesionless

Saturated unit weight : $\psi_{\text{sat}} = 22.50 \text{ kN/m}^3$

Class 7A Selected Cohesive Fill

Ian Gardner

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state : effective

 $\begin{array}{lll} \mbox{Angle of internal friction:} & \chi \pi_{\mbox{\scriptsize ef}} = & 25.00 \ ^{\circ} \\ \mbox{Cohesion of soil:} & \mbox{$c_{\mbox{\scriptsize ef}}$} = & 2.00 \ \mbox{\scriptsize kPa} \\ \mbox{Angle of friction struc.-soil:} & 0 = & 12.00 \ ^{\circ} \end{array}$

Soil : cohesive Poisson's ratio : cohesive = 0.40

Poisson's ratio : $\varsigma = 0.40$ Saturated unit weight : $\psi_{\text{sat}} = 21.00 \text{ kN/m}^3$

Class 7C Selected Cohesive Fill

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\chi \pi_{ef} = 25.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 2.00 \,^{\circ}$ kPa Angle of friction struc.-soil : $c_{ef} = 12.00 \,^{\circ}$

Soil: cohesive Poisson's ratio: cohesive = 0.40

Saturated unit weight : $\psi_{\text{sat}} = 21.00 \text{ kN/m}^3$

Pre-existing Made Ground

Unit weight: $\psi = 19.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi \pi_{\text{ef}} = 25.00 \, ^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00 \, \text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 8.00 \, ^{\circ} \end{array}$

Soil : cohesive Poisson's ratio : cohesive = 0.35

Saturated unit weight : $\psi_{\text{sat}} = 19.50 \text{ kN/m}^3$

Culvert

Unit weight: $\psi = 2.40 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 41.50\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 25.00\,^{\circ} \\ \text{Soil}: & \text{cohesionless} \\ \end{array}$

Saturated unit weight : $\psi_{\text{sat}} = 2.40 \text{ kN/m}^3$

Granular Backfill to Culvert

Unit weight: $\psi = 18.00 \text{ kN/m}^3$

Stress-state : effective Angle of internal friction : $\chi \pi_{ef} = 41.50 \,^{\circ}$ Cohesion of soil : $c_{ef} = 0.00 \, \text{kPa}$

Angle of friction struc.-soil : $0 = 16.00^{\circ}$ Soil : cohesionless

Saturated unit weight : $\psi_{sat} = 18.00 \text{ kN/m}^3$

Class 6N Selected Backfill to Structures

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 41.50\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 16.60\,^{\circ} \\ \text{Soil}: & \text{cohesionless} \end{array}$

Ian Gardner

Saturated unit weight: 23.00 kN/m3 $\psi_{sat} =$

Redcued Level 78 - 77 m OD - MMG IVB

Unit weight: $w = 19.50 \text{ kN/m}^3$

effective Stress-state: Angle of internal friction: 25.00° $\chi \pi_{ef} =$ Cohesion of soil: $c_{ef} =$ 2.00 kPa Angle of friction struc.-soil: 8.30°

Soil: cohesive Poisson's ratio: 0.40 ς

Saturated unit weight: ψ_{sat} = 20.50 kN/m3

Redcued Level 77 - 76 m OD - MMG IVB

Unit weight: 19.50 kN/m3

effective Stress-state: Angle of internal friction: $\chi \pi_{ef} =$ 25.00° Cohesion of soil: 2.00 kPa c_{ef} = 8.30° Angle of friction struc.-soil: 0 = Soil: cohesive Poisson's ratio: = 0.40 Saturated unit weight: ψ_{sat} = 20.50 kN/m³

Redcued Level 76 - 75 m OD - MMG IVB

Unit weight: 19.50 kN/m3

Stress-state: effective Angle of internal friction: $\chi \pi_{ef} =$ 25.00° Cohesion of soil: 2.00 kPa c_{ef} = Angle of friction struc.-soil: 8.30° 0 Soil: cohesive Poisson's ratio: 0.40 Saturated unit weight: 20.50 kN/m3 Ψsat

Redcued Level 75 - 74 m OD - MMG IVA

Unit weight: $w = 20.50 \text{ kN/m}^3$

effective Stress-state:

32.00° Angle of internal friction: $\chi \pi_{ef} =$ Cohesion of soil: 4.00 kPa c_{ef} = Angle of friction struc.-soil: = 10.70° 0

Soil: cohesive Poisson's ratio: 0.40 =

Saturated unit weight: ψ_{sat} = 21.00 kN/m3

Redcued Level 74 - 73 m OD - MMG IVA

Unit weight: 20.50 kN/m3 =

Stress-state: effective 32.00° Angle of internal friction: $\chi \pi_{ef} =$ Cohesion of soil: 4.00 kPa c_{ef} = Angle of friction struc.-soil: 10.70° Soil: cohesive Poisson's ratio:

Saturated unit weight: 21.00 kN/m3 Ψsat

=

0.40

Redcued Level 73 - 72 m OD - MMG IVA

Unit weight: $\psi = 20.50 \, \text{kN/m}^3$

effective Stress-state:

Ian Gardner

Angle of internal friction : $\chi \pi_{ef} = 32.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 4.00 \, \text{kPa}$ Angle of friction struc.-soil : $0 = 10.70 \,^{\circ}$ Soil : $c_{ef} = 0.40 \,^{\circ}$

Saturated unit weight : $\psi_{\text{sat}} = 21.00 \text{ kN/m}^3$

Redcued Level 72 - 71 m OD - MMG IVA

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Saturated unit weight : $\psi_{\text{sat}} = 21.00 \text{ kN/m}^3$

Redcued Level 71 - 70 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction: 32.00° = $\chi \pi_{ef}$ Cohesion of soil: = 10.00 kPa Cef Angle of friction struc.-soil: = 10.70° Soil: overconsolidated Overconsolidation ratio: OCR = 2.00

Saturated unit weight : $\psi_{sat} = 22.00 \text{ kN/m}^3$

Redcued Level 70 - 69 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction: 32.00° = $\chi \pi_{ef}$ Cohesion of soil: = 10.00 kPa Cef = 10.70° Angle of friction struc.-soil: Soil: overconsolidated Overconsolidation ratio: OCR = 2.00

Saturated unit weight : $\psi_{sat} = 22.00 \text{ kN/m}^3$

Redcued Level 69 - 68 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: effective

Saturated unit weight : $\psi_{sat} = 22.00 \text{ kN/m}^3$

Redcued Level 68 - 67 m OD - MMG III

Unit weight : $\psi = 22.00 \text{ kN/m}^3$

Stress-state: effective

32.00° Angle of internal friction: $\chi \pi_{ef}$ Cohesion of soil: = 10.00 kPa C_{ef} = Angle of friction struc.-soil: 10.70° 0 overconsolidated Soil: Overconsolidation ratio: 2.00 OCR =

Saturated unit weight : $\psi_{sat} = 22.00 \text{ kN/m}^3$

Redcued Level 67 - 66 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction: 32.00° $\chi \pi_{ef}$ Cohesion of soil: = 10.00 kPa c_{ef} Angle of friction struc.-soil: = 10.70° 0 overconsolidated Soil: Overconsolidation ratio: OCR = 2.00

Saturated unit weight : $\psi_{sat} = 22.00 \text{ kN/m}^3$

Redcued Level 66 - 65 m OD - MMG III

Unit weight: $\psi = 22.00 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction: 32.00° = $\chi \pi_{ef}$ Cohesion of soil: = 10.00 kPa Cef Angle of friction struc.-soil: 10.70° 0 Soil: overconsolidated Overconsolidation ratio: OCR = 2.00 Saturated unit weight: 22.00 kN/m3 Ψsat

Redcued Level 65 - 64 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction: 42.00° $\chi \pi_{ef}$ = Cohesion of soil: 16.00 kPa = Cef Angle of friction struc.-soil: = 14.00° 0 Soil: overconsolidated Overconsolidation ratio: OCR = 2.00

Saturated unit weight : $\psi_{sat} = 22.50 \text{ kN/m}^3$

Redcued Level 64 - 63 m OD - MMG II

Unit weight : $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

Saturated unit weight : $\psi_{sat} = 22.50 \text{ kN/m}^3$

Redcued Level 63 - 62 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction: 42.00° $\chi \pi_{ef}$ = Cohesion of soil: = 16.00 kPa Cef 14.00° Angle of friction struc.-soil: = Soil: overconsolidated Overconsolidation ratio: OCR = 2.00 Saturated unit weight: 22.50 kN/m3 Ψsat

Redcued Level 62 - 61 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction: 42.00° $\chi \pi_{ef}$ Cohesion of soil: = 16.00 kPa Cef Angle of friction struc.-soil: = 14.00° 0 Soil: overconsolidated Overconsolidation ratio: OCR = 2.00 Saturated unit weight: 22.50 kN/m3 Ψsat

Redcued Level 61 - 60 m OD - MMG II

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

Stress-state: effective

42.00° Angle of internal friction: $\chi \pi_{ef}$ = Cohesion of soil: 16.00 kPa = Cef Angle of friction struc.-soil: = 14.00° 0 Soil: overconsolidated Overconsolidation ratio: OCR = 2.00 Saturated unit weight: 22.50 kN/m3 Ψsat

Redcued Level 60 - 59 m OD - MMG I

Unit weight: $\psi = 23.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 1097.00 \text{ kPa}$ Adhesion struc.-soil : a = 116.00 kPaSoil : overconsolidated Overconsolidation ratio : OCR = 2.00

Backfill

Soil on front face of the structure - Class 6N Selected Backfill to Structures Geological profile and assigned soils

No.	Layer [m]	Assigned soil	Pattern
1	1.00	Redcued Level 77 - 76 m OD - MMG IVB	
2	1.00	Redcued Level 76 - 75 m OD - MMG IVB	
3	1.00	Redcued Level 75 - 74 m OD - MMG IVA	
4	1.00	Redcued Level 74 - 73 m OD - MMG IVA	
5	1.00	Redcued Level 73 - 72 m OD - MMG IVA	
6	1.00	Redcued Level 72 - 71 m OD - MMG IVA	
7	0.50	Class 6N Selected Backfill to Structures	
8	0.50	Redcued Level 71 - 70 m OD - MMG III	
9	1.00	Redcued Level 70 - 69 m OD - MMG III	
10	1.00	Redcued Level 69 - 68 m OD - MMG III	

No.	Layer [m]	Assigned soil	Pattern
11	1.00	Redcued Level 68 - 67 m OD - MMG III	
12	1.00	Redcued Level 67 - 66 m OD - MMG III	
13	1.00	Redcued Level 66 - 65 m OD - MMG III	
14	1.00	Redcued Level 65 - 64 m OD - MMG II	
15	1.00	Redcued Level 64 - 63 m OD - MMG II	
16	1.00	Redcued Level 63 - 62 m OD - MMG II	
17	1.00	Redcued Level 62 - 61 m OD - MMG II	
18	1.00	Redcued Level 61 - 60 m OD - MMG II	
19	1.00	Redcued Level 60 - 59 m OD - MMG I	
20	-	Redcued Level 60 - 59 m OD - MMG I	

Foundation

Type of foundation: soil from geological profile

Terrain profile

Terrain behind the structure is flat.

Water influence

GWT behind the structure lies at a depth of 11.00 m

Uplift in foot. bottom due to different pressures is not considered.

Input surface surcharges

No.	Surcharge		Action	Mag.1	Mag.2	Ord.x	Length	Depth
140.	new	change	Action	[kN/m ²]	[kN/m²]	x [m]	l [m]	z [m]
1	Yes		permanent	20.00				on terrain
No.	Name Name							
1	TYPICAL HIGHWAY UDL							

Resistance on front face of the structure

Resistance on front face of the structure: at rest

Soil on front face of the structure - Class 6N Selected Backfill to Structures

Soil thickness in front of structure h = 1.00 m

Terrain in front of structure is flat.

Settings of the stage of construction

Design situation: permanent

The wall is free to move. Active earth pressure is therefore assumed.

No. 1 Forces acting on construction - combination 1

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[kN/m]	z [m]	[kN/m]	x [m]	overtur.	sliding	stress
Weight - wall	0.00	-2.00	230.00	1.50	1.000	1.000	1.350
FF resistance	-3.80	-0.33	0.00	0.00	1.000	1.000	1.000
Weight - earth wedge	0.00	-3.17	323.31	2.51	1.000	1.000	1.350
Active pressure	79.32	-2.05	133.31	4.29	1.000	1.000	1.350
Water pressure	0.00	-6.00	0.00	2.75	1.000	1.000	1.000
TYPICAL HIGHWAY UDL	23.89	-3.05	46.11	3.90	1.350	1.000	1.350
TYPICAL HIGHWAY UDL	0.00	-6.00	34.95	1.87	1.000	1.000	1.350

Verification of complete wall

Check for overturning stability

Resisting moment $M_{res} = 2036.42 \text{ kNm/m}$ Overturning moment $M_{ovr} = 260.00 \text{ kNm/m}$

Wall for overturning is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 497.83 \text{ kN/m}$ Active horizontal force $H_{act} = 99.41 \text{ kN/m}$

Wall for slip is SATISFACTORY

Overall check - WALL is SATISFACTORY

Maximum stress in footing bottom: 228.81 kPa

Forces acting on construction - combination 2

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[kN/m]	z [m]	[kN/m]	x [m]	overtur.	sliding	stress
Weight - wall	0.00	-2.00	230.00	1.50	1.000	1.000	1.000
FF resistance	-4.75	-0.33	0.00	0.00	1.000	1.000	1.000
Weight - earth wedge	0.00	-3.17	323.31	2.51	1.000	1.000	1.000
Active pressure	104.39	-2.05	134.79	4.29	1.000	1.000	1.000
Water pressure	0.00	-6.00	0.00	2.75	1.000	1.000	1.000
TYPICAL HIGHWAY UDL	31.40	-3.04	46.49	3.90	1.000	1.000	1.000
TYPICAL HIGHWAY UDL	0.00	-6.00	34.95	1.87	1.000	1.000	1.000

Verification of complete wall

Check for overturning stability

Resisting moment $M_{res} = 1981.93 \text{ kNm/m}$ Overturning moment $M_{ovr} = 308.08 \text{ kNm/m}$

Wall for overturning is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 398.61 \text{ kN/m}$ Active horizontal force $H_{act} = 131.03 \text{ kN/m}$

Wall for slip is SATISFACTORY

Overall check - WALL is SATISFACTORY

Maximum stress in footing bottom: 176.90 kPa

Bearing capacity of foundation soil

Design load acting at the center of footing bottom

No.	Moment [kNm/m]	Norm. force [kN/m]	Shear Force [kN/m]	Eccentricity [–]	Stress [kPa]
1	243.81	1036.38	135.53	0.047	228.81
2	183.16	783.83	99.41	0.047	172.93
3	250.02	769.54	131.03	0.065	176.90
4	250.02	769.54	131.03	0.065	176.90

Service load acting at the center of footing bottom

No.	Moment	Norm. force	Shear Force
NO. [kNm/m]	[kNm/m]	[kN/m]	[kN/m]
1	180.27	767.69	99.41

Spread footing verification

Input data

Settings

United Kingdom - EN 1997 Materials and standards

Concrete structures: EN 1992-1-1 (EC2)

Coefficients EN 1992-1-1: standard

Settlement

Analysis method : Analysis using oedometric modulus

Restriction of influence zone : by percentage of Sigma,Or

Coeff. of restriction of influence zone: 10.0 [%]

Spread Footing

Analysis for drained conditions: EC 7-1 (EN 1997-1:2003)

Analysis of uplift: Standard Allowable eccentricity: 0.333

Verification methodology: according to EN 1997

Design approach: 1 - reduction of actions and soil parameters

Bedign approach. I readcate of actions and con parameters									
Partial factors on actions (A)									
Permanent design situation									
		Co	mbination 1			Combination 2			
		Unfavourabl	e F	avourable	Unfavour	able Fa	ıvourable		
Permanent actions :	Permanent actions : $\psi_G = 1.35$ [-]			1.00 [–]	1.00 [-	-]	1.00 [–]		
Partial factors for soil parameters (M)									
		Perma	anent desig	ın situation					
				Combin	Combination 1		Combination 2		
Partial factor on internal	friction:		$\psi_{\phi} =$	1.00	[-]	1.25	[-]		
Partial factor on effective	Partial factor on effective cohesion :				[-]	1.25	[-]		
Partial factor on undrain	ψcu =	1.00	[-]	1.40	[-]				
Partial factor on unconfir	ned streng	th :	$\psi_V =$	1.00	[-]	1.40	[-]		

Basic soil parameters - (effective stress-state)

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	ψ [kN/m³]	Ψsu [kN/m³]	0 [°]
2	Firm to stiff red brown silty CLAY - MMG IVB		25.00	2.00	19.50	10.50	7.50
3	Stiff red brown silty CLAY - MMG IVA		32.00	4.00	20.50	11.00	10.00
4	Weathered Mudstone - MMG III		32.00	10.00	22.00	12.00	10.00
5	Weathered Mudstone - MMG II		42.00	16.00	22.50	12.50	14.00
6	Intact Mudstone - MMG I		42.00	25.00	23.00	13.00	14.00
7	Bromsgrove Sandstone - Interbedded Mudstone & Sandstone	\	40.00	8.00	22.50	13.00	12.00
8	Existing Highway General Fill		25.00	2.00	19.50	10.50	10.00
9	Class 2 Fill (Site Won MMG IV)		25.00	2.00	19.50	10.50	10.00
10	Class 6F Capping/Subbase/Surfacing		35.00	0.00	21.00	11.50	15.00
12	Terrace Sands & Gravels		35.00	0.00	22.00	12.50	15.00
13	Class 7A Selected Cohesive Fill		25.00	2.00	20.50	11.00	12.00
14	Class 7C Selected Cohesive Fill		25.00	2.00	20.50	11.00	12.00
15	Pre-existing Made Ground		25.00	0.00	19.00	9.50	8.00
16	Culvert		41.50	0.00	2.40	0.00	25.00
17	Granular Backfill to Culvert		41.50	0.00	18.00	8.00	16.00
18	Class 6N Selected Backfill to Structures		41.50	0.00	22.50	13.00	16.60
19	Redcued Level 78 - 77 m OD - MMG IVB		25.00	2.00	19.50	10.50	8.30
20	Redcued Level 77 - 76 m OD - MMG IVB		25.00	2.00	19.50	10.50	8.30
21	Redcued Level 76 - 75 m OD - MMG IVB		25.00	2.00	19.50	10.50	8.30
22	Redcued Level 75 - 74 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
23	Redcued Level 74 - 73 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	Ψ [kN/m³]	Ψsu [kN/m³]	0 [°]
24	Redcued Level 73 - 72 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
25	Redcued Level 72 - 71 m OD - MMG IVA		32.00	4.00	20.50	11.00	10.70
26	Redcued Level 71 - 70 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
27	Redcued Level 70 - 69 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
28	Redcued Level 69 - 68 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
29	Redcued Level 68 - 67 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
30	Redcued Level 67 - 66 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
31	Redcued Level 66 - 65 m OD - MMG III		32.00	10.00	22.00	12.00	10.70
32	Redcued Level 65 - 64 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
33	Redcued Level 64 - 63 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
34	Redcued Level 63 - 62 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
35	Redcued Level 62 - 61 m OD - MMG II		42.00	16.00	22.50	12.50	14.00
36	Redcued Level 61 - 60 m OD - MMG II		42.00	16.00	22.50	12.50	14.00

Basic soil parameters - (total stress-state)

No.	Name	Pattern	c _u [kPa]	a [kPa]	ψ [kN/m³]
1	Topsoil/Subsoil	<u>''''' ''''' '''''</u>	35.00	28.00	16.50
11	Landscape Fill - Class 4		50.00	20.00	20.00
37	Redcued Level 60 - 59 m OD - MMG I		1097.00	116.00	23.00

Soil parameters to compute pressure at rest

No.	Name	Pattern	Type calculation	χπ _{ef} [°]	ς [-]	OCR [-]	K _r [–]
1	Topsoil/Subsoil	<u>,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	cohesionless	0.00	-	-	-
2	Firm to stiff red brown silty CLAY - MMG IVB		cohesive	-	0.40	-	-

No.	Name	Pattern	Type calculation	χπ _{ef} [°]	ς [-]	OCR [-]	K _r [–]
3	Stiff red brown silty CLAY - MMG IVA		cohesive	-	0.40	-	-
4	Weathered Mudstone - MMG III		overconsolidated	-	-	2.00	-
5	Weathered Mudstone - MMG II		overconsolidated	-	-	3.00	-
6	Intact Mudstone - MMG I		overconsolidated	-	-	6.00	-
7	Bromsgrove Sandstone - Interbedded Mudstone & Sandstone	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	cohesionless	40.00	-	-	-
8	Existing Highway General Fill		cohesive	-	0.35	-	-
9	Class 2 Fill (Site Won MMG IV)		cohesive	-	0.35	-	-
10	Class 6F Capping/Subbase/Surfacing		cohesionless	35.00	-	-	-
11	Landscape Fill - Class 4		cohesive	-	0.40	-	-
12	Terrace Sands & Gravels		cohesionless	35.00	-	-	-
13	Class 7A Selected Cohesive Fill		cohesive	-	0.40	-	-
14	Class 7C Selected Cohesive Fill		cohesive	-	0.40	-	-
15	Pre-existing Made Ground		cohesive	-	0.35	-	-
16	Culvert		cohesionless	41.50	-	-	-
17	Granular Backfill to Culvert		cohesionless	41.50	-	-	-
18	Class 6N Selected Backfill to Structures	2000	cohesionless	41.50	-	-	-
19	Redcued Level 78 - 77 m OD - MMG IVB		cohesive	-	0.40	-	-
20	Redcued Level 77 - 76 m OD - MMG IVB		cohesive	-	0.40	-	-
21	Redcued Level 76 - 75 m OD - MMG IVB		cohesive	-	0.40	-	-
22	Redcued Level 75 - 74 m OD - MMG IVA		cohesive	-	0.40	-	-
23	Redcued Level 74 - 73 m OD - MMG IVA		cohesive	-	0.40	-	-
24	Redcued Level 73 - 72 m OD - MMG IVA		cohesive	-	0.40	-	-

No.	Name	Pattern	Type calculation	χπ _{ef} [°]	ς [–]	OCR [-]	K _r [–]
25	Redcued Level 72 - 71 m OD - MMG IVA		cohesive	-	0.40	-	-
26	Redcued Level 71 - 70 m OD - MMG III		overconsolidated	-	-	2.00	-
27	Redcued Level 70 - 69 m OD - MMG III		overconsolidated	-	-	2.00	-
28	Redcued Level 69 - 68 m OD - MMG III		overconsolidated	-	-	2.00	-
29	Redcued Level 68 - 67 m OD - MMG III		overconsolidated	-	-	2.00	-
30	Redcued Level 67 - 66 m OD - MMG III		overconsolidated	-	-	2.00	-
31	Redcued Level 66 - 65 m OD - MMG III		overconsolidated	-	-	2.00	-
32	Redcued Level 65 - 64 m OD - MMG II		overconsolidated	-	-	2.00	-
33	Redcued Level 64 - 63 m OD - MMG II		overconsolidated	-	-	2.00	-
34	Redcued Level 63 - 62 m OD - MMG II		overconsolidated	-	-	2.00	-
35	Redcued Level 62 - 61 m OD - MMG II		overconsolidated	-	-	2.00	-
36	Redcued Level 61 - 60 m OD - MMG II		overconsolidated	-	-	2.00	-
37	Redcued Level 60 - 59 m OD - MMG I		overconsolidated	-	-	2.00	_

Soil parameters

Topsoil/Subsoil

Firm to stiff red brown silty CLAY - MMG IVB

Stiff red brown silty CLAY - MMG IVA

Unit weight : $\psi = 20.50 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{ef} = 32.00 \text{ }^\circ$ Cohesion of soil : $c_{ef} = 4.00 \text{ kPa}$ Oedometric modulus : $E_{oed} = 68.00 \text{ MPa}$

Ian Gardner

Saturated unit weight : $\psi_{sat} = 21.00 \text{ kN/m}^3$

Weathered Mudstone - MMG III

Unit weight : $\psi = 22.00 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{ef} = 32.00 \text{ °}$ Cohesion of soil : $c_{ef} = 10.00 \text{ kPa}$ Oedometric modulus : $E_{oed} = 120.00 \text{ MPa}$ Saturated unit weight : $\psi_{sat} = 22.00 \text{ kN/m}^3$

Weathered Mudstone - MMG II

Intact Mudstone - MMG I

Bromsgrove Sandstone - Interbedded Mudstone & Sandstone

Unit weight : $\psi = 22.50 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{ef} = 40.00 \text{ °}$ Cohesion of soil : $c_{ef} = 8.00 \text{ kPa}$ Oedometric modulus : $E_{oed} = 250.00 \text{ MPa}$ Saturated unit weight : $\psi_{sat} = 23.00 \text{ kN/m}^3$

Existing Highway General Fill

Class 2 Fill (Site Won MMG IV)

Class 6F Capping/Subbase/Surfacing

Landscape Fill - Class 4

Unit weight: $\psi = 20.00 \text{ kN/m}^3$

Ian Gardner

Angle of internal friction : $\chi \pi_{ef} = 25.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 1.00 \, \text{kPa}$ Oedometric modulus : $E_{oed} = 8.50 \, \text{MPa}$ Saturated unit weight : $\psi_{sat} = 20.50 \, \text{kN/m}^3$

Terrace Sands & Gravels

Class 7A Selected Cohesive Fill

Class 7C Selected Cohesive Fill

Pre-existing Made Ground

Culvert

Granular Backfill to Culvert

Class 6N Selected Backfill to Structures

Redcued Level 78 - 77 m OD - MMG IVB

Unit weight: 19.50 kN/m3 Angle of internal friction: $\chi \pi_{ef}$ = 25.00° Cohesion of soil: c_{ef} = 2.00 kPa Deformation modulus: E_{def} = 10.00 MPa Poisson's ratio: 0.40 Ψsat = Saturated unit weight: 20.50 kN/m3

Redcued Level 77 - 76 m OD - MMG IVB

Unit weight: 19.50 kN/m³ Angle of internal friction: $\chi\pi_{ef}$ = 25.00° Cohesion of soil: c_{ef} = 2.00 kPa Deformation modulus: $E_{def} =$ 20.00 MPa Poisson's ratio: 0.40 ς Saturated unit weight: 20.50 kN/m3 Ψsat

Redcued Level 76 - 75 m OD - MMG IVB

Unit weight: 19.50 kN/m³ Angle of internal friction: 25.00° $\chi \pi_{ef} =$ Cohesion of soil: 2.00 kPa $c_{ef} =$ Deformation modulus: E_{def} = 30.00 MPa Poisson's ratio: 0.40 Saturated unit weight: ψ_{sat} = 20.50 kN/m3

Redcued Level 75 - 74 m OD - MMG IVA

Unit weight: 20.50 kN/m³ Angle of internal friction: $\chi \pi_{ef}$ = 32.00° Cohesion of soil: 4.00 kPa $c_{ef} =$ Deformation modulus: $E_{def} =$ 40.00 MPa Poisson's ratio: 0.40 Saturated unit weight: 21.00 kN/m3 Ψsat

Redcued Level 74 - 73 m OD - MMG IVA

20.50 kN/m³ Unit weight: $\chi \pi_{ef} =$ 32.00° Angle of internal friction: Cohesion of soil: c_{ef} = 4.00 kPa Deformation modulus: E_{def} = 50.00 MPa Poisson's ratio: 0.40 = Saturated unit weight: 21.00 kN/m3 Ψsat

Redcued Level 73 - 72 m OD - MMG IVA

Unit weight: 20.50 kN/m³ $\chi \pi_{ef}$ = Angle of internal friction: 32.00° Cohesion of soil: c_{ef} = 4.00 kPa Deformation modulus: $E_{def} =$ 60.00 MPa Poisson's ratio: 0.40 Saturated unit weight: 21.00 kN/m3 Ψsat

Redcued Level 72 - 71 m OD - MMG IVA

Unit weight : $\psi = 20.50 \text{ kN/m}^3$ Angle of internal friction : $\chi \pi_{ef} = 32.00 \text{ °}$ Cohesion of soil : $c_{ef} = 4.00 \text{ kPa}$

Ian Gardner

 $\begin{array}{lll} \mbox{Deformation modulus}: & \mbox{E}_{def} = & 70.00 \ \mbox{MPa} \\ \mbox{Poisson's ratio}: & \mbox{\varsigma} & = & 0.40 \\ \mbox{Saturated unit weight}: & \mbox{\psi}_{sat} = & 21.00 \ \mbox{kN/m}^{3} \end{array}$

Redcued Level 71 - 70 m OD - MMG III

Unit weight: 22.00 kN/m3 Angle of internal friction: $\chi \pi_{ef} =$ 32.00° Cohesion of soil: c_{ef} = 10.00 kPa Deformation modulus: $E_{def} =$ 80.00 MPa Poisson's ratio: 0.30 Saturated unit weight: ψ_{sat} 22.00 kN/m³

Redcued Level 70 - 69 m OD - MMG III

22.00 kN/m3 Unit weight: Angle of internal friction: $\chi \pi_{ef}$ = 32.00° Cohesion of soil: c_{ef} = 10.00 kPa Deformation modulus: $E_{def} =$ 90.00 MPa Poisson's ratio: 0.30 Saturated unit weight: 22.00 kN/m3 Ψsat

Redcued Level 69 - 68 m OD - MMG III

Unit weight: 22.00 kN/m3 Angle of internal friction: $\chi \pi_{ef} =$ 32.00° Cohesion of soil: $c_{ef} =$ 10.00 kPa Deformation modulus: 100.00 MPa E_{def} = Poisson's ratio: 0.30 Saturated unit weight: 22.00 kN/m3 Ψsat

Redcued Level 68 - 67 m OD - MMG III

Unit weight: 22.00 kN/m³ Ψ $\chi \pi_{ef}$ = Angle of internal friction: 32.00° Cohesion of soil: 10.00 kPa $c_{ef} =$ Deformation modulus: E_{def} = 110.00 MPa Poisson's ratio: 0.30 Ψsat = Saturated unit weight: 22.00 kN/m3

Redcued Level 67 - 66 m OD - MMG III

Unit weight: 22.00 kN/m³ Angle of internal friction: $\chi\pi_{ef}$ = 32.00° Cohesion of soil: c_{ef} = 10.00 kPa Deformation modulus: $E_{def} =$ 120.00 MPa Poisson's ratio: 0.30 Saturated unit weight: 22.00 kN/m³ Ψsat

Redcued Level 66 - 65 m OD - MMG III

Unit weight: 22.00 kN/m³ Angle of internal friction: $\chi \pi_{ef} =$ 32.00° Cohesion of soil: 10.00 kPa $c_{ef} =$ Deformation modulus: E_{def} = 130.00 MPa Poisson's ratio: 0.30 Saturated unit weight: ψ_{sat} = 22.00 kN/m3

Redcued Level 65 - 64 m OD - MMG II

lan Gardner

Unit weight: 22.50 kN/m3 Angle of internal friction: $\chi \pi_{ef}$ = 42.00° Cohesion of soil: c_{ef} = 16.00 kPa Deformation modulus: E_{def} = 151.50 MPa Poisson's ratio: 0.25 Ψsat = Saturated unit weight: 22.50 kN/m3

Redcued Level 64 - 63 m OD - MMG II

Unit weight: 22.50 kN/m3 Angle of internal friction: $\chi\pi_{ef}$ = 42.00° Cohesion of soil: c_{ef} = 16.00 kPa Deformation modulus: $E_{def} =$ 184.50 MPa Poisson's ratio: 0.25 Saturated unit weight: Ψsat 22.50 kN/m3

Redcued Level 63 - 62 m OD - MMG II

Unit weight: 22.50 kN/m3 Angle of internal friction: 42.00° $\chi \pi_{ef} =$ Cohesion of soil: 16.00 kPa $c_{ef} =$ Deformation modulus: E_{def} = 217.50 MPa Poisson's ratio: 0.25 Ψsat = 22.50 kN/m3 Saturated unit weight:

Redcued Level 62 - 61 m OD - MMG II

Saturated unit weight : $\psi_{sat} = 22.50 \text{ kN/m}^3$

Redcued Level 61 - 60 m OD - MMG II

Unit weight: 22.50 kN/m3 Angle of internal friction: $\chi \pi_{ef} =$ 42.00° Cohesion of soil: c_{ef} = 16.00 kPa Deformation modulus: E_{def} = 283.50 MPa Poisson's ratio: 0.25 = Saturated unit weight: $\psi_{sat} =$ 22.50 kN/m3

Redcued Level 60 - 59 m OD - MMG I

Unit weight: 23.00 kN/m3 Angle of internal friction: $\chi \pi_{ef} =$ 42.00° Cohesion of soil: 25.00 kPa $c_{ef} =$ Deformation modulus: 329.17 MPa E_{def} = Poisson's ratio: 0.25 Saturated unit weight: ψ_{sat} = 23.00 kN/m3

Foundation

Foundation type: strip footing

Depth from original ground surface $h_z = 6.00 \text{ m}$ Depth of footing bottom d = 1.00 mFoundation thickness t = 1.00 mIncl. of finished grade $s_1 = 0.00 \text{ °}$

Ian Gardner

Incl. of footing bottom $s_2 = 0.00$ ° Unit weight of soil above foundation = 20.50 kN/m³

Geometry of structure

Foundation type: strip footing

Overall strip footing length = 5.25 mStrip footing width (x) = 5.00 mColumn width in the direction of x = 0.10 mVolume of strip footing = $5.00 \text{ m}^3/\text{m}$

Inserted loading is considered per unit length of continuous footing span.

Material of structure

Unit weight ψ = 23.00 kN/m³

Analysis of concrete structures carried out according to the standard EN 1992-1-1 (EC2).

Concrete: C 20/25

Cylinder compressive strength $f_{ck} = 20.00 \text{ MPa}$ Tensile strength $f_{ctm} = 2.20 \text{ MPa}$ Elasticity modulus $E_{cm} = 30000.00 \text{ MPa}$

Longitudinal steel: B500

Yield strength $f_{VK} = 500.00 \text{ MPa}$

Transverse steel: B500

Yield strength $f_{VK} = 500.00 \text{ MPa}$

Geological profile and assigned soils

No.	Layer [m]	Assigned soil	Pattern
1	1.00	Redcued Level 77 - 76 m OD - MMG IVB	
2	1.00	Redcued Level 76 - 75 m OD - MMG IVB	
3	1.00	Redcued Level 75 - 74 m OD - MMG IVA	
4	1.00	Redcued Level 74 - 73 m OD - MMG IVA	
5	1.00	Redcued Level 73 - 72 m OD - MMG IVA	
6	1.00	Redcued Level 72 - 71 m OD - MMG IVA	
7	0.50	Class 6N Selected Backfill to Structures	
8	0.50	Redcued Level 71 - 70 m OD - MMG III	
9	1.00	Redcued Level 70 - 69 m OD - MMG III	
10	1.00	Redcued Level 69 - 68 m OD - MMG III	
11	1.00	Redcued Level 68 - 67 m OD - MMG III	

Ian Gardner

No.	Layer [m]	Assigned soil	Pattern
12	1.00	Redcued Level 67 - 66 m OD - MMG III	
13	1.00	Redcued Level 66 - 65 m OD - MMG III	
14	1.00	Redcued Level 65 - 64 m OD - MMG II	
15	1.00	Redcued Level 64 - 63 m OD - MMG II	
16	1.00	Redcued Level 63 - 62 m OD - MMG II	
17	1.00	Redcued Level 62 - 61 m OD - MMG II	
18	1.00	Redcued Level 61 - 60 m OD - MMG II	
19	1.00	Redcued Level 60 - 59 m OD - MMG I	
20	-	Redcued Level 60 - 59 m OD - MMG I	

Load

No.		Load	Name	Type	N	M _y	H _x
NO.	new	change	Name	Type	[kN/m]	[kNm/m]	[kN/m]
1	Yes		LC 1	Design	921.38	108.28	-135.53
2	Yes		LC 2	Design	668.83	83.75	-99.41
3	Yes		LC 3	Design	654.54	118.98	-131.03
4	Yes		LC 4	Design	654.54	118.98	-131.03
5	Yes		LC 5	Service	652.69	80.86	-99.41

Ground water table

The ground water table is at a depth of 11.00 m from the original terrain.

Global settings

Type of analysis: analysis for drained conditions

Settings of the stage of construction

Design situation : permanent

No. 1

Load case verification

Name	Self w. in favor	e _x [m]	e _y [m]	α [kPa]	R _d [kPa]	Utilization [%]	Is satisfied
LC 1	Yes	-0.24	0.00	228.81	3430.76	6.67	Yes
LC 1	No	-0.24	0.00	228.81	3430.76	6.67	Yes
LC 2	Yes	-0.23	0.00	172.93	3479.88	4.97	Yes
LC 2	No	-0.23	0.00	172.93	3479.88	4.97	Yes
LC 3	Yes	-0.32	0.00	176.90	3109.75	5.69	Yes
LC 3	No	-0.32	0.00	176.90	3109.75	5.69	Yes

lan Gardner

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Name	Self w. in favor	e _x [m]	e _y [m]	α [kPa]	R _d [kPa]	Utilization [%]	Is satisfied
LC 4	Yes	-0.32	0.00	176.90	3109.75	5.69	Yes
LC 4	No	-0.32	0.00	176.90	3109.75	5.69	Yes
LC 5	Yes	-0.23	0.00	169.46	1466.24	11.56	Yes
LC 5	No	-0.23	0.00	169.46	1466.24	11.56	Yes

Analysis carried out with automatic selection of the most unfavourable load cases.

Computed self weight of strip foundation G = 115.00 kN/mComputed weight of overburden Z = 0.00 kN/m

Vertical bearing capacity check

Shape of contact stress: rectangle Most severe load case No. 5. (LC 5)

Parameters of slip surface below foundation:

Depth of slip surface $z_{sp} = 9.51 \text{ m}$ Length of slip surface $l_{sp} = 31.29 \text{ m}$

Design bearing capacity of found.soil R_d = 1466.24 kPa Extreme contact stress α = 169.46 kPa

Bearing capacity in the vertical direction is SATISFACTORY

Verification of load eccentricity

Max. eccentricity in direction of base length $e_x = 0.065 < 0.333$ Max. eccentricity in direction of base width $e_y = 0.000 < 0.333$ Max. overall eccentricity $e_t = 0.065 < 0.333$

Eccentricity of load is SATISFACTORY

Horizontal bearing capacity check

Most severe load case No. 3. (LC 3)

Earth resistance: not considered

Horizontal bearing capacity $R_{dh} = 680.83 \text{ kN}$ Extreme horizontal force H = 131.03 kN

Bearing capacity in the horizontal direction is SATISFACTORY

Bearing capacity of foundation is SATISFACTORY

No. 1

Settlement and rotation of foundation - input data

Analysis carried out with automatic selection of the most unfavourable load cases. Analysis carried out with accounting for coefficient K_1 (influence of foundation depth). Stress at the footing bottom considered from the finished grade.

Computed self weight of strip foundation G = 115.00 kN/mComputed weight of overburden Z = 0.00 kN/m

Settlement of mid point of longitudinal edge = 1.8 mm Settlement of mid point of transverse edge 1 = 2.1 mm Settlement of mid point of transverse edge 2 = 1.5 mm

Ian Gardner

(1-max.compressed edge; 2-min.compressed edge)

Settlement and rotation of foundation - results

Foundation stiffness:

Computed weighted average modulus of deformation E_{def} = 148.49 MPa Foundation in the longitudinal direction is rigid (k=1.62) Foundation in the direction of width is rigid (k=202.03)

Verification of load eccentricity

Max. eccentricity in direction of base length $e_x = 0.047 < 0.333$ Max. eccentricity in direction of base width $e_y = 0.000 < 0.333$ Max. overall eccentricity $e_t = 0.047 < 0.333$

Eccentricity of load is SATISFACTORY

Overall settlement and rotation of foundation:

Foundation settlement = 2.0 mm Depth of influence zone = 5.85 m

Rotation in direction of width = 0.129 (tan*1000); (7.4E-03°)

ANNEX B.6 EMG-HYD-C4-M10B-CA-GE-

0664

Earth pressure on structure analysis

Input data

Project

Task : EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE
Part : M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Description : M1 OVERBRIDGE ABUTMENT ASSESSMENT

Customer : ROXHILL KEGWORTH LTD

Author : Ian Gardner
Date : 08/07/2017
Project ID : C14792

Project number: EMG-HYD-M10B-GD-CA-GE-0664-S4-P2

Settings

United Kingdom - EN 1997

Pressure analysis

Active earth pressure calculation : Coulomb
Passive earth pressure calculation : Caquot-Kerisel
Earthquake analysis : Mononobe-Okabe
Shape of earth wedge : Calculate as skew
Verification methodology : according to EN 1997

Design approach: 1 - reduction of actions and soil parameters

			•					
	Partial factors on actions (A)							
Permanent design situation								
		Combination 1			Combin	ation 2		
		Unfavourable	Favourable	Unfavou	rable	Favou	rable	
Permanent actions :	ψ _G =	1.35 [–]	1.00 [–]	1.00	[-]	1.00	[-]	
Variable actions :	ψQ =	1.50 [–]	0.00 [–]	1.30	[-]	0.00	[-]	
Water load :	ψw =	1.35 [–]		1.00	[-]			

Partial factors for soil parameters (M)							
Permanent design situation							
		Combination 1 Combinatio		ation 2			
Partial factor on internal friction :	$\psi_{\phi} =$	1.00	[-]	1.25	[-]		
Partial factor on effective cohesion :	ψ _c =	1.00	[-]	1.25	[-]		
Partial factor on undrained shear strength :	ψ _{cu} =	1.00	[-]	1.40	[-]		
Partial factor on Poisson's ratio :	ψν=	1.00	[-]	1.00	[-]		

Partial factors for variable actions							
Permanent design situation							
Factor for combination value :	ψ0 =	0.70	[-]				
Factor for frequent value :	Ψ1 =	0.50	[-]				
Factor for quasi-permanent value :	ψ2 =	0.30	[-]				

Geometry of structure

No.	Coordinate X [m]	Depth Z [m]
1	0.00	0.00
2	0.00	10.50
3	0.00	0.00

The origin [0,0] is located at the most upper point of the structure.

Basic soil parameters - (effective stress-state)

No.	Name	Pattern	χπ _{ef} [°]	c _{ef} [kPa]	Ψ [kN/m³]	Ψ _{su} [kN/m³]	0 [°]
2	Firm to stiff red brown silty CLAY - MMG IVB		25.00	2.00	19.50	10.50	7.50
3	Stiff red brown silty CLAY - MMG IVA		32.00	4.00	20.50	11.00	10.00
4	Weathered Mudstone - MMG III		32.00	10.00	22.00	12.00	10.00
5	Weathered Mudstone - MMG II		42.00	16.00	22.50	12.50	14.00
6	Intact Mudstone - MMG I		42.00	25.00	23.00	13.00	14.00
7	Bromsgrove Sandstone - Interbedded Mudstone & Sandstone	\	40.00	8.00	22.50	13.00	12.00
8	Existing Highway General Fill		25.00	2.00	19.50	10.50	10.00
9	Class 2 Fill (Site Won MMG IV)		25.00	2.00	19.50	10.50	10.00
10	Class 6F Capping/Subbase/Surfacing		35.00	0.00	21.00	11.50	15.00
12	Terrace Sands & Gravels		35.00	0.00	22.00	12.50	15.00
13	Class 7A Selected Cohesive Fill		25.00	2.00	20.50	11.00	12.00
14	Class 7C Selected Cohesive Fill		25.00	2.00	20.50	11.00	12.00
15	Pre-existing Made Ground		25.00	0.00	19.00	9.50	8.00
16	Culvert		41.50	0.00	2.40	0.00	25.00
17	Granular Backfill to Culvert		41.50	0.00	18.00	8.00	16.00
18	Class 6N Selected Backfill to Structures	2000	41.50	0.00	22.50	13.00	16.60

Basic soil parameters - (total stress-state)

No.	Name	Pattern	c _u [kPa]	a [kPa]	ψ [kN/m³]
1	Topsoil/Subsoil	<u> </u>	35.00	28.00	16.50
11	Landscape Fill - Class 4		50.00	20.00	20.00

Soil parameters to compute pressure at rest

No.	Name	Pattern	Type calculation	χπ _{ef} [°]	ς [–]	OCR [-]	K _r [–]
1	Topsoil/Subsoil	<u> </u>	cohesionless	0.00	-	-	-
2	Firm to stiff red brown silty CLAY - MMG IVB		cohesive	-	0.40	-	-
3	Stiff red brown silty CLAY - MMG IVA		cohesive	-	0.40	-	-
4	Weathered Mudstone - MMG III		overconsolidated	-	-	2.00	-
5	Weathered Mudstone - MMG II		overconsolidated	-	-	3.00	-
6	Intact Mudstone - MMG I		overconsolidated	-	-	6.00	-
7	Bromsgrove Sandstone - Interbedded Mudstone & Sandstone	\	cohesionless	40.00	-	-	-
8	Existing Highway General Fill		cohesive	-	0.35	-	-
9	Class 2 Fill (Site Won MMG IV)		cohesive	-	0.35	-	-
10	Class 6F Capping/Subbase/Surfacing		cohesionless	35.00	-	-	-
11	Landscape Fill - Class 4		cohesive	-	0.40	-	-
12	Terrace Sands & Gravels		cohesionless	35.00	-	-	-
13	Class 7A Selected Cohesive Fill		cohesive	-	0.40	_	-
14	Class 7C Selected Cohesive Fill		cohesive	-	0.40	-	_
15	Pre-existing Made Ground		cohesive	-	0.35	-	_
16	Culvert		cohesionless	41.50	-	-	-
17	Granular Backfill to Culvert		cohesionless	41.50	-	_	-
18	Class 6N Selected Backfill to Structures		cohesionless	41.50	-	-	-

Soil parameters

Topsoil/Subsoil

Unit weight: $\psi = 16.50 \text{ kN/m}^3$

Stress-state: total

Firm to stiff red brown silty CLAY - MMG IVB

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

Ian Gardner

 $\begin{array}{ll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00\,^{\circ} \end{array}$

Cohesion of soil : $c_{ef} = 2.00 \text{ kPa}$ Angle of friction struc.-soil : $0 = 7.50 ^{\circ}$

Soil: cohesive Poisson's ratio: cohesive = 0.40

Saturated unit weight : $\psi_{\text{sat}} = 20.50 \text{ kN/m}^3$

Stiff red brown silty CLAY - MMG IVA

Unit weight : $\psi = 20.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 32.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 4.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 10.00\,^{\circ} \\ \text{Soil}: & \text{cohesive} \\ \text{Poisson's ratio}: & c = 0.40 \\ \end{array}$

Saturated unit weight: $\psi_{sat} = 21.00 \text{ kN/m}^3$

Weathered Mudstone - MMG III

Unit weight : $\psi = 22.00 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction: 32.00° $\chi \pi_{ef}$ = Cohesion of soil: = 10.00 kPa Cef Angle of friction struc.-soil: = 10.00° Soil: overconsolidated Overconsolidation ratio: OCR = 2.00 Ψsat = Saturated unit weight: 22.00 kN/m3

Weathered Mudstone - MMG II

Unit weight: $w = 22.50 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\chi \pi_{ef} = 42.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 16.00 \, \text{kPa}$ Angle of friction struc.-soil : $0 = 14.00 \,^{\circ}$ Soil : overconsolidated Overconsolidation ratio : OCR = 3.00

Saturated unit weight : $\psi_{sat} = 22.50 \text{ kN/m}^3$

Intact Mudstone - MMG I

Unit weight: $\psi = 23.00 \text{ kN/m}^3$

Stress-state: effective

42.00° Angle of internal friction: = $\chi \pi_{ef}$ Cohesion of soil: = 25.00 kPa Cef 14.00° Angle of friction struc.-soil: = Soil: overconsolidated Overconsolidation ratio: OCR = 6.00

Saturated unit weight: $\psi_{sat} = 23.00 \text{ kN/m}^3$

Bromsgrove Sandstone - Interbedded Mudstone & Sandstone

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 40.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 8.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 12.00\,^{\circ} \end{array}$

lan Gardner

Soil: cohesionless

Saturated unit weight : $\psi_{sat} = 23.00 \text{ kN/m}^3$

Existing Highway General Fill

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00\,^{\circ} \\ \text{Cohesion of soil}: & \text{c}_{\text{ef}} = 2.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 10.00\,^{\circ} \\ \text{Soil}: & \text{cohesive} \end{array}$

Soil : cohesive Poisson's ratio : $\varsigma = 0.35$

Saturated unit weight : $\psi_{\text{sat}} = 20.50 \text{ kN/m}^3$

Class 2 Fill (Site Won MMG IV)

Unit weight: $\psi = 19.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 2.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 10.00\,^{\circ} \\ \text{Soil}: & \text{cohesive} \\ \text{Poisson's ratio}: & \varsigma = 0.35 \\ \end{array}$

Saturated unit weight : $\psi_{\text{sat}} = 20.50 \text{ kN/m}^3$

Class 6F Capping/Subbase/Surfacing

Unit weight: $\psi = 21.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 35.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 15.00\,^{\circ} \\ \text{Soil}: & \text{cohesionless} \end{array}$

Saturated unit weight : $\psi_{sat} = 21.50 \text{ kN/m}^3$

Landscape Fill - Class 4

Unit weight : $\psi = 20.00 \text{ kN/m}^3$

Stress-state: total

Cohesion of soil : $c_u = 50.00 \text{ kPa}$ Adhesion struc.-soil : a = 20.00 kPa

Soil : cohesive Poisson's ratio : $\zeta = 0.40$

Terrace Sands & Gravels

Unit weight : $\psi = 22.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 35.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 15.00\,^{\circ} \\ \text{Soil}: & \text{cohesionless} \end{array}$

Saturated unit weight : $\psi_{\text{sat}} = 22.50 \text{ kN/m}^3$

Class 7A Selected Cohesive Fill

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state : effective Angle of internal friction : $\chi \pi_{ef} = 25.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 2.00 \,^{\circ}$ Angle of friction struc.-soil : $c_{ef} = 2.00 \,^{\circ}$

EAST MIDLANDS GATEWAY - STRATEGIC RAIL FREIGHT INTERCHANGE

Ian Gardner M1 OVERBRIDGE, ELEMENT 11, WORKS COMPONENTS 5, HIGHWAY VII & VIII

Soil : cohesive Poisson's ratio : $\varsigma = 0.40$

Saturated unit weight : $\psi_{\text{sat}} = 21.00 \text{ kN/m}^3$

Class 7C Selected Cohesive Fill

Unit weight: $\psi = 20.50 \text{ kN/m}^3$

Stress-state: effective

 $\begin{array}{lll} \mbox{Angle of internal friction:} & \chi \pi_{\mbox{\scriptsize ef}} = & 25.00 \ ^{\circ} \\ \mbox{Cohesion of soil:} & \mbox{$c_{\mbox{\scriptsize ef}}$} = & 2.00 \ \mbox{\scriptsize kPa} \\ \mbox{Angle of friction struc.-soil:} & \mbox{0} = & 12.00 \ ^{\circ} \end{array}$

Soil : cohesive Poisson's ratio : cohesive = 0.40

Saturated unit weight : $\psi_{sat} = 21.00 \text{ kN/m}^3$

Pre-existing Made Ground

Unit weight \dot{z} = 19.00 kN/m³

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 25.00\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 8.00\,^{\circ} \end{array}$

Soil: cohesive Poisson's ratio: c = 0.35

Saturated unit weight : $v_{sat} = 19.50 \text{ kN/m}^3$

Culvert

Unit weight: $\psi = 2.40 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 41.50\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 25.00\,^{\circ} \\ \text{Soil}: & \text{cohesionless} \end{array}$

Saturated unit weight : $\psi_{sat} = 2.40 \text{ kN/m}^3$

Granular Backfill to Culvert

Unit weight: $\psi = 18.00 \text{ kN/m}^3$

Stress-state : effective Angle of internal friction : $\chi \pi_{ef} = 4$

 $\begin{array}{lll} \mbox{Angle of internal friction:} & \chi \pi_{ef} = 41.50 \, ^{\circ} \\ \mbox{Cohesion of soil:} & c_{ef} = 0.00 \ \mbox{kPa} \\ \mbox{Angle of friction struc.-soil:} & 0 = 16.00 \, ^{\circ} \\ \mbox{Soil:} & \mbox{cohesionless} \end{array}$

Saturated unit weight : $\psi_{sat} = 18.00 \text{ kN/m}^3$

Class 6N Selected Backfill to Structures

Unit weight: $\psi = 22.50 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state}: & \text{effective} \\ \text{Angle of internal friction}: & \chi\pi_{\text{ef}} = 41.50\,^{\circ} \\ \text{Cohesion of soil}: & c_{\text{ef}} = 0.00\,\text{kPa} \\ \text{Angle of friction struc.-soil}: & 0 = 16.60\,^{\circ} \\ \text{Soil}: & \text{cohesionless} \\ \text{Saturated unit weight}: & \psi_{\text{sat}} = 23.00\,\text{kN/m}^3 \end{array}$

Geological profile and assigned soils

No.	Layer [m]	Assigned soil	Pattern
1	6.50	Class 6N Selected Backfill to Structures	
2	4.00	Class 6N Selected Backfill to Structures	
3	2.00	Weathered Mudstone - MMG II	
4	1.50	Weathered Mudstone - MMG II	
5	4.00	Intact Mudstone - MMG I	
6	-	Bromsgrove Sandstone - Interbedded Mudstone & Sandstone	\

Terrain profile

Terrain behind the structure is flat.

Water influence

GWT behind the structure lies at a depth of 11.00 m

Input surface surcharges

No.	Surc	harge	Action	Mag.1	Mag.2	Ord.x	Length	Depth
NO.	new	change	Action	[kN/m ²]	[kN/m ²]	x [m]	l [m]	z [m]
1	Yes		permanent	20.00				on terrain
No.	. Name							
1	TYPICAL H	IGHWAY UDI	-					

Settings of the stage of construction

Design situation : permanent

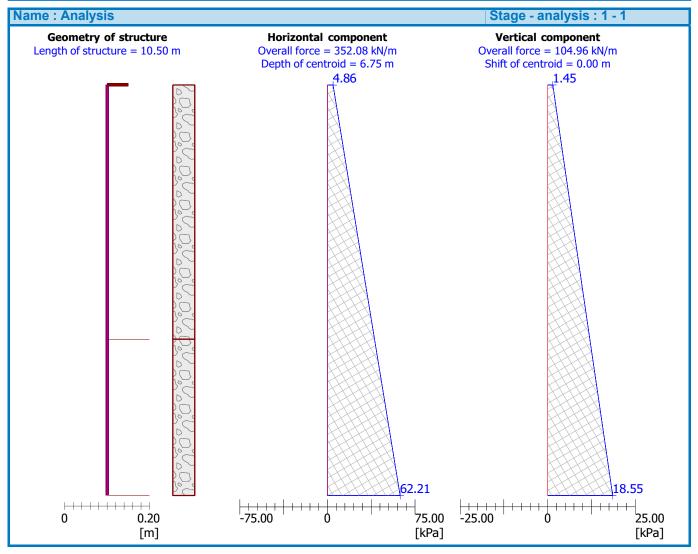
Analysis No. 1

Overall pressure acting on the structure

Point	Depth	Hor. comp.	Vert. comp.
No.	[m]	[kPa]	[kPa]
1	0.00	4.86	1.45
2	1.00	10.32	3.08
3	6.50	40.36	12.03
4	10.50	62.21	18.55

Resultant forces

Cohesion of soils has not been subtracted from pressures caused by a surcharge.


Total horizontal pressure acting on construction Application point of horiz. comp. lies in depth Total vertical pressure acting on construction Dist. of vertical comp. from top of constr.

= 352.08 kN/m = 6.75 m

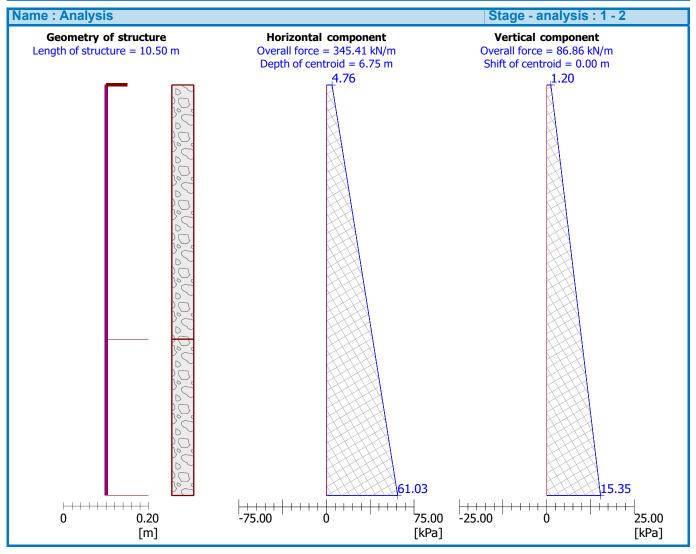
= 104.96 kN/m

= 0.00 m

Analysis carried out for combination 1.

Analysis No. 2

Overall pressure acting on the structure


Point No.	Depth [m]	Hor. comp. [kPa]	Vert. comp. [kPa]
1	0.00	4.76	1.20
2	1.00	10.12	2.55
3	6.50	39.59	9.96
4	10.50	61.03	15.35

Resultant forces

Cohesion of soils has not been subtracted from pressures caused by a surcharge.

Total horizontal pressure acting on construction = 345.41 kN/m
Application point of horiz. comp. lies in depth = 6.75 m
Total vertical pressure acting on construction = 86.86 kN/m
Dist. of vertical comp. from top of constr. = 0.00 m

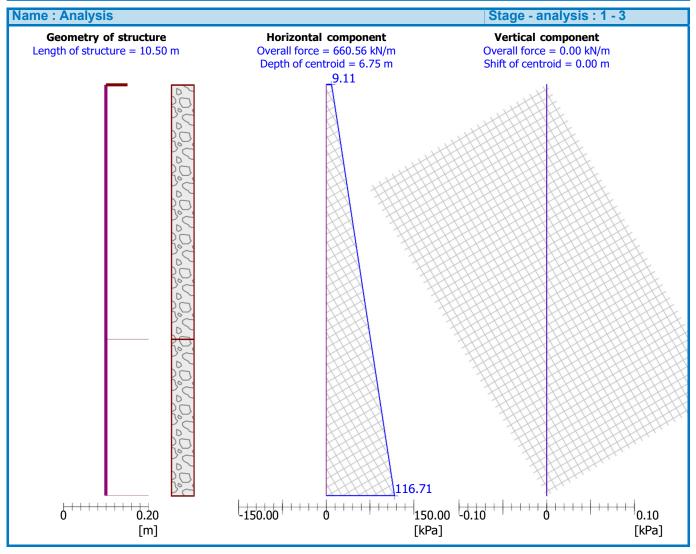
Analysis carried out for combination 2.

Overall pressure acting on the structure

Point No.	Depth [m]	Hor. comp. [kPa]	Vert. comp. [kPa]
1	0.00	9.11	0.00
2	1.00	19.36	0.00
3	6.50	75.72	0.00
4	10.50	116.71	0.00

Resultant forces

Total horizontal pressure acting on construction Application point of horiz. comp. lies in depth Total vertical pressure acting on construction Dist. of vertical comp. from top of constr.


Analysis carried out for combination 1.

= 660.56 kN/m

= 6.75 m

= 0.00 kN/m

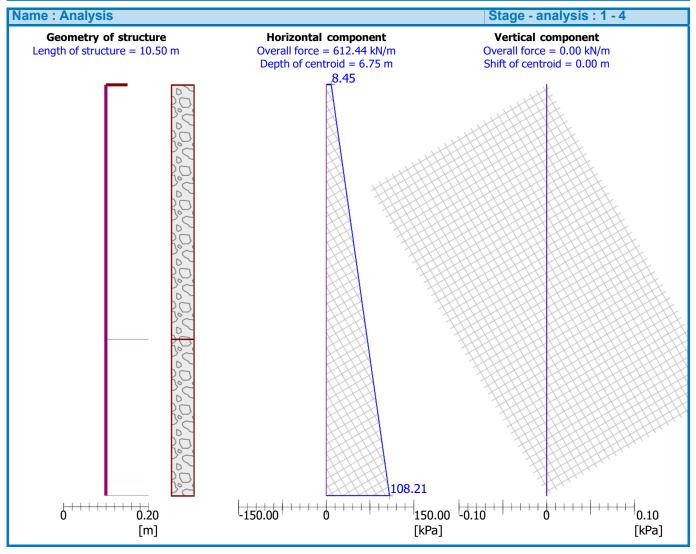
= 0.00 m

Overall pressure acting on the structure

Point No.	Depth [m]	Hor. comp. [kPa]	Vert. comp. [kPa]
1	0.00	8.45	0.00
2	1.00	17.95	0.00
3	6.50	70.20	0.00
4	10.50	108.21	0.00

Resultant forces

Total horizontal pressure acting on construction Application point of horiz. comp. lies in depth Total vertical pressure acting on construction Dist. of vertical comp. from top of constr.


= 612.44 kN/m

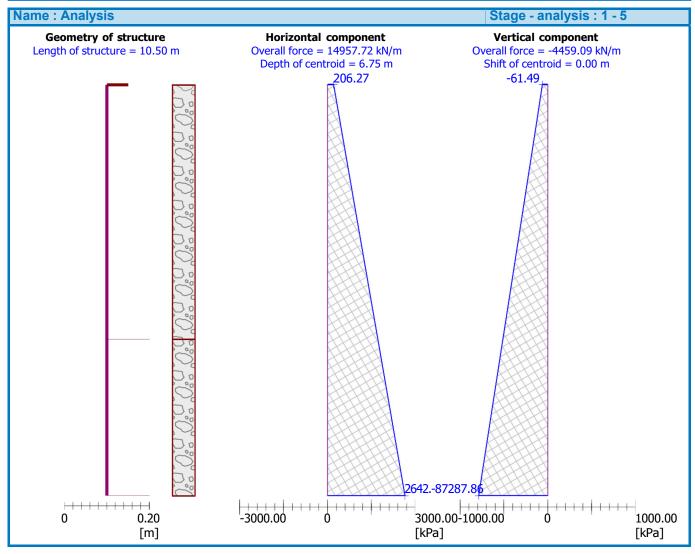
= 6.75 m

= 0.00 kN/m

= 0.00 m

Analysis carried out for combination 2.

Overall pressure acting on the structure


Point No.	Depth [m]	Hor. comp. [kPa]	Vert. comp. [kPa]
1	0.00	206.27	-61.49
2	1.00	438.32	-130.67
3	6.50	1714.61	-511.15
4	10.50	2642.82	-787.86

Resultant forces

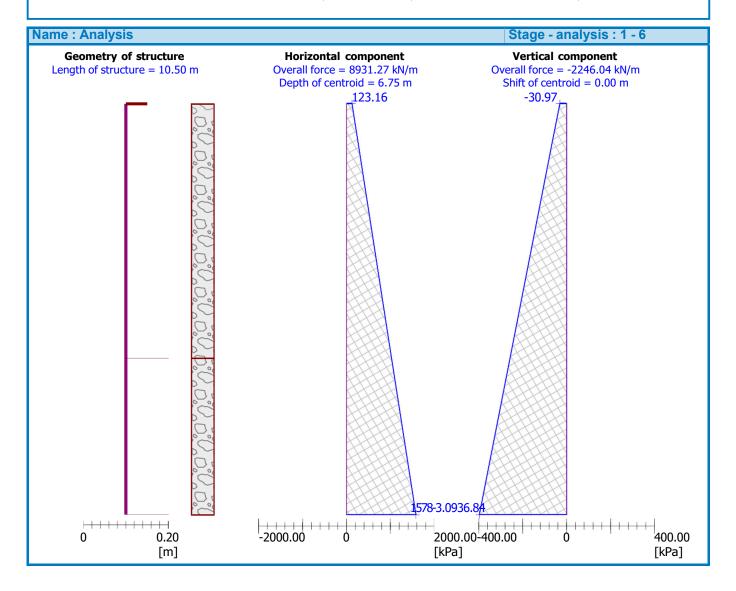
Total horizontal pressure acting on construction Application point of horiz. comp. lies in depth Total vertical pressure acting on construction Dist. of vertical comp. from top of constr.

Analysis carried out for combination 1.

= 14957.72 kN/m = 6.75 m = -4459.09 kN/m = 0.00 m

Overall pressure acting on the structure

Point No.	Depth [m]	Hor. comp. [kPa]	Vert. comp. [kPa]
1	0.00	123.16	-30.97
2	1.00	261.72	-65.82
3	6.50	1023.80	-257.46
4	10.50	1578.03	-396.84


Resultant forces

Total horizontal pressure acting on construction Application point of horiz. comp. lies in depth Total vertical pressure acting on construction Dist. of vertical comp. from top of constr.

= 8931.27 kN/m = 6.75 m = -2246.04 kN/m

0.00 m

Analysis carried out for combination 2.

ANNEX C

METHODS OF BEARING PRESSURE DISTRIBUTION AND SETTLEMENT ANALYSIS

Technical Description of Methodologies Used

The assessment of the settlement characteristics of the ground and the associated net increase in bearing pressure below a loaded area is discussed in detail within the following sections.

The ground is represented as a series of soil profiles, which have been determined using CPT soundings which will provide a continuous assessment of the cone resistance and sleeve friction. The use of the CPT equipment is able to provide a measurement of the corrected cone resistance q_t (Mpa), friction ratio R_f (%) and inclination ($^\circ$) at intervals depth of 0.01m.

The results of the CPT soundings have been used as both direct and indirect assessment of the soil stiffness profile, using measured data, industry accepted correlations and experience of similar materials.

The loading conditions used in this assessment are based on Hydrock's current understanding of the proposed development; however once final loading conditions are known the assessment of settlement and displacement should be reviewed and revised accordingly.

Vertical displacements have been calculated using a combination of equations, based upon Bousinesq theory and modified as discussed within the following sections, The Bousinesq method of determining the stress distribution is correct for a uniform isotropic, elastic material having a constant Poisson's ratio. Vertical strains are derived from this stress distribution using elastic constants appropriate to that strain level for each soil layer and then summed to give displacements. Where the Bousinesq equations have been modified (Janbu *et al*, Osterberg etc) then this is stated within the following relevant sections.

The Bousinesq method allows the assessment of non-linear soil properties and the accuracy of this has been increased by treating each 0.01m measurement of q_t and R_f as a separate, individual layer.

Settlement assessed using Coefficient of Volume Compressibility

To calculate the settlement caused by consolidation, the modulus of volume compressibility (m_v) can be used once it has been determined. The use of this method to assess consolidation settlements is covered by BS EN 1997-2: 2004 Annex F.4, and typically the value of m_v is determined from one dimensional (oedometer) laboratory testing or it can be estimated from correlations with other tests such as SPT 'N' values or CPT q_t values.

The general equation to calculate the oedometer settlement of a soil layer is given in many soil mechanics text books, including Tomlinson, and is shown below:

 $\rho_{eod} = m_v x \sigma_z x H$

Where:

 ρ_{eod} = Settlement due to consolidation

m_v = average coefficient of volume compressibility for the effective pressure increment

for the soil layer under assessment;

 σ_z = average effective vertical stress imposed on the soil layer under assessment; and

H = thickness of soil layer under consideration.

The results for various layers can be summed together in order to provide a comprehensive assessment of the total predicted settlement for a soil profile, however it is noted that the addition of settlements in the undrained and consolidation state can often lead to an overestimate of the total settlement. Therefore it has become common practice to use empirical corrections applied to the results to provide a more realistic estimate of settlement for the type of soil under assessment and to account for their 3 dimensional consolidation properties (typically referenced as μ and μ_g correction factors). This gives the following additional equation for the assessment of total settlement:

 ρ_c = $\mu_g x \rho_{eod}$

Where:

a geological factor coefficient, which will depend on the type of clay and for which there are industry accepted values recorded in soil mechanics text books.

The assessment of consolidation settlement using this method does not provide a direct value for immediate or consolidation settlement for normally or over consolidated soils. However there are a number of references which can be used to assess the proportion of immediate, consolidation and total settlement as indicated below:

For stiff over consolidated clays;

 $Immediate \qquad \quad \rho_i \qquad \qquad = 0.5 \ to \ 0.6 \ \rho_{eod}$

Consolidation ρ_c =0.5 to 0.4 ρ_{eod}

Total ρ_{eod} =1 x ρ_{eod}

For soft, normally consolidated clays;

Immediate	$ ho_i$	=0.1 ρ_{eod}
Consolidation	$ ho_c$	=1.0 ρ_{eod}
Total	ρ_{eod}	=1.1 x ρ _{eoo}

Therefore for the purposes of this assessment the reported total predicted settlement is based upon the calculated values of either ρ_{eod} for stiff consolidated soils, or 1.1 x ρ_{eod} where the soils have been deemed to be soft, normally consolidated.

The options for the estimation and calculation of the average vertical stress for a particular soil layer under assessment are discussed in more detail within the following sections.

Assessment of Secondary Consolidation

Where ground improvement using surcharge is to be undertaken, then as part of the overall prediction of settlement it is necessary to undertake an assessment on the secondary settlement of the ground. In general, it is the aspiration of ground improvement using surcharge to instigate all the primary settlement and sufficient secondary settlement of the ground, so that the long-term settlement performance will be within acceptable levels. Without a clear understanding of the secondary settlement characteristics, it will be difficult to decide when sufficient settlement has occurred during the ground improvement phase to permit the removal of the surcharge load.

Secondary consolidation is the compression of soil that takes place after the primary consolidation phase. The shape of the secondary settlement curve differs from the primary consolidation in that it forms a slope which can be expressed as a logarithmic function, whereas the primary consolidation generally forms a polynomial curve. Even after the reduction of hydrostatic pressure some compression of soil takes place at slow rate and this is known as secondary consolidation.

Secondary consolidation is caused by creep, viscous behaviour of the clay-water system, compression of organic matter, and other processes. In sand, settlement caused by secondary compression is negligible, but in peat, it is very significant. The equations and methodology used in the assessment of the secondary consolidation of peat are detailed in the following sections, however for cohesive soils the following equation has been used in this assessment.

Secondary consolidation is given by either of the following formulas:

```
\rho_s = [c_{\alpha}/(1+e_0)] \times H_0 \log(t_2/t_1)
```

or

$$\rho_s = c_{\alpha \epsilon} / x H_0 \log (t_2 / t_1)$$

Where:

 ρ_s = Total settlement

H₀ = Thickness of compressible layer under consideration

e₀ = the void ratio at the end of the primary consolidation

 c_{α} = is the secondary compression index (where not determined from laboratory analysis an assessment is made on the basis that $c_{\alpha} \simeq 0.04$ x c_{c} unless otherwise stated)

 $c_{\alpha\epsilon}$ = modified secondary compression index or re-compression index (after Mesri 1973)

t₁ = time at end of the primary consolidation / ground improvement period

time at end of design period for structure under consideration.

For the purposes of secondary settlement calculations, secondary settlement is assumed to start when primary settlement is substantially complete. Thus, if primary settlements were substantially complete in 12 years, the value t_1 would be 12. The value of t_2 depends upon the lifespan of the structure under consideration.

Values of c_{α} are obtained from the e vs. log ρ or Δh vs. log ρ plots. C_{α} is usually assumed to be related to C_c with values of c_{α} / C_c typically in the range of 0.025 to 0.006 for inorganic soils and 0.035 to 0.085 for organic soils. Some typical values are presented in Table C.1 and Figure C.1.

Table C.1: Typical Values of Compressibility Index and Secondary Compression (Carter et al)

Soil Type	Compressibility Index Typical C _c	Compressibility to Secondary	Secondary Compression
	,, ,	Typical C _α / C _c	Expected C _α
Normally consolidated medium sensitivity clays	0.20 to 0.50	0.025 to 0.055	0.005 to 0.025
Silty clay (CL)	0.15 to 0.30	0.030 to 0.060	0.004 to 0.018
Boston blue clay (CL)	0.30 to 0.50	0.030 to 0.060	0.009 to 0.030
Clay of high plasticity (CH)	0.50 to 0.60	0.050 to 0.070	0.025 to 0.042
Medium sensitivity clay (CL to CH)	1.0 to 3.0	0.050 to 0.070	0.050 to 0.210
Organic clays	Greater than 4	0.040 to 0.075	0.160 to 0.750
Peats	10 to 15	0.035 to 0.085	0.350 to 1.275
Organic silts	1.5 to 4.0	0.035 to 0.060	0.052 to 0.240
Alluvial silts and clays	0.40 to 1.2	0.040 to 0.060	0.016 to 0.072

As can be seen from Table C.1, there is a significant variation in the expected values of secondary compression and as such wherever possible the laboratory analysis will be used to determine an appropriate value.

Figure C.1 presents the correlation between the modified secondary compression index ($C_{\alpha\epsilon}$) and the natural moisture content developed by Mesri.

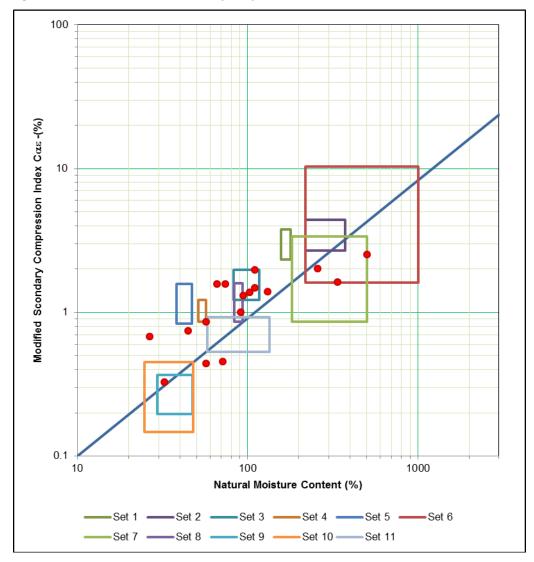


Figure C.1: Correlation between Secondary Compression and Moisture Content

The relationship suggested by Mesri can be simplified to:

 $C_{\alpha \epsilon} = 0.0111 \text{ x (NMC}^{0.9572})$

Where:

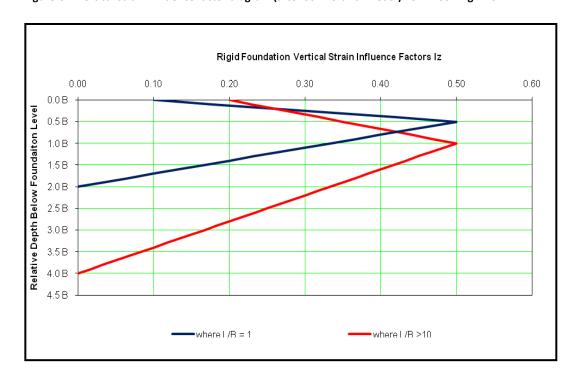
 $C_{\alpha\epsilon}$ = Modified secondary compression index

NMC = Natural Moisture Content

Settlement assessed using Static Cone Penetrometer Test (CPT)

For the assessment of the settlement of the cohesionless soil, Schmertmann *et al* have provided the following equation, using the results from static CPT results:

$$\rho = C_1 \times C_2 \times \Delta_p \times \sum_{0}^{2} (I_z/E_s) \times \Delta_z$$


Where:

ρ	=	Total settlement				
C_1	=	Depth correction factor	=	$1-0.5~(\sigma'_{vo}/\Delta_p)$		
C_2	=	Creep factor	=	1 + 0.2 log ₁₀ (tim	e _{years} /0.1)	
Δ_{p}	=	net increase of load on soil at fo	undation le	vel		
В	=	Width of loaded area				
lz	=	vertical strain influence factor	=	interpreted from Figure F.		
		and peak I_z	=	$0.5 + 0.1 (\Delta_p / \sigma')$	_{/0})	
E_s	=	Deformation modulus	=	where L/B =1 $E_s = 2.5$		
				where L/B > 10	$E_s = 3.5 q_c$	
Δ_{z}	=	thickness of soil layer				
$\sigma_{\text{'vo}}$	=	effective overburden pressure a	t foundatio	n level		

The values for assessing the deformation modulus for granular soils that are based upon the results of CPT investigations are in accordance with current national practice, however there are a number of different correlations relating E to q_c . Of particular note is the 2007 paper, entitled 'Settlements of shallow foundations on granular soil, an overview', by Braja M.das and Nagaratnam Sivakugan and published in the International Journal of Geotechnical Engineering. Reference has been made to these alternative methodologies and a sensitivity assessment completed within the spread sheet assessment of the CPT data.

However it should be noted that this method was developed for cohesionless soils and as such this method is not used where the soil type is considered to be cohesive.

Settlement analysis using Compression Index

A similar process to assessing the consolidation settlement using the coefficient of volume compressibility value m_v is to use the compression index C_c , which can also be obtained from oedometer testing. The general equation to determine the consolidation settlement using the compression index is shown below:

 ρ_{eod} = [H/(1+e₁)] x C_c Log10 [($\sigma_{vo} + \sigma_{z}$)/ σ_{vo}]

and

 ρ_c = $\mu_g x \rho_{eod}$

Where:

C_c = Compression index as determined from oedometer testing

 e_1 = initial voids ratio

A similar process for assessing the combination of immediate and primary settlement to that used when considering consolidation settlement using mv has also been completed where the compression index method of calculation was employed.

Settlement analysis using Adjusted Elasticity Method

The total settlement of a foundation on cohesive or non-cohesive soil may be evaluated using the adjusted elasticity method as defined in BS EN 1997-1: Annex F.2 with the general equation shown below:

 $s = pxbx(f/E_m)$

Where:

s = total settlement

 E_m = the design value of the modulus of elasticity

p = bearing pressure linearly distributed on the base of the foundation

b = width of the foundation

f = factor which depends upon:

the shape and dimensions of the foundation area;

the variation of stiffness with depth;

the thickness of the compressible formation;

the Poisson's ratio; and

the point for which the settlement is calculated

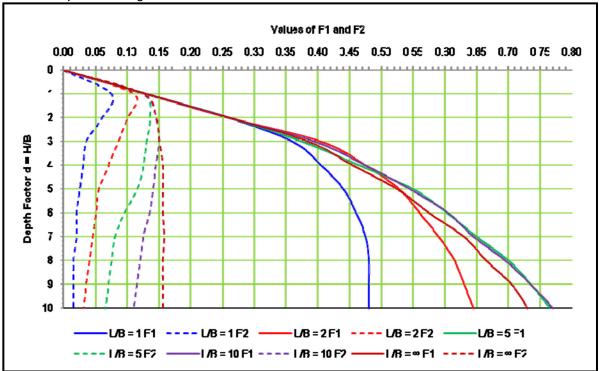
As this is a relatively non-specific and general equation, with a significant number of variables encapsulated in the factor f, the above equation can be expanded as shown below:

 $\rho = q_n \times B \times ((1-\upsilon^2)/E'_d) \times I_p$

Where:

 ρ = the total settlement (immediate and consolidation)

 q_n = net foundation pressure


B = width of foundation

υ = Poisson's ratio

E'_d = deformation modulus for the soil in a drained condition

Ip = Influence factor, which is a function of the length to breadth ratio, the layer thickness and the Poisson's ratio which can be obtained from curves developed by Steinbrenner, reproduced as Figure C.3.

Figure C.3 Calculation of settlements due to flexible loaded area on the surface of an elastic layer (after Steinbrenner) Tomlinson Fig 2.35.

Note. When using this diagram to calculate at the centre of a rectangular area, take B as half foundation width to obtain H/B and L/B

When using Figure C.3, the assessment of the influence factor I_p is determined by using the following general equation:

For Poisson's ratio of 0.5: $I_p = F_1$; and

For Poisson's ratio of zero: $I_p=F_1+F_2$.

Where the Poisson's ratio is between zero and 0.5, I_p is determined from interpreted values from Figure B.2.

In order to assess the drained modulus, and in the absence of drained triaxial tests, E'_d can be taken as the reciprocal of m_v , and in accordance with guidance provided by Tomlinson (and others) this allows for another method of assessment and interpretation of geotechnical test data. This approach

is supported by BS EN 1997-1: 2004 Annex F.2 note 3, where the designed drained modulus E_m may be estimated from the results of laboratory or in-situ tests

As noted in BS EN 1997-1 Annex F, this method should only be used if the stresses in the ground are such that no significant yielding occurs and the stress strain behaviour of the ground may be considered linear. In consideration of this, where the adjusted elasticity method has been used to assess the settlement of the ground, it has been completed on multiple thin layers as recorded by the CPT equipment so as to limit the effect of variations in stress strain behaviour between different soil layers.

Assessment of Primary and Secondary Settlement of Organic Soils

The accurate assessment of the settlement of these complex deposits is vital in the overall assessment of the ground conditions and will influence the geotechnical options for the redevelopment of a site.

Peat and other similar organic alluvial deposits are subject to settlement when loaded with additional weight or when groundwater levels are lowered. However, unlike other non-organic soils, the level of secondary settlement can be both significant and occur over a long period of time. For this reason it is important to assess both the primary and secondary settlements using separate equations.

As for other calculation methods, there are a number of different equations which can be used, however for the purposes of this assessment, the following methodologies have been adopted.

The general equation to calculate the primary settlement of Peat and organic alluvium is given by the following equation:

s_t = Expected Total Settlement

 $s_t = s_i + s_c + s_s$

Where:

s_i = immediate settlement

s_c = primary consolidation

s_s = secondary compression.

The level of immediate settlement is only of concern with these types of soils during the initial loading of them as they will respond quickly to any change ion load, typically during the physical application. Therefore estimates of the level of immediate settlement are both differ cult to estimate and in the case of earthworks land raising difficult to quantify without having a datum placed below the earthworks fill level.

For estimation and assessment of the primary consolidation settlement, the following equation has been used:

 $s_c = \{C_r x [H/(1+e_0)] x Log (P'_p/P'_o)\} + \{C_c x [H/(1+e_0)] x Log (P'_f/P'_p)\}$

Where:

C_r = recompression index

C_c = compression index

H = thickness of layer (peat or organic soil)

e₀ = initial voids ratio

P_o = initial effective stress on layer

 P'_p = maximum past pressure on the layer

 P'_f = final effective stress on the layer

The secondary compression of these soils is a continuation of the volume change that starts during the primary consolidation, but occurs at a much slower rate. In this respect, the characteristics of this type of settlement for this ground do differ from the secondary and creep settlement of other non-organic soils, although they are still termed as secondary compression.

The general equation which has been used for the assessment for this site is as follows:

 $s_s = C_{\alpha} x [H/(1+e_p)] x [\Delta Log (t)]$

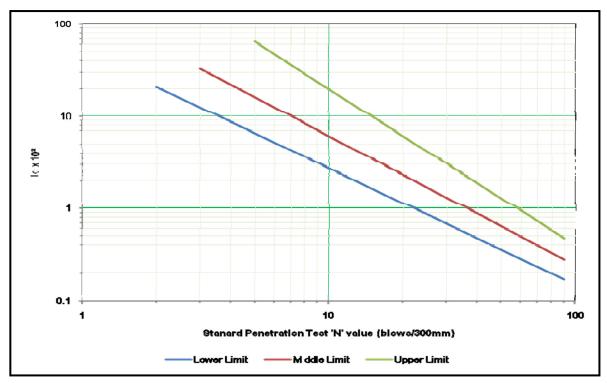
Where:

 C_{α} = secondary compression index

e_p = void ratio at end of primary consolidation

t = time period being considered for design

In addition to the assessment of settlement for these soils, there are also a number of other characteristics which would need to be accounted for in the development of the overall ground improvement and foundation strategy. Of particular note for this project are the problems with the construction of roads over peat, and in consideration of this detailed reference has been made to the Roadex II project.


It is worth noting that any change in load will induce a new phase of settlement. Given the high level of settlement predicted for these types of soil, with relatively small increases in effective stress, the simple action of overlying a road on the peat soil with new surfacing without first removing material from the road construction will induce reflective settlement in the final profile after a very short period of time. Therefore, if re-surfacing of the roads are required in the future, then a corresponding depth of material should first be removed to prevent a supplementary phase of primary and secondary settlement.

Assessment of Settlement from Standard Penetration Tests 'N' Values SPT

There are a number of calculation techniques which can be used to assess the settlement directly from SPT 'N' results, with the most widely used of these being the methodology proposed by Burland and Burbidge. However, it should be noted that these methods are invariable used to assess the

settlements of sands and gravels and that the use of these equations is not suitable for cohesive soils (which make up the greater part of the near surface soils in the UK).

Figure C.4 Values of the compressibility index for sands and gravels (after Burland and Burbridge) Tomlinson Fig 2.26.

The general equation proposed by Burland and Burbidge for the assessment of settlement of sands and gravels from SPT 'N' values is as follows:

Where:
$$\rho = \text{ the total settlement in mm}$$

$$f_s = \text{ shape correction factor of the foundation, and}$$

$$f_s = [(1.25 \times L/B)/(L/B + 0.25)]^2$$

$$f_i = \text{ depth correction factor of the sand or gravel layer, and}$$

$$f_i = \rho_t/\rho_i = H/z_i [2 - (H/z_i)]$$

$$f_t = \text{ time correction factor, and}$$

 $f_s x f_l x f_t [(q'_n - 2/_3 x p'_o) x B^{0.7} x I_c]$

R = creep ratio expressed as a proportion of the immediate settlement (
$$\rho_i$$
) that takes place per log cycle of time

$$R_3$$
 = time-dependant settlement expressed as a proportion of the immediate settlement (ρ_i) that takes place during the first three years after construction

q'_n = average net applied pressure in KN/m²

 $[1 + R_3 + R \log(t/3)]$

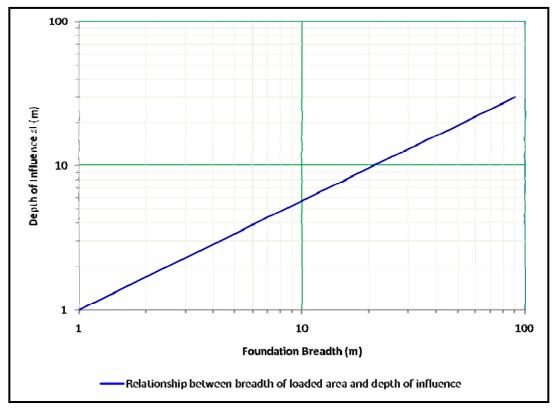
 f_{t}

=

p'_o = maximum previous effective overburden pressure in KN/m²

B = width of foundation in metres

L = length of foundation in metres


 I_c = compressibility index, from Figure C.4

z_i = depth of influence for sands and gravels, from Figure C.5

The compressibility index I_c for sands and gravels, as determined by Burland and Burbidge, can be extrapolated from Figure C.4, which has been reproduced from Tomlinson.

The depth of influence z_i for sands and gravels, as determined by Burland and Burbidge, can be extrapolated from Figure C.5, which has been reproduced from Tomlinson.

Figure C.5 Relationship between the breadth of loaded area and the depth of influence z_i for sands and gravels (after Burland and Burbidge) Tomlinson Fig 2.27.

Assessment of Settlement using Propriety Software (Oasys Vdisp Version 17.8.4)

To supplement the modelling of the settlement characteristics using in-house spreadsheets, propriety software in the form of Oasys Vdsip. The modelling of the ground conditions and the determination of the resultant settlement characteristics follows the same methodology discussed above.

Where CPT soundings or effective stress parameters are not available for the correlation of the stiffness characteristics of the soil layers, then an additional series of industry recognise correlations are carried out.

For the purposes of the settlement assessment, the relationship between the undrained modulus (E_u) and the undrained shear strength (C_u) is used in conjunction with the axial strain (as reported by Tomlinson 2001) based upon the work by Jardine *et al* (1986).

Figure C.6 has been extracted from the paper by Jardine *et al* (1986), and this has been used in the assessment of the undrained modulus, once the undrained shear strength parameters have been determined by traditional methods. In order to complete the assessment of the undrained modulus, it is necessary to assess the axial strain which the soil will be subjected to. In accordance with the recommendations made by Tomlinson (2001), the strain applicable to normal foundations is in the range of 0.01 to 0.1%, confirming the relationship $E_u/C_u = 400$ which is frequently used for intact blue London Clay.

As the change in axial strain will directly influence the resultant stiffness of the soil, and in turn the stiffness will influence the strain exhibited, a range of axial strains are selected (typically in the range of 0.01% to 0.5%) so that a sensitivity analysis can be completed and an appropriate level of strain adopted.

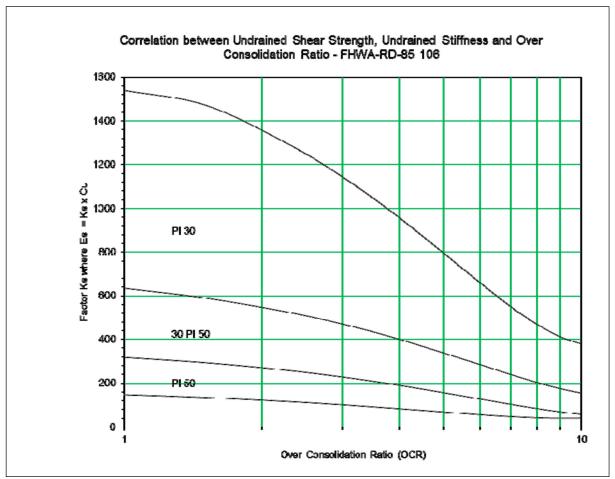


Figure C.6 Relationship between E_u/Cu and axial strain (after Jardine et al, 1986).

Once each soil layer and / or undrained shear strength (C_u) result has been converted to an equivalent undrained modulus (E_u), a further correlation is required in order to return a value for E'_d which can then be used for the determination of the settlement characteristics. Where the results of drained triaxial or equivalent effective stress parameters are not available to aid in the correlation between E_u and E'_d , the Tomlinson (2001) then the drained modulus may be obtained approximately from the relationship $E'_d = 0.6 \ E_u$. Alternatively if m_v values are available from oedometer tests, then E'_d is the reciprocal of m_v .

Further to the general correlation based upon London Clay presented as Figure C.6, Figure C.7 presents the data for the comparison between the Over Consolidation Ratio (OCR), the undrained shear strength (Cu), the undrained stiffness (E_s) and the plasticity index (PI).

Figure C.7 Relationship between E_s/C_u and OCR (FHWA-RD-85- 106, "Behaviour of Piles and Pile Groups Under Lateral Load.").

The same principal relating the drained (E_d) to undrained stiffness (E_s) applies, with a value typically in the order of 60% adopted.

Assessment of Rate of Consolidation

In addition to the determination of how much settlement may be induced under a given load, it is also important to be able to assess the rate at which this settlement could occur. The settlement of a foundation in a cohesionless soil and the elastic settlement of a foundation in clay can be assumed to occur as soon as the load is applied (Smith 2006).

For cohesive soils, the rate of consolidation settlement is governed by the rate at which excess water can leave the soil, which in turn is a function of the soils permeability. The rate of consolidation of a cohesive soil is expressed as the coefficient of consolidation (c_v), typically expressed as m²/year. This property can be determined from oedometer test results and from piezocone dissipation tests where these are undertaken as part of the CPT assessment.

For the estimation of the rate of settlement of a soil mass, the horizontal (c_h) and vertical (c_v) coefficients are used, however it can prove to be complex to assess the c_h from piezocone testing as often non-standard dissipation curves are derived from the in situ tests. The results from the dissipation testing are used to determine the time for 50%, identified as t_{50} and from this determine the c_h value to be used in the assessment of rate of settlement

Where piezocone dissipation tests have been completed, the empirical relationship proposed by Houlsby *et al* (1988 & 1991) and Chai *et al* (2004) is employed, where:

 $t_{50m} = t_{50} / [1 + 18.5 \times (t_{umax} / t_{50})^{0.67} (I_r / 200)^{0.3}]$

Where

 t_{50m} = corrected time for 50% excess pore pressure dissipation.

 T_{umax} = time for measured excess pore pressure to reach its maximum value.

 T_{50} = time difference between the maximum and 50% of the maximum excess pore

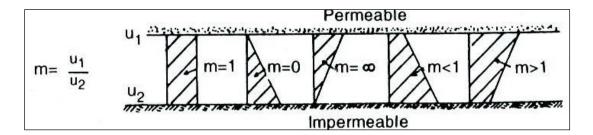
pressure.

 I_r = Rigidity Index, typically in the range of 50 to 500, with a value of 100 employed

unless otherwise stated.

Using the corrected t_{50m} value, the horizontal coefficient of consolidation (c_h) is determined from the following equation:

 $c_h = \left[c_p \times r_0^2 \times \sqrt{I_r} \right] / t_{50m}$


Where:

 c_p = filter element correction factor, for a 10cm^2 cone with a shoulder element (as used in the dissipation testing unless otherwise stated) a value of 0.245 is adopted.

 R_0^2 = radius of the cavity, the cone radius

Using the values determined for c_v and c_h a series of soils profiles are constructed, with appropriate values allocated to each soil layer.

For each soil layer, the drainage path characteristics is also selected based upon the drainage characteristics of the surrounding material, and identified by the value m, where:

This is used in conjunction with a series of theoretical curves of consolidation, in order to determine the degree of consolidation at specific time intervals for each soil layer. Figure C.7 presents the theoretical curves derived for 'm' which are then used in the assessment of the degree of consolidation (U).

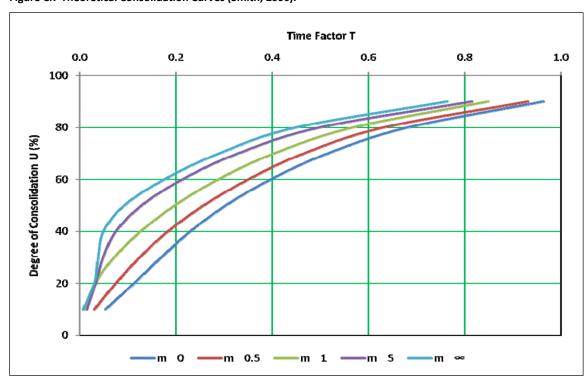


Figure C.7 Theoretical Consolidation Curves (Smith, 2006).

The average degree of consolidation is then can then be determined for each soil layer using the following equation:

 $T = [(c_h \text{ or } c_v) \times t] / H^2$

Where

T = Time factor

t = Time period, in the same units as either c_h or c_v .

H = thickness of soil layer

Once the time factor (T) has been determined then a value for U is selected for each layer in the soil profile and the results summed to provide a value for the degree of consolidation at that time period. Therefore, for each soil profile assessed, and as each time interval, a comprehensive assessment of the degree of consolidation can be made.

In addition to using the theoretical consolidation curves listed in Figure B.6, it is possible to calculate U for general situations where m = 1 using the following equation:

U%/100=
$$[\sqrt{4T/p}] / \{[1 + (4T/p)^{2.8}]^{0.179}\}$$

Where:

U% = Degree of consolidation as a percentage

T = Time factor

Conversely and by transposition of the above formula, the time factor T can be calculated using the following equation:

T =
$$[(\pi/4)(U\%/100)]^2/\{[1-(U\%/100)^{5.6}]^{0.357}\}$$

Where:

T = Time factor

U% = Degree of consolidation as a percentage

Using the general equations detailed above, it has been possible to derive a further relationship between the degree of consolidation and time using polynomial regression derived in the following form:

U% =
$$T \times \{a_0 + (a_1 * t) + (a_2 * t^2) + (a_3 * t^3) + (a_4 * t^4) + (a_5 * t^5) + (a_6 * t^6)\}$$

Where:

U% = Degree of consolidation as a percentage

t = duration in days

T = Time Factor, derived for each soil layer

a₀, a₁, a₂, a₃ & a₄ are factors derived from solving the polynomial regression equation where:

Using the general equation for a soil corresponding to m = 1, T = 1 and achieving a U of 90% at 205 days the following factors have been derived.

 A_0 = 0.000726047 a_1 = 0.011528752 a_2 = -6.28547 x 10⁻⁰⁵ a_3 = 1.95221 x 10⁻⁰⁷ a_4 = -3.48469 x 10⁻¹⁰ a_5 = 3.30418 x 10⁻¹³ a_6 = -1.28501 x 10⁻¹⁶

The above equation can then be used to derive any curve of settlement by first determining the time to achieve 90% consolidation, and deriving a Time Factor T for each soil layer.

Additional assessment methods

In addition to the methods for assessing settlement discussed previously, there are a number of other techniques which can be used, but these have not been adopted as part of the current geotechnical assessment process.

The range of calculation techniques listed in this Appendix represent the range of methodologies which have been employed in the current settlement assessment. It is noted that not only are there

other general equations which can be used, but also there are a large number of additional correlations which can be employed to refine the settlement model. However, as stated above, the methodologies which have been used in this assessment are as detailed within this Appendix.

Assessment of Net Bearing Pressure

In addition to a range of methods for assessing the settlement of a soil layer, there are also a number of industry accepted methods for calculating the bearing pressure distribution below a foundation.

Bousinesq's original equation allows the calculation of the vertical stress (z) at any point N below a loaded foundation, and is given by the following general equation:

 $\sigma_z = (3Q/2\pi z^2) \times [1/(\{1+(r/z)^2\}^5/_2)]$

Where:

 σ_z = vertical stress at the point under consideration

Q = concentrated vertical load

z = vertical distance between N and the underside of the foundation

r = the horizontal distance from N to the line of action of the load.

The basic Bousinesq equation presented above is based on the assumption that the loaded material is elastic, homogenous and isotropic, which although not strictly true for soils in general, has been deemed to provide a suitably accurate method for the assessment of the pressure distribution below structures.

The original Bousinesq equations have been subsequently developed to allow for the calculation of stress below other types of foundation, including embankments and circular features. These expanded series of equations have been used in the assessment of pressure distribution below the proposed structures and embankments (using the Osterberg modified method).

For the purposes of this assessment, the following additional equations which expand upon the original Bousinesq equation have been used:

For Strip Foundations (Bousinesq):

 $\Delta \sigma_z = q / \pi x [\alpha + \sin \alpha \cos(\alpha + 2\beta)]$

Where:

 $\Delta \sigma_z$ = change in vertical stress

q = contact pressure, applied load from foundation

 $\alpha = Tan^{-1}[(x + b) / z] - \beta$ (in radians)

 $\beta = Tan^{-1}[(x-b)/z]$

B = Width of foundation

b = effective breadth of foundation = foundation width B/2

- x = horizontal distance from centre of foundation to point under assessment
- z = vertical distance from base of foundation to point under assessment.

For Strip Foundations (After Janbu, Bjerrum and Kjaernsli (1956))

The work completed by Janbu et al (1956) revised the general equation derived by Bousinesq for a range of foundations dimensions. Figure B5 presents the findings of the assessment completed by Janbu et al (1956) and includes the pressure distribution for a strip footing using the Bousinesq equation detailed previously.

Figure C.8 demonstrates that the assessment of vertical stress using the Bousinesq equation is directly comparable to the Janbu et al assessment for a rectangular footing of infinite length.

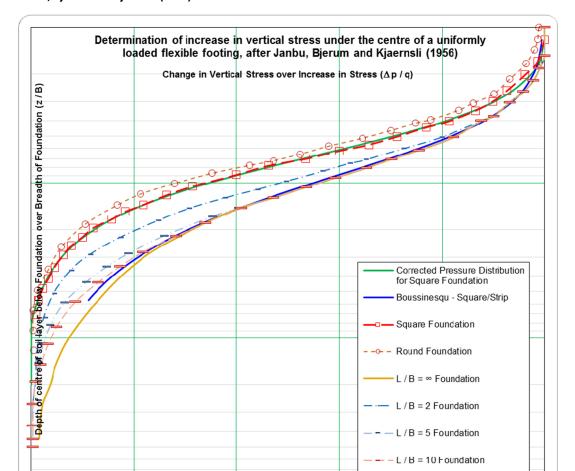


Figure C.8 Determination of increase in vertical stress under the center of a uniformly loaded flexible footing, after Janbu, Bjerum and Kjaernsli (1956).

Therefore, in order to correlate the relationship between the net increase in applied stress derived from the Bousinesq equation and that determined by Janbu et al, a polynomial relationship was determined for each foundation dimension.

The general equation used to derive the relationship between the Bousinesq and a strip footing is:

 $\Delta \sigma_z$ = $a_0 + (a_1 * x) + (a_2 * x^2) + (a_3 * x^3) + (a_4 * x^4)$

where

s_c = Primary Settlement/Consolidation

x = change in vertical stress determined using the Bousinesq equation for strip footings

a₀, a₁, a₂, a₃ & a₄ are factors derived from solving the polynomial linear equation where:

The relationship determined for the correlation for a square foundation returned the following factors:

 $a_0 = -0.02278$ $a_1 = 0.22649$ $a_2 = 0.81125$ $a_3 = 0.00000$ $a_4 = 0.00000$

A similar process is carried out where the foundation is not square, with the factors derived individually for the actual foundation dimensions under assessment.

The selection of the method of determining the pressure below a square or rectangular foundation is set as default to use the corrected pressure distribution equation corresponding to the Janbu et al methodology; however the user has the ability to switch between the Bousinesq, Newmark, Janbu and Steinbrenner as appropriate. Unless otherwise stated in the report, the Janbu et al methodology has been adopted for the assessment of vertical stress below a square or rectangular foundation.

For Area (point under centre of circular area):

 $\Delta \sigma_z = qr^2 [(s^2 + 2z^2) / 2S^4]$

Where:

 $\Delta \sigma_z$ = change in vertical stress

q = contact pressure, applied load from foundation

 $S^2 = r^2 + z^2$

r = radius of foundation

z = vertical distance from centre of base of foundation to point under assessment.

The selection of the method of determining the pressure below a circular foundation is set as default to use the Bousinesq methodology as the resultant pressure distribution curve is identical to the

Janbu et al result; however the use has the ability to switch between the Bousinesq, Newmark, Janbu and Steinbrenner as appropriate. Unless otherwise stated in the report, the Janbu et al methodology has been adopted for the assessment of vertical stress below a circular foundation.

For Embankment Loads (Osterberg):

 $\Delta \sigma_z = Iq$

Where

 $\Delta \sigma_z$ = change in vertical stress

q = applied load from embankment above the point of assessment, and

 $q = \gamma H$

= unit weight of embankment material

H = height of embankment material

I = influence factor

Where:

 $I = 1/\pi \times [\{(a+b)/a\} \{\alpha_1 + \alpha_2\} - \{(b/a)/\alpha_2\}]$

a = the horizontal length of the slope portion of the trapezium (embankment) to the

point of assessment

b = the horizontal length of the flat portion of the trapezium (embankment) to the

point of the assessment

 α_1 = Tan⁻¹ [(a + b)/z] – Tan⁻¹(a/z) (in radians)

 α_2 = Tan⁻¹(a/z) (in radians)

z = the depth to the point at which the stress is to be etermine.

The selection of the method of determining the pressure below a loaded area is set as default to use the Osterberg methodology.

For Floor Slabs (Hobbs):

In consideration of the stress distribution beneath a floor slab and similarly loaded areas, the following additional equation, proposed by Hobbs has also been employed in combination with those listed above:

 P_z = B x L x P_0 x [1 / {(B + 1.2z) x (L + 1.2z)}]

Where:

P_z = stress at depth below the floor slab

P₀ = imposed load from foundation

B = width of slab area

L = length of slab area

z = depth below foundation

As for the previous assessment of pressure distribution, the settlement beneath the floor slab is only considered to a depth where the applied stress is greater than 20% of the previous overburden pressure, or where the ground is considered to be incompressible (BS EN 1997-1). The selection of the method of determining the pressure below a loaded area is set as default to use the Hobbs methodology.

Presentation of Assessment Data

Where the results of CPT soundings are used in the assessment of the settlement characteristics of the ground, the findings will be presented as a series of figures associated with each soil strength profile. The table below summarises the various mathematical equations that may be used in the electronic spreadsheet assessment of the settlement.

Table C.3: Assessment Method and Equations

Settlement Method	General Equation
Settlement based upon SPT	Total Settlement
	$\rho_t = f_s \times f_1 \times f_t \times q'_n \times B^{\Lambda^{0.7}} \times I_c$
Consolidation based on m _v	Consolidation Settlement per layer
	$\rho_{\text{oed}} = M_{\text{v}} \times \sigma_{\text{z}} \times H \times \mu_{\text{g}}$
Settlement inc. Creep based on CPT	Settlement from CPT
	$\rho = C_1 \times C_2 \times q_n \times (I_z/E_s) \times t$
Adjusted Elasticity Method E'd	Total Settlement
	$\rho = \sigma_z \times H \times ((1 - \upsilon^2)/E'd)$
Consolidation based on Cc	Consolidation settlement from fill
	$\rho_c = Cc/1 + e_0 \times log(p_2/p_1) \times H$
Primary Settlement of Peat	Primary settlement of Peat
	$s_c = \left[\left\{ (Cr \ X \ H) / \ (1 \ +e_0) \right\} \ X \ \left\{ LOG(p'_p/p'_o) \right\} \right] \ + \left[\left\{ (Cc \ X \ H) / (1 \ +e_0) \right\} \ X \right] $ $\left\{ LOG(p'_f/p'_p) \right\} \right]$
Secondary Settlement of Peat	Secondary settlement of Peat
	$s_s = ((C_\alpha \times H)/(1 + e_p)) \times LOG(Design Life of Structure)$

ANNEX D

GEOTECHNICAL RISK REGISTER

Introduction

A Geotechnical Risk Register has been complied in accordance with the general requirements of HD 22/08 to assist in the management of the risks and hazards. The following pages set out the identified geotechnical risks and hazards which associated with the proposed development and establish the approach which is to be taken to manage the risks including the geotechnical input and analysis.

The purpose of the Geotechnical Risk Register is to provide and outline a description of the hazards, identify the likely cause, describe the potential impact of the hazard and identify the design construction controls to be implemented in order to minimise the geotechnical risk.

The Geotechnical Risk Register will be actively used during the design and construction stage of the project as a guide to address geotechnical issues. The risk register will be up-dated, as necessary, to reflect additional information, data and experience as it is gained through the construction process.

Whilst the probability and impact of the hazard occurring can be reduced to a minimum by geotechnical design, the impact cannot be reduced below very low. The probability and impact of a hazard have been judged on a qualitative scale as set out in Table D.1

Table D.1: Qualitative Assessment of Hazards and Risks

P = Probability							
1	Very unlikely	(VU)					
2	Unlikely	(U)					
3	Plausible	(P)					
4	Likely	(Lk)					
5	Very Likely	(VLk)					

I = Impact							
1	Very Low	(VLw)					
2	Low	(Lw)					
3	Medium	(M)					
4	High	(H)					
5	Very High	(VH)					

R = Risk Rating (P x I)							
1 – 4	(N)						
5 – 9	Minor	(Mn)					
10 – 14	Moderate	(Md)					
15 – 19	Substantial	(Sb)					
20 – 25	Severe	(Sv)					

Project Name: East Midlands Gateway M1 Overbridge Project Number: C14792 Date: 08/07/2017

Hazard	Location	Who is at	Consequence		sk Befo Iitigatio		Mitigation Measures			Re	sidual F	Risk
		Risk		S	L	R	Preliminary Design	Detailed Design	etailed Design Construction Team		L	R
Slope Stability – New highway embankments	Refer to BWB drawing series	Construction staff, vehicles and plant operators. Pavement construction and long-term durability of new carriageway	Embankment failure	4	3	12	Hydrock GDR reference R/14792/008 which includes the detailed slope stability assessment identifying acceptable slope profiles. Engineered fill requirements defined at outline design stage.	Minimum engineering performance defined in slope stability included in Earthworks Specification. Minimum testing frequencies in Appendix 1/5 required demonstrate compliance.	Earthworks testing in accordance with the Specification to comply with Appendix 6/1 and 6/3, at the frequencies defined in Appendix 1/5. Site records to be provided in accordance with Appendix 1/24	2	1	2
Slope Stability – Re-profiled embankments	Refer to BWB drawing series	Construction staff, vehicles and plant operators. Pavement construction and long-term durability of new carriageway	Embankment failure	4	3	12	Hydrock GDR reference R/14792/008 which includes the detailed slope stability assessment identifying acceptable slope profiles. Engineered fill requirements defined at outline design stage. Granular fill required to form re-profiled slope form.	Minimum engineering performance defined in slope stability included in Earthworks Specification. Minimum testing frequencies in Appendix 1/5 required demonstrate compliance. Contractor to source appropriate granular material which will meet the minimum requirements. All fill to be benched in to slope and include additional drainage.	Importation of an appropriate granular fill material. Earthworks testing in accordance with the Specification to comply with Appendix 6/1 and 6/3, at the frequencies defined in Appendix 1/5. Site records to be provided in accordance with Appendix 1/24. Benches to be formed by Contractor	2	1	2
Excessive settlement of foundations (poor stiffness of underlying soils and engineered fill)	Refer to BWB drawing series	Carriageway including roundabout	Service limit state failure highway	3	3	9	Determination of minimum stiffness of engineered fill to provide sufficient support to foundations and floor slab. Details provided in GDR, Hydrock reference R/14792/014	Determination of compliance values to be met by engineered fill to meet the long-term stiffness. Values added to Appendix 6/1.	Site inspection, careful selection of fill and testing at the frequency defined in Appendix 1/5, to demonstrate compliance with Appendix 6/1 and 6/3 with Contractor to provide records in	3	1	3

Hazard	Location	Who is at	Consequence		sk Befo Iitigatio	Before Mitigation Measures				Residual Risk		
		Risk	sonsequence	S	L	R	Preliminary Design	Detailed Design	Construction Team	S	L	R
									compliance with Appendix 1/24. Hydrock to undertake routine site inspections to ensure Contractor is in compliance with the Specification.			
Excavations	Site wide	Construction staff	Risk of collapse of excavation. Falling debris in excavation. Slips, trips and falls.	4	2	8	Temporary works design to be completed by appointed contractor.	Temporary works design to be completed by appointed contractor.	Contactor to determine safe method of work	4	1	4
Working adjacent to live traffic during earthworks operation	Refer to BWB drawing series	General Public Construction staff	Rick of obstruction, striking passing vehicles. Risk of construction site staff being struck by plant.	4	3	12	Design team to consider the construction sequence to mitigate risk.	Discussion with HE and LA regarding temporary works and their residual risks	Contractors safe method of working. Implementation of signing and traffic control measures in accordance with Chapter 8. Contractor to provide appropriate protection barriers. Workers to wear high visibility clothing.	4	1	4
Limited geotechnical data and SI coverage	M1 bridge abutment location	Unexpected ground conditions, long- term embankment stability	Service limit state failure highway	3	3	9	Conservative lower bound values used in design. Adoption of published values. Review of historical sources of data.	Additional boreholes to be drilled, once access given by HE	Sub-formation to be inspected and approved by Hydrock Contractor to inform Hydrock before filling commences to ensure sub-formation is acceptable. Allowance for removal of upper superficial soils.	3	1	3

Hazard	Location	Who is at	Consequence		sk Befo Iitigatio	-		Mitigation Measures		Residual Risk		
		Risk		S	L	R	Preliminary Design	Detailed Design	Construction Team	S	L	R
Structural assessment for whole life cycle of bridge, including demolition	M1 Overbridge	Inspectors and contractors including demolition contractors	Risk to workers, and members of the public	5	2	10	Included in geotechnical risk register	Confirmation from the bridge designer that this is included in their design and DRA.	Reference to the bridge designers DRA	5	1	5
General Public/Children trespassing on site during earthworks operation	Whole Site	General Public Children	Risk of public injury on site from trips, slips, falls, falling from height, falling into excavations, open water.	4	2	8	Consideration of Public Right of Way	Construction sequences assessed to minimize the duration of any obstruction/severance to the public right of way. Closure of Town Lane. Possible diversions identified and assessed for the safety of the public.	Ensure the site is properly secure and inform the surrounding public of site locations and boundaries. Identified diversions for public right of way established and clearly signed.	4	1	4

Prepared By:	lan Gardner	Signature:	

See Bookmarks for contents of this report.

Smart Motorways Programme M1 Junction 23a to 25

Geotechnical Feedback Report

HAGDMS Report No. 30523

June 2021

Notice

This document and its contents have been prepared and are intended solely for Highways England's information and use in relation to the Smart Motorways Programme.

Document history

Amey Arup assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

Revision history

Job number: 244508/COCDFL1SMP01		Document ref: HA549342-AMAR-HGT-SWI-RP-CE-000008				
Revision	Purpose description	Originated	Checked	Reviewed	Approved	Date
P01	Issue for HE SES review	Muhammad Anwar	Mohamed Al Deab	Samantha Godden	Stuart Vale	22 June 2020
P02	Incorporating HE comments	Mohamed Al Deab	Samantha Godden	Samantha Godden	Stuart Vale	15 June 2021

Document control

Client	Highways England
Project	SMP M1 Junction 23a to 25 PIN No 549342
Document title	Geotechnical Feedback Report
Job no.	244508/COCDFL1SMP01
Document reference	HA549342-AMAR-HGT-SWI-RP-CE-000008

Table of contents

Chap	oter Pa	ges
Gloss	sary of Terms	7
Limita	ations 8	
Exec	utive Summary	9
1.	Introduction	10
1.1.	Scope and objectives of the report	10
1.2.	Limits of the area covered by the report	10
1.3.	Bibliography of scheme specific geotechnical reports	11
1.4.	Other relevant information	11
2.	Earthworks	13
2.1.	General description of earthworks	13
2.2.	Problems not envisaged in the GDR and their solutions	13
2.3.	Weather conditions	14
2.4.	Application of acceptability criteria of earthworks materials	14
2.5.	Haul conditions and types of plant used	15
2.6.	Comparison between predicted and actual quantities of acceptable and unaccept material	able 16
2.7.	Topsoil and planting	16
2.8.	Validation of site remediation strategy	16
3.	Cuttings 17	
3.1.	Location of materials excavated and subsequent destination in the works	17
3.2.	Plant used	17
3.3.	Details of any problems encountered	18
3.4.	Instability problems and unusual ground conditions	18
3.5.	Ground water conditions and problems and drainage measures to overcome then	n18
3.6.	Contaminated and hazardous material encountered on site and the location of disposal, both on and off site	18
4.	Embankments	19
4.1.	Source and location of materials placed	19
4.2.	Plant used	19
4.3.	Details of any problems encountered	20
4.4.	Instability problems and unusual ground conditions	20
4.5.	Ground water conditions and problems and drainage measures to overcome then	n20
4.6.	Contaminated and hazardous material encountered on site and the location of disposal, both on and off site	20
4.7.	Foundation treatment, including drainage measures and treatment of soft areas	20
4.8.	Settlement of foundation and fill material	20

5.	Retaining Structures	21
5.1.	Sheet pile and king sheet pile walls	21
5.2.	Gabion walls	28
5.3.	Slab-on-edge walls	32
6.	Subgrade and capping	34
6.1.	Method of subgrade preparation, details of capping materials used, and details of problems encountered	f any 34
7.	Drainage35	
7.1.	Details of temporary drainage and its effectiveness	35
7.2.	Methods of installing permanent drainage and details of any problems encountered	ed35
8.	Imported Materials	36
8.1.	Types of imported materials and their Use	36
8.2.	Sources of imported materials and their location in the works	36
8.3.	Acceptability and performance of imported materials	36
9.	Strengthened Earthworks	38
9.1.	Description of strengthened earthworks types and locations	38
9.2.	Fill material used	38
9.3.	Records of soils and groundwater conditions encountered, and drainage measur required	es 38
9.4.	Inspection and maintenance requirements	38
9.5.	Details of any in-situ testing	38
9.6.	Details of any problems encountered	38
10.	Structure Foundations	39
10.1.	Confirmatory Ground Investigation	39
10.2.	Gantries	40
10.3.	Record of soil and groundwater conditions encountered	42
10.4.	Temporary works required and their effectiveness	42
10.5.	Details of any problems encountered	42
10.6.	Pile logs summary, pile test results and other relevant information	43
10.7.	Details of as-built foundations	43
10.8.	Chemical attack on concrete	43
10.9.	Remote Operated Temporary Traffic Management Signs (ROTTMS)	45
10.10.	Chemical attack on concrete	45
10.11.	Environmental Barriers	47
10.12.	CCTV 49	
10.13.	RADARs	51
10.14.	External Aspect Verification (EAV) Poles	53
10.15.	Large traffic signs	55
10.16.	Single post traffic signs	57
10.18.	Cross-carriageway ducts	59

Smart Motorways Programme M1 junction 23a-25 Geotechnical Feedback Report

Wor	king on behalf of
3	highways england

11.	Earthworks Testing		60
11.1.	Summ	nary of site testing	60
11.2.	Summ	nary of test results	60
12.	Pile Te	esting	61
12.2.	Pile lo	ad test results	63
12.3.	Pile integrity tests 64		
12.4.	Concr	rete test results	65
13.	Instrui	mentation	66
14.	Summ	ary of problems experienced and design changes	67
14.1.	Summ	nary of problems and details of design changes	67
14.2.		problems might be avoided in the future, including suggested revisions requ	ired 67
15.	Resid	ual Health and Safety Risks	68
15.1.	Locall	y over-steepened slope	68
15.2.	As-bu	ilt details of cross-carriageway ducts	68
16.	Refere	ences	69
Appen	dix A	Earthworks Schedule (As-Built)	72
Appen	dix B	Retaining structures and structure foundation schedule (As-Built)	73
Appen	dix C	As-Built Drawings	75
Appen	dix D	Imported Material Test Results and Acceptance Certificates	77
Appen	dix E	Pile Installation Records	81
Appen	dix F	Summary of Pile Testing	82
Appen	dix G	Confirmatory Ground Investigation (Just in Time GI)	83
Appen	dix H	Summary of Cross Carriageway Ducts Locations	84
Appen	dix I	Photographs	85
Appen	dix J	Preferred Widening Solutions Decision Flow Chart	92

Smart Motorways Programme M1 junction 23a-25 Geotechnical Feedback Report

LIST OF TABLES

Table 1: M1 J23A TO J25 chainage and national grid reference	.11
Table 2: List of M1 J23a to J25 AMAR geotechnical reports	.11
Table 3: Summary of HAGDMS inspection visits	.12
Table 4: List of imported materials	
Table 5: List of MARs used for earthworks and retaining wallswalls	.15
Table 6: Types of plant used	
Table 7: Change of sheet pile section to make use of stocked materials	. 23
Table 8: Summary of design changes of sheet pile walls	. 27
Table 9 : Summary of design changes of king sheet pile walls	. 27
Table 10: Locations of gabion walls to accommodate lighting columns	. 30
Table 11: Summary of design changes of gabion walls	
Table12: Sources of imported materials	. 36
Table 13: Summary of 6N test results	. 37
Table 14 Confirmatory (JIT) ground investigation	. 39
Table 15: Summary of gantries	. 40
Table 16: List of MARs used for piling works	.43
Table 17: Locations and Piled Foundations Details of Gantries	
Table18: Summary of design changes of foundations of ROTTMS	. 46
Table19: Summary of design changes of foundations of environmental barriers	
Table20: Summary of design changes of foundations of CCTVs	. 50
Table21: Summary of design changes of foundations of Radars	. 52
Table22: Summary of design changes of foundations of EAV poles	. 54
Table 23: Summary of design change of foundations of large traffic signs	. 56
Table24: Summary of design changes of foundations of single post traffic signs	
Table25: List of Laboratory Tests	. 60
Table 26: Summary concrete test results	
-	

Glossary of Terms

Acronym	Description
ACEC	Aggressive Chemical Environment for Concrete
ADS	Advance Direction Sign
AIP	Approval In Principle
AMAR	Amey Arup Joint Venture
BRE	British Research Establishment
CCTV	Closed Circuit Television
CGT	Principal Contractor: Costain-Galliford Try Joint Venture
DF5	Design Fix 5: Detailed Design
DVA	Derwent Valley Aqueduct
DMRB	Design Manual of Roads and Bridges
EAV	External Automatic Verification Camera
ERA	Emergency Refuge Area
GDR	Geotechnical Design Report
GFR	Geotechnical Feedback Report
GIR	Ground Investigation Report
HAGDMS	Highway Agency Geotechnical Management Data System
KSP	King Sheet Pile Wall
LiDAR	Light Detection and Ranging
MS3 Cantilever	Message Sign 3 Cantilever
MS4 Cantilever	Message Sign 4 Cantilever
PSSR	Preliminary Sources Study Report
ROTTM	Remotely Operated Temporally Traffic Management
SHW	Specification for Highway Works
SMP	Smart Motorways Programme

Limitations

This report is presented to Highways England in respect of the M1 junction 23a-25 Smart Motorway Programme project and may not be used or relied on by any other person or by the client in relation to any other matters not covered specifically by the scope of this report. Notwithstanding anything to the contrary contained in the report, Amey–Arup Joint Venture (AMAR) is obliged to exercise reasonable skill, care and diligence in the performance of the services required by Highways England.

AMAR shall not be liable except to the extent that it has failed to exercise reasonable skill, care and diligence, and this report shall be read and construed accordingly.

This report has been prepared by AMAR. No individual is personally liable in connection with the preparation of this report. By receiving this report and acting on it, the client or any other person accepts that no individual is personally liable whether in contract, tort, for breach of statutory duty or otherwise.

AMAR has used reasonable skill, care and diligence in the design and interpretation of the ground investigation, however, the inherent variability of ground conditions allows only definition of the actual conditions at the location and depths of exploratory holes and samples/tests there from, while at intermediate locations conditions can only be inferred.

The information upon which the content of this report is based is supplied by the construction delivery partner and AMAR can accept no responsibility of inaccuracies or omissions in that data. New information changed practices or new legislation may also necessitate revised interpretation of the report after the date of its submission.

Executive Summary

This Geotechnical Feedback Report (GFR) relates to the Smart Motorway scheme on the M1 motorway between junctions 23a (East Midlands Airport) and 25 (A52 Nottingham). Highways structures and earthworks for this scheme include:

- Gantry foundations (major structures);
- CCTV masts, large traffic signs, environmental barriers, radar masts, EAV poles and remotely operable temporary traffic management sign (ROTTMS) foundations (minor structures);
- Emergency Refuge Areas including retaining walls and local widening;
- Cross Carriageway Ducts; and
- Mainline verge widening to accommodate new drainage and technology ducting.

Generalised soil properties and parameters were derived in the AMAR Ground Investigation Report (GIR) [1]. These parameters were refined based on local data for major structures and earthwork widening locations. These parameters were presented in Geotechnical Summary Sheets appended to the Geotechnical Design Report [2].

AMAR used the Smart Motorway Programme Design Guide [3] to determine the preferred widening/retaining solutions for each location, based on its topography. These solutions can be summarised as follows:

- 1. Where a slope regrade was required, a numerical model using the slope stability modelling software program SLOPE/W [4] was used.
- 2. Retaining walls were required along some of the verge widening extents, as well as at some major structure locations. Where retained heights were to be of greater than 1.5m in height, an Approval in Principle was produced. Embedded retaining solutions were modelled for suitability using the program WALLAP [5].

Five different types of gantries were proposed for the scheme: MS3 cantilever, MS4 cantilever, ADS cantilever, super cantilever and super-span portal. All gantries were constructed on pile caps and pile group foundations. Foundations for minor structures were either planted foundations, bored piles or pad foundations, depending on structure type and associated loadings.

During construction, the Amey-Arup site team (Lead Designer) assisted the contractor in the delivery of construction phase by developing ongoing design changes during construction, due to changes and issues encountered in the construction phase. This report highlights these design changes from the designs documented in the GDR.

This GFR describes the construction problems that arose and the associated solutions. The appendices of this report contain details of the earthworks and other geotechnical features throughout the scheme, as well as the As-built Drawings. This report is a summary of the geotechnical aspects of the scheme and contains suggested improvements for similar future schemes.

This GFR has been prepared by AMAR in accordance with the guidance set out in HD22/08 [6] for a GFR and the design for the scheme was undertaken in accordance with Eurocode 7 [7]. This GFR shall be read in conjunction with the Ground Investigation Report (GIR) [1]; HAGDMS ref: 28929 dated February 2016 and the Geotechnical Design Report (GDR) [2]; HAGMDS ref: 29152 dated June 2017.

1. Introduction

1.1. Scope and objectives of the report

The M1 in the East Midlands is a key strategic route that carries high volumes of heavy goods and other vehicles between the conurbations in Leicestershire, Nottinghamshire, Derbyshire and beyond to South and West Yorkshire, with key links to the West Midlands and the South. This Geotechnical Feedback report relates to the Smart Motorway scheme on the M1 motorway between Junctions 23a (East Midlands Airport) and 25 (A52 Nottingham).

The M1 J23a-25 scheme was delivered by the Principal Designer, Amey-Arup (AMAR) jv and the Delivery Partner, Costain Galliford Try jv (CGT). The site works started in April 2017 and the scheme opened for traffic in December 2018. The scheme included the following elements:

- Smart Motorway infrastructure to enable hard shoulder running
- Mainline verge widening to accommodate drainage and communication ducting
- Emergency Refuge Areas (ERAs)
- Lane specific signals and gateway gantries
- Rigid concrete barrier in central reserve
- Lighting
- Pavement and drainage renewals
- Environmental barrier
- Tie-in to development of the Segro Logistics Park East Midlands Gateway strategic rail freight terminal between Junctions 24 and 24a.

The AMAR site team (Lead Designer) assisted in the delivery of construction phase by developing ongoing design changes during construction. This report highlights these design changes from DF5 due to construction phase problems encountered and reasoning behind changes.

This Geotechnical Feedback Report (GFR) provides feedback on the following geotechnical aspects of the scheme construction:

- Earthworks solutions including full and partial height cutting and embankment re-grades to accommodate verge widening and ERAs
- Retaining wall solutions including continuous sheet pile walls, king sheet pile walls and gabion walls to accommodate verge widening, ERAs and build-out areas for major and minor structures
- Various shallow and deep foundation solutions for gantry foundations, minor structures, environmental barriers, ROTTMs and EAV Poles
- "Just in Time" ground investigation and gantry foundation design verification
- Localised "slab on edge" solutions
- Cross Carriageway Ducting

A confirmatory 'Just in Time' Ground investigation (GI) [8] was carried out during the construction phase by the contractor, to confirm the assumptions of ground conditions and parameters used in pile design at proposed gantry locations. The results of the 'Just in Time' GI are included in Appendix G.

This report has produced by AMAR in accordance with the requirements of HD22/08 [6].

1.2. Limits of the area covered by the report

This GFR refers to the construction work carried out for the implementation of the SMP scheme for M1 junctions 23a to 25. The scheme comprises a 12km long section of motorway. The construction has been divided into six links corresponding to the chainages shown in Table 1.

Table 1: M1 J23A TO J25 chainage and national grid reference

Construction Link	Chainage	Marker Post	Grid Reference Start		Grid Reference End	
			Е	N	Е	N
1	181500-182000	181/5-182/0	446867.290	323972.546	446855.524	324471.685
2	182000-185000	182/0-185/0	446855.524	324471.685	447539.281	327381.512
3	185000-187000	185/0-187/0	447539.281	327381.512	447111.775	329322.668
4a	187000-190000	187/0-190/0	447111.775	329322.668	446655.234	332203.407
4b	190000-193050	190/0-193/0	446655.234	332203.407	447171.361	335084.696
5	193050-193800	193/0-193/8	447171.361	335084.696	447184.558	335833.676

1.3. Bibliography of scheme specific geotechnical reports

Table 2: List of M1 J23a to J25 AMAR geotechnical reports

Author	Document Title	HA Reference	HAGDMS Pin	Document Date	Ref
AMAR	M1 J23a-J25, Statement of Intent Rev P01	HA549342-AMAR- HGT-SWI-RP-CE- 000001		October 2015	[9]
	M1 J23a-J25, Ground Investigation Report Volume 1 Rev P01		28929	February 2016	
AMAR	M1 J23a-J25, Ground Investigation Report Volume 2 Rev P01	HA549342-AMAR-			F41
	M1 J23a-J25, Ground Investigation Report Volume 3 Rev P01	HGT-SWI-RP-CE- 000002			[1]
	M1 J23a-J25, Ground Investigation Report Volume 4 Rev P01				
AMAR	M1 J23a-J25, Geotechnical Design Report Rev P02	HA549342-AMAR- HGT-SWI-RP-CE- 000003	29152	June 2017	[10]
AMAR	M1 J23a-J25, Geotechnical Design Report Directional Drilling Rev P01	HA549342-AMAR- HGT-SWI-RP-SWI- RP-CE-000006	29378	May 2017	[2]

A scheme specific Preliminary Sources Study Report (PSSR) was not deemed necessary as all historic information and data sources were included in a PSSR previously produced by Ove Arup & Partners for M1 widening works between junctions 21 and 30 [11] and minor updates incorporated in the GIR.

1.4. Other relevant information

The construction works were undertaken within the existing highways boundary in permanent traffic management hard shoulder closures, with further lane closures as required during day and night shifts.

As-built drawings showing the details of work done in the scheme are included in Appendix C. A selection of photographs, showing the works in progress and completed, is presented in Appendix I.

As part of the handover process, Highways England (Operations Directorate) carried out inspections of the geotechnical assets. This inspection was carried out in multiple site visits accompanied by AMAR and CGT. Table 3 shows the site inspection visits.

Table 3: Summary of HAGDMS inspection visits

Site visit	Chainage From	Chainage to	Link	Date
1	184+000	185+600	Link 2 and Link 3	17-04-2018
2	184+000	185+600	Link 2 and Link 3	19-04-2018
3	187+000 to	192+800	4A, 4B and 5 expect last 1km	17-07-2018
4	Remaining Assets in L	ink 3*	Link 3	29-10-2018
5	Remaining Assets in L	ink 5*	Link 5.	19-03-2019

^{*}some assets were not accessible during the site visits 1-3 because of traffic management issues, therefore these assets were inspected in site visits 4 and 5.

In these site visits, Highways England raised early comments about the geotechnical assets including matters of maintenance and interface with drainage assets. These comments have been actioned and closed out as per CGT Defect and Outstanding Work List (DOWL).

To update the HAGDMS database with details of the scheme, AMAR prepared a detailed list of the geotechnical assets along M1 J 23a-25, including widened verge, gabion walls, regraded earthworks and sheet pile wall. These were imported to HAGDMS as "observations" on the relevant earthworks' asset. The POPI (Pre-Opening Principal Inspection) has been completed by Area 7 and all observation were closed out.

2. Earthworks

2.1. General description of earthworks

This section presents design changes made since the GDR [2] (DF5) regarding widening of earthworks in both cuttings and embankments.

Earthwork widening solutions were initially selected using the "SMP Preferred Widening Solutions Decision Flow Chart" and the methodology can be found in the GDR [2]. Alternative design solutions were used on embankments crossing floodplains, to minimise the loss of flood storage volume. Full and partial height cutting and embankment slope re-grades were used to widen the existing verge to accommodate the smart motorway infrastructure.

For areas of major verge widening, at gantry and ERA locations (i.e. major structures), site-specific design parameters were chosen by using a combination of historical GI data and considering the indicative design parameters given in the AMAR Ground Investigation Report (GIR) [1]. This was then confirmed within the 'Just in Time' GI [8], which was conducted at the site of each major structure prior to construction to confirm the ground model and parameters used in design.

During development of DF5, ground profiles were modelled based on LiDAR survey information. However, the coverage and quality of this survey was limited, particularly at large embankments with restricted sightlines to the scanning vehicle. This was considered as a risk to the overall design and it was included in the risk register within the GDR [2].

Typical slopes of 1V:2H for embankments and 1V:3H or 1V:2H for cuttings were proposed in the GDR.

Earthworks were constructed working from south to north. The earthworks subcontractor was Collins Ltd. During construction, various retaining solutions were reviewed using more accurate topographic surveys and changed to earthwork regrade solutions. The changes resulted in cost savings during construction and more sustainable options being implemented on site. Occasionally, the temporary piling platforms were found suitable to be used as permanent earthwork solutions. This was achieved when the constructed temporary platforms complied with earthwork requirements specified by AMAR in Volume 2 Works Information; Specification Appendices Series 600 Earthworks.

The design of all earthworks was performed in accordance with BS EN 1997-1:2004+A1:2013 (Eurocode 7) [7] and NA+A1:2014 to BS EN 1997-1:2004+A1:2013 [12]. Where a slope regrade was proposed, it was checked in a numerical model using the slope stability modelling software program SLOPE/W [4] . The Morgenstern-Price method of analysis was used with both the Piezometric Line and Ru options being run in separate models for pore-water pressure conditions, and using the Eurocode 7 Design Approach 1, Combination 1 and 2 set of partial factors [12]. The Grid and Radius slip surface option was used with a minimum slip surface depth geometry set at 1.

Appendix A includes lists of major structures (Gantries, Radar masts, CCTV), ERAs, and verge widening earthworks schedules.

Appendix C includes as-built drawings nos. HA549342-AMAR-HGT-E1A1-DR-CE-000001 to HA549342-AMAR-HGT-E1A1-DR-CE-000017, which present typical details of the above solutions.

2.2. Problems not envisaged in the GDR and their solutions

2.2.1. Changes in topography from original LiDAR survey

During development of the verge widening design, ground profile cross sections were derived from the LiDAR survey, where the information was captured using a vehicle mounted scanner. This LiDAR

survey was taken from carriageway level and prior to vegetation clearance. Therefore, coverage of this survey was limited especially at the following areas:

- Soft areas (particularly merges and diverges), where vegetation obstructed the LiDAR; and
- Large embankments, where the slope was not visible from road level.

As a result, the design ground profile lacked detail of the ground surface as distinct from the vegetation cover, and details such as ditches, existing features and boundaries. These limitations resulted in inaccuracies in the topographical model used for design of verges, slopes, and retaining solutions. After vegetation clearance, the contractor carried out full topographic surveys which in many cases led to redesign of different geotechnical elements.

A flooding risk was identified based on the historical data but there was no flooding recorded during the construction phase of the scheme.

2.3. Weather conditions

The construction of embankment earthworks widening was carried out from April 2017 to April 2018. Construction activities were undertaken in a variety of different weather conditions. There was a particularly cold spell between January 2018 to February 2018 and heavy rain from March to May 2018. In general, the weather did not have a significant impact on the construction works.

As the scheme does not involve large bulk earthworks/mass haul, the works were not significantly weather dependent. Detailed weather records have not provided by the contractor. There are no records of any locations of excessive drying or shrinkage.

2.4. Application of acceptability criteria of earthworks materials

The suitability of materials on the project were assessed in accordance with the testing and specifications outlined in Appendix 1/5 [13] and Table 6/1 [14] of the specification, which was prepared base on the defined in the HE Specification for Highways works [15]. Table 4 presents the imported material used. Also, the Health and Safety File includes test results and certificates of these imported materials.

Table 4: List of imported materials

Class	Material
6N*	6N for the backfill behind the gabion\ sheet pile wall and embankment widening.
6G	Gabion basket fill
Geotextile	Geotextile Separator layer

^{*}N. B: Class 6N imported material, which also met the specification for Class 1, was used for both fill to structures and embankment widening to give flexibility in material handling (rather than using a separate Class 1 fill).

All these materials were delivered to site by CGT after submitting Material Approval Requests (MARs). Table 5 shows list of MARs used for earthworks.

Table 5: List of MARs used for earthworks and retaining walls

MAR	Series	Product
0009	600: 6N Material	6N Crushed Limestone
0010	600: 6N Material	Tarmac Ballidon Quarry - 6N
0130	600: 6N Material	20mm down granite- 6N
0090	600: 6N Material	6N Crushed Granite
0079	600: 6N Material	6N Crushed Granite
0122	600; Drainage Geocomposite	Deckdrain drainage geocomposite
0061	600: Geotextile	Non-woven Geotextile
0227	600: Geotextile	Non-woven Geotextile
0226	600: Gabion Wall	Enviromesh welded mesh gabion basket
0143	600: Gabion Wall	Enviromesh woven mesh gabion basket wire
0148	600: Gabion Wall	6G Gabion stone 100mm to 150mm
0300	600: Gabion Wall	6G Gabion stone 100mm to 150mm

2.5. Haul conditions and types of plant used

Bulk earthworks were not used on the scheme because the excavation works were limited to localised small cut and fills, accessed from the hard shoulder in traffic management. Table 6 shows a summary of the plant used.

Table 6: Types of plant used

Category	Plant Type	Activity
Excavators	Tracked 20 tonne & 22 tonne	Topsoil Stripping, forming benches, loading/ filling materials.
	Rubber Tyre 10 tonne & 14 tonne	
Dumpers	6 Tonne Dumpers	Taking away suitable/unsuitable materials from the site to stockpile and bringing the fill material to the site
Rollers	Various	Compaction of 6N material
Bulldozer	CAT D6	Used for general site clearance work
Tipper Trucks	8 wheelers	To transport imported material and haul unsuitable materials to tip

2.6. Comparison between predicted and actual quantities of acceptable and unacceptable material

The earthworks solutions proposed for the scheme required imported Class 6N granular fill; the mixed and variable materials anticipated from cutting excavations were not expected to be suitable for re-use in the widened embankments and could not be transferred directly to fill locations as there was no provision for stockpiling. In addition, as the majority of the site comprises embankments rather than cuttings, it was anticipated that there would not be large volumes of 'site won' materials through excavation of existing cuttings. Therefore, bulk earthworks and re-use of fill material was not envisaged in the design.

During construction, it was confirmed that the cohesive materials from the excavations were not suitable for re-use as backfill to regraded earthworks and structures, where a granular material of higher shear strength was required by the design. Due to the similar specification of Class 1 (general granular fill) and Class 6N (fill to structures), it was found to be efficient to source a single combined imported material to satisfy both specifications, for greater efficiency in delivering material along the worksite.

The site-won materials from excavation of existing earthworks were classified as 2A and 2B and were removed from the site.

2.7. Topsoil and planting

Topsoil was generally stockpiled for reuse in the landscaping. Surplus topsoil was removed from site. Topsoil was reinstated on the new earthworks slopes at a thickness of 150mm to 300mm along the project. Appendix I includes detailed photographs showing the site won topsoil material.

2.8. Validation of site remediation strategy

Not used.

3. Cuttings

3.1. Location of materials excavated and subsequent destination in the works

Several gantry structures, ERAs and drainage/technology ducts are in cuttings. Where widening was required, cutting slopes were graded to 1V:2.5H.

Appendix A shows the modification of earthworks schedule, and Appendix C includes the as-built drawings.

No major earthworks modifications were required at the cutting sections; however, space problems did occur at the shallow cutting locations to accommodate some of the gantry foundations. Retaining structures were used to create additional space at the toe of the cuttings. Details of retaining structures are presented in Section 5.

As explained in section 2.4, the small quantity of material excavated from the widened cuttings did not meet acceptability criteria for re use and was removed from site.

Figure 3-1 Typical minor regrade to cutting slope around existing gantry G111 SB

3.2. Plant used

A summary of plant used for earthworks are listed in Table 6.

3.3. Details of any problems encountered

None encountered.

3.4. Instability problems and unusual ground conditions

The ground conditions and materials encountered during construction were similar to the anticipated ground model in the GIR [1] . All excavated material was classed as 2A and 2B (unsuitable for regrading or fill to structures) and removed from the site. No ground instability problems were encountered during the construction.

3.5. Ground water conditions and problems and drainage measures to overcome them

No major groundwater problems were encountered during regrading of the cutting slopes.

3.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

No contamination or hazardous materials were encountered at cutting locations across the scheme.

4. Embankments

4.1. Source and location of materials placed

The northern part of the scheme between Junction 24a and 25 includes a number of large embankments crossing the River Trent flood plain. Several gantry structures, ERAs and drainage/technology ducts were constructed on embankment sections. The earthworks modifications consisted of re-graded slopes at final gradients typically between 1V:2H and 1V:3.5H. However, only one embankment section was re-designed and checked for a slope of 1V:1.6H. This section located at the following chainages:

- From 188+720 to 188+750: Slope at 32° and full height embankment widening 1V:1.6H; and
- From 188+840 to 188+980: Slope of 32° and full height embankment widening 1V:1.6H.

After topsoil strip and benching of the existing slopes, Class 1 (procured as Class 6N) imported fill was used for regrading embankments. Details of the imported fill are in Appendix D.

The sections of embankment widening are listed in the earthworks modification schedule in Appendix A and as-built drawings are shown in Appendix C.

Figure 4-1 Typical embankment widening construction at CH 183100 SB

4.2. Plant used

A summary of plant used for earthworks is presented in Table 6.

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

4.4. Instability problems and unusual ground conditions

The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

4.5. Ground water conditions and problems and drainage measures to overcome them

No major drainage or groundwater problems were encountered during widening of the embankments.

4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

No contamination or hazardous materials were encountered at cutting locations across the scheme.

4.7. Foundation treatment, including drainage measures and treatment of soft areas

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

4.8. Settlement of foundation and fill material

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

5. Retaining Structures

Retaining structures were constructed at the locations where there was insufficient space for verge widening with an earthworks solution, due to the restrictions of the HE boundary, other infrastructure or on embankments crossing flood plains.

The types of retaining walls constructed on the scheme were conventional sheet pile and King Sheet Pile (KSP) walls, gabion walls and slab on edge walls.

5.1. Sheet pile and king sheet pile walls

Locations of sheet pile and KSP wall structures along with the as-built details are shown in Appendix B. The locations of construction phase design changes are summarised in Table 8 and Table 9. The sheet piling subcontractor was Sheet Piling (UK) Ltd.

5.1.1. Record of soil and groundwater conditions encountered

The encountered ground conditions were broadly as expected in the design as described in the GIR [1] and GDR [2]. No significant groundwater seepages were encountered in the temporary excavations or through the sheet pile walls.

5.1.2. Temporary works required

The piling works were carried out from temporary piling platforms designed and constructed by the contractor. Due to the size of the piling rigs, the width of the piling platforms in cuttings was in some cases greater than the available space in the traffic management. In these locations the piling platform was extended past the line of the sheet pile wall, in a temporary cutting, which was subsequently backfilled with Class 6N material with a geotextile drainage layer (Deckdrain) behind the sheet piles.

Figure 5-1 Sheet piling at ERA E1 showing temporary excavation

Figure 5-2 Deckdrain layer behind backfilled sheet piles in cuttings

On embankments, an extended piling platform was constructed that also formed the widened fill platform behind the sheet piles.

Figure 5-3 Sheet piling on embankment at ERA E3-B1

Pre-boring along the centre line of each sheet pile wall was carried out to ease installation through the Mercia Mudstone.

5.1.3. Details of any problems and changes encountered

5.1.3.1. Construction and procurement efficiencies

The designed sheet pile wall section AZ24 was replaced with ZZ26. This change was raised by the contractor to make use of a quantity of ZZ26 stocked sheet pile sections.

Table 3 presents the locations where the cross section of the sheet pile wall was changed in this way.

Table 7: Change of sheet pile section to make use of stocked materials

No.	Location (NB)/(SB)	From	То	Sheet Pile wall size reported in C01 drawings and Schedule	Installed
1	SB	188+500	188+550	AZ24	ZZ26
2	SB	188+740	188+790	AZ24	ZZ26
3	SB	188+925	188+960	AZ12	AZ18
4	SB	189+270	189+310	ZZ24	ZZ26
5	SB	189+745	189+790	ZZ24	ZZ26
6	SB	192+090	192+520	AZ70	ZZ70
7	SB	193+320	193+350	AZ24	ZZ26

5.1.3.2. Topographic survey changes and minor clashes

As explained in 2.2.1, the final topographic surveys in some cases differed from the LIDAR profiles used in the original design. Localised obstructions and constraints also became apparent on site. In some cases, this led to change in the extent and retained height of retaining walls, as listed in Table 8 and Table 9.

5.1.3.3. Derwent Valley Aqueduct

The Derwent Valley Aqueduct (DVA) is an existing 19th century large diameter water supply pipeline that crosses the M1 embankment diagonally between about NB:185+893 to 186+360 and SB:186+390 to 186+443. CGT raised an RFI (584) regarding driving a sheet pile wall in these sections of the verge, as the asset owner Severn Trent required the vibration near the DVA to be limited to 1.5 mm/sec.

CGT performed vibration monitoring at another sheet pile wall near to the DVA. These results showed that an exclusion zone of 25 m was required to keep the vibration level caused by the sheet piling below 1.5 mm/sec. The contractor asked AMAR to review alternative solutions that would not subject the DVA to excessive vibration inside the exclusion zone. After a multidisciplinary workshop, it was decided to omit driving of the sheet pile wall at this section subject to the following checks:

- Whether the new SMP technology items can be accommodated in the existing verge or not;
 and
- Whether the storage capacity of the flood plain would be reduced by using an earthworks solution.

The proposed sheet pile wall cross section was checked for gain or loss of flood storage capacity for each 10m interval. The conclusion was that the short section adjacent to the DVA could be converted to earthworks and compensated by lowering the ground level in front of the sheet pile wall nearby between NB:186+100 and 186+200.

Figure 5-4 Derwent Valley Aqueduct (Warren Farm Culvert) SB with earthworks widening under construction

5.1.3.4. 400kV overhead power lines

This change took place as a result of RFI 243. This change took place because of local site constraints recognised during construction. The original sheet pile wall design between CH188+720 and 188+980 was located underneath 400kV overhead cables on pylons. The piling rig operating height was 15m, whereas the cable height was approximately 10m. Between NB 188+720 to 188+980, the retaining solutions were modified as follows:

- From 188+720 to 188+750: Slope at 32° and full height embankment widening 1V:1.6H;
- From 188+750 to 188+840: Sheet pile wall; and
- From 188+840 to 188+980: Slope of 32° and full height embankment widening 1V:1.6H.

5.1.3.5. J24 southbound on slip

This change took place as a result of RFI 210, The DF5 design proposed a sheet pile wall solution to construct the required widening. However, during construction, an updated field survey showed enough room to the site boundary to use a regrade option. An embankment regrade at 1V: 2.5H was designed, providing a cost and programme saving by eliminating the sheet piling works including traffic management and temporary works.

5.1.3.6. Lockington Brook West culvert

This change took place as result of RFI 271. The sheet pile wall was deleted at this section to avoid a clash with Lockington Brook West Culvert (CH185892 to 186360). An earthwork regrade solution was designed after review of the actual topographical survey at this location.

5.1.3.7. Sheet pile clash at Gantry 318 (NB :191770 to 191830)

At DF5 stage, the designed earth works between CH191765 to 191830 was an earthwork embankment. After site clearing and detailed topographical survey, the designed earthwork embankment clashed with the with the drainage system which included the following elements:

- Existing ditch;
- Existing headwall of 1100mm dia. inlet pipe at CH191791; and
- Existing filter drain.

Therefore, it was necessary to redesign a retaining solution which included installation of a sheet pile wall along the clash line to retain the embankment and to keep the functionality of drainage system. The retaining solution was a cantilever sheet pile wall of maximum retained height of 1.75m and total pile length 6.0m.

5.1.4. Pile logs summary, pile test results and other relevant information

CGT provided installation records of sheet pile wall in both northbound and southbound. These installation records show the following:

- Consistent ground conditions with the GDR
- Installation of sheet pile with agrees with the specified tolerance
- Sheet pile wall sections agrees with the specified section

Installation records of the sheet pile walls are presented in the Health and Safety File.

5.1.5. Settlement records with dates of each major stage including backfill

Not applicable.

5.1.6. As-built details

As-built drawings of the sheet pile walls are provided in Appendix C.

5.1.7. Chemical attack

According to GIR [1] and GDR [2], sacrificial thickness on each relevant surface (i.e. front and back surface) of the sheet pile was designed in accordance with BD 42/00 [16]. The assumed maximum corrosion rate used was 0.0015mm/side/year. This was in accordance with BS 8002 [17] and clause 3.2 of the ArcelorMittal Piling Handbook [18], refer to AIP, Design of Sheet Pile Retaining Wall (HA549342-AMAR-HGT-SWI-RP-CE-000004) [19]. There was no change in the design assumption during construction.

Table 8: Summary of design changes of sheet pile walls

				DF5			As-built						
				Max.	Sheet Pile Wall					Sheet Pile V	Vall		
Earthwork Type		Chainage End	•		Max. Embedment Depth (m)	Total Pile Length (m)	Section	Steel Grade	Max. Embedment Depth (m)	Total Pile Length (m)	Section	Steel Grade	Reason for Change
Cutting (NB)	182880	182890	10	0.4	1.1	1.5	AZ 50	S 390 GP	-	-		-	Actual topographical survey on site offered enough space for regrade solution.

Table 9 : Summary of design changes of king sheet pile walls

	DF5										As-built													
	,		0		King Sh	eet Pile Secti		(700mm		termediate lections (770				4)		King S		Pile Wall ctions)	(700mm	In	ntermed	diate KSP (770mm)		
Earthwork Type	Chainage Start	Chainage End	Total Structure Length (m)	Max. Retained Height (m)	Max. Embedment Depth (m)			Steel Grade	Min. Embedment	Section	Steel Grade	Chainage Start	Chainage Start Chainage End Total Structure Length (m) Max. Retained Height (m) Max.	Max. Embedment Depth	Total Pile Length (m)	Section	Steel Grade	Min. Embed- ment (mbgl)	Total Length (m)	Section	Steel Grade	Reason for Change		
Cutting (SB)	183798	183950	152	1.4	4.1	5.5	AZ 12	S 390 GP	1.0	S 270 GP	AZ 12		Deleted							Actual levels on site offered enough space for regrade solution.				
(36)							12	GF		GF	12	183860	183950	90	1.4	4.1	5.5	<i>ZZ</i> 18	S 355 GF	1.0	2.4	ZZ 18	S 355 GP	
Embankment (SB)	189155	189171	16	2.5	5.3	8.0	AZ 24	S 390 GP	1.0	S 270 GP	AZ 12		Deleted							Actual levels on site offered enough space for regrade solution.				
Embankment (SB)	-	-	-	-	-	-	-	-	-	-	-	189163	189184	21	2.5	5.3	8.0	ZZ 26	S 355 GP	1.0	3.7	ZZ 18	S 355 GP	Reduced Wall length
Cutting (SB)	193680	193691	11	1.5	5.5	7.0	AZ 24	S 390 GP	1.0	S 270 GP	AZ 12	Deleted								Actual levels on site offered enough space for regrade solution.				
Cutting (NB)	182880	182890	10	0.40	•	-	•		- 1	-	-						D	eleted						Actual levels on site offered enough space for regrade solution.
Cutting (NB)	184071	184140	69	1.0	3.5	4.5	AZ 12	S 390 GP	1.0	S 270 GP	AZ 12						D	eleted)						Actual levels on site offered enough space for regrade solution.
Cutting (NB)	184140	184430	290	1.8	4.2	6.0	AZ 12	S 390 GP	1.0	S 270 GP	AZ 12						D	eleted						Actual levels on site offered enough space for regrade solution.
Cutting (NB)	184430	184453	23	1.0	3.5	4.5	AZ 12	S 390 GP	1.0	S 270 GP	AZ 12						D	eleted)						Actual levels on site offered enough space for regrade solution.
Embankment (NB)	188522	188549	27	2.7	8.3	11.0	AZ 24	S 390 GP	1.0	S 270 GP	AZ 12						D	eleted						Actual levels on site offered enough space for regrade solution.
Embankment (NB)	188721	188740	19	2.0	6.0	8.0	AZ 24	S 390 GP	1.0	S 270 GP	AZ 12		Deleted							Actual levels on site offered enough space for regrade solution.				
Embankment (NB)	188850	188865	15	2.0	7.0	9.0	AZ 24	S 390 GP	1.0	S 270 GP	AZ 12		Deleted							Actual levels on site offered enough space for regrade solution.				
Embankment (NB)	188865	188893	28	2.0	6.0	8.0	AZ 24	S 390 GP	1.0	S 270 GP	AZ 12						D	eleted						Actual levels on site offered enough space for regrade solution.
Cutting (NB)	191557	191582	25	0.9	3.8	4.7	AZ 12	S 390 GP	1.0	S 270 GP	AZ 12						D	eleted						Actual levels on site offered enough space for regrade solution.

5.2. Gabion walls

The location of gabion walls along with the as-built details are shown in Appendix A. In addition, the locations of design changes (Post DF5) are summarised in Table 11. The materials used are recorded in Appendix D.

5.2.1. Record of soil and groundwater conditions encountered

Material encountered during construction were similar to the reported ground conditions in the GIR [1]. Also, all excavated material was classified as 2A and 2B (unsuitable) and removed from site. No ground instability problems were encountered during the construction of the gabion walls.

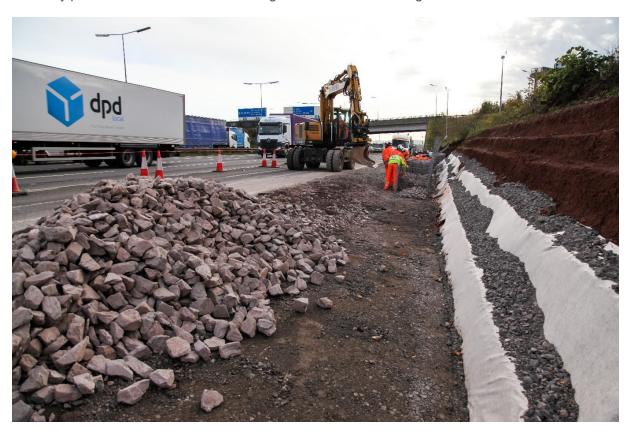


Figure 5-5 Gabion wall construction at CH 182800

Figure 5-6 Gabion wall construction CH 182800 - detail

5.2.2. Temporary works

All gabion walls were constructed in temporary excavations, with the slopes benched for effective backfilling.

5.2.3. Details of any problems and changes encountered

5.2.3.1. East Midlands Airport landing light ducts

At Link 2 Southbound, the contractor raised RFI no 192and asked AMAR to revise the design of the sheet pile wall from CH 183+950 to 183+800, because of the contractor located the whereabouts of the East Midland's Airport landing lights duct from the central reserve to the south bound verge. Therefore, the contractor could not drive sheet pile wall through the ducts. However, between Ch 183+790 to 183+850, the sheet pile wall was replaced by a gabion wall.

It is necessary to highlight that part of gabion wall demolished and rebuilt because of defective workmanship. Also, within this stretch, the gabion wall has wall height greater than 1.50m. Therefore, it was classified as a structure.

AMAR redesigned the retaining solution at this area and replaced the sheet pile wall with a gabion wall to avoid any clash with the relocated East Midland's Airport landing lights duct.

5.2.3.2. SMP- East Midlands Gateway interface

At the interface between SMP M1 J23a-25 and East Midland Gateway project (EMG) at SB 185+764 to 185+770, AMAR used a gabion wall to provide a flat verge between the new entry slip and the mainline carriageway. This flat verge was required to accommodate the technology items (A chamber and communications ducting).

5.2.3.3. Localised gabion walls to accommodate lighting columns

The DF5 design assumed lighting columns to be installed in flat verges. At certain locations, the verge width was such that a localised retaining solution of about 1m in height was needed to provide a flat area for the lighting column.

Therefore, the contractor requested approval to construct gabion walls of typical length 4m and cross section 1.5m high x 1.5m wide (including the embedment). Locations of these gabion walls are listed in Table 10.

Table 10: Locations of gabion walls to accommodate lighting columns

Link	Location	Chainage	Lighting Column			
Link 2	SB	183610	PC 100			
Link 2	SB	183640	PC 102			
Link 2	SB	183700	PC 106			
Link 2	SB	183740	PC108 and A071			
Link 2	SB	183770	PC110			
Link 2	SB	184150	A079			

Figure 5-7 Small gabion wall behind lighting column

5.2.4. Sub formation test results and other relevant information

According to typical gabion wall details presented in drawing no HA549342-AMAR-HGT-SWI-DR-CE-000602, a layer of 6N was used below the wall to provide a level platform for construction.

5.2.5. Settlement records with dates of each major stage including backfill behind the wall

Not applicable.

5.2.6. Details of as-built foundations

As-built drawings are shown in Appendix C.

5.2.7. Chemical attack

Not applicable.

Table 11: Summary of design changes of gabion walls

	DF5				As-Built						
Earthwork Type	Chainage Start	Chainage Length (m)		Max. Retained Height (m)	Chainage Start	Chainage End	Length (m)	Max. Retained Height (m)	Reason for Change		
Cutting (NB)	182800	182880	80	1	102000	192900	00		Actual lavels on site offers enough anges for regreds colution		
Cutting (NB)	182880	182890	10	0.4	182800	182890	90		Actual levels on site offers enough space for regrade solution.		
Cutting (NB)	183710	183780	70	0.9	-	-	-		Actual levels on site offered enough space for regrade solution.		
Cutting (NB)	184000	184020	20	0.9	-	-	-		Actual levels on site offered enough space for regrade solution.		
Cutting (SB)	193320	193490	170	0.8	-	-	-		Actual levels on site offered enough space for regrade solution.		
Cutting (SB)	-	-	-	-	183790	183790 183850 60 2		2	The sheet pile wall original proposed in this stretch couldn't be driven because of the cable ducts, therefore a gabion wall of 2m height was introduced as an alternative to the original sheet pile wall.		
Cutting (SB)	-	-	-	-	185764	185770	6	1.0	Actual topographical survey of the site offered a small space for regrade solution. Therefore, gabion wall required.		
Cutting (SB)	-	-	-	-	193320	193490	170	1.5	Actual topographical survey at site offered a small space for regrade solution. Therefore, gabion wall required.		

5.3. Slab-on-edge walls

Slab-on-edge solutions were included (Post DF5) to provide up to 0.5m high retaining walls behind minor structure locations. Locations of slab-on-edge wall structures along with the as-built details are summarised in Appendix B.

Figure 5-8 Typical slab-on-edge wall at minor structure location

5.3.1. Record of soil and groundwater conditions encountered

No water seepage was observed along the slab-on-edge walls.

5.3.2. Temporary works required

No benching was required for the install of slab-on-edge walls.

5.3.3. Details of any problems encountered

No problems were encountered during construction.

5.3.4. Sub formation test results and other relevant information

Not applicable.

5.3.5. Settlement records with dates of each major stage including backfill behind the wall

Not applicable.

5.3.6. Details of as-built foundations

As-built drawings are shown in Appendix C.

5.3.7. Chemical attack

In DF5 stage, the concrete has been classified according to BRE Special Digest 1 (2005) [20]. Because all foundations are in SMP M1 J23a-25 are in contact with either:

- Mercia Mudstone; or
- Embankment fill, which is comprised of reworked Mercia Mudstone.

The concrete classification was based on the Mercia Mudstone which is a stratum that is known to have high sulphate concentrations as noted within the BRE Special Digest 1 [20], Design sulphate class DS-3 and Aggressive Chemical Environment for Concrete (ACEC) class AC-3 was required.

No modification occurred to concrete classification during construction stage.

6. Subgrade and capping

6.1. Method of subgrade preparation, details of capping materials used, and details of any problems encountered

Generally, no problems were encountered during preparation of the subgrade, capping and pavement.

Formation testing was carried out in the central reserve using plate bearing tests and areas of widened verge using the Mexe probe to determine the equivalent CBR. All CBR values exceeded the minimum 2.5% for the pavement design and therefore no additional pavement thickness was required.

The sub-grade was prepared using excavators up to 22T and vibratory rollers of various sizes. The formation was prepared in accordance to Table 6/4 in Specification for Highways Works.

Refer to MARs 0041, 0042, 0073 CGT - Type 1 Sub base.

7. Drainage

7.1. Details of temporary drainage and its effectiveness Not applicable.

7.2. Methods of installing permanent drainage and details of any problems encountered

The drainage strategy for the SMP J23a-25 outlined in the GDR [2] and it was developed in accordance with the requirements of the followings design manuals:

- IAN 161/15 Smart Motorways [21];and
- Design Manual for Roads and Bridges (Volume 4, Section 2) [22].

In 2016, AMAR issued the Drainage Strategy Report [23], which outlined the general principles of design development of drainage works, scheme specific assumptions and risks.

The SMP works had a significant impact on the existing drainage network. The proposed drainage design was designed to interface with existing earthworks drainage. This interface included the following:

- The ditches were diverted, where widening of existing earthworks was proposed.
- The existing ditches were cleared of any debris and overgrown vegetation was removed as part of the site clearance works. This to ensure that the ditches are returned to their original capacity.
- Existing outfalls from the mainline drainage system, which discharged directly into these ditches, were retained as part of the drainage design and the existing headwalls were also retained.
- Replacing the drainage pipes identified within the drainage survey as having a Grade 4 or Grade 5 defect, i.e. pipes classified as either 'not fit for purpose or unsafe' or 'blocked or in unsafe condition'.

However, in some areas, the scheme had a lower impact on the existing drainage pipe networks. For example, cross-carriageway drainage was retained and re-used wherever possible to minimise the requirement to construct new drainage, subject to the existing pipes being in acceptable condition.

8. Imported Materials

8.1. Types of imported materials and their Use

8.2. Sources of imported materials and their location in the works

The source of the following imported materials and their location used on site are shown in Table 12.

Table12: Sources of imported materials

Material	Source	Location in works
6N	Breedon - Cloud Hill Quarry	Embankment fill.
(Structural	Breedon- Cliffe Hill Quarry	Backfill behind the retaining structures &
and earthworks fill)	MQP – Cliffe Hill Quarry	foundation.
	Aggregate Industries; Bardon Hill Quarry	
Class 6G	Aggregate Industries; Bardon Hill Quarry	Gabion filling
(Gabion Stone fill)		
Gabion Baskets	Burdens- Gabions baskets	Refer to Section 10
	(3x1x1m, 2x1x1m and 1x1x1m units)	
Geotextile		Between new & existing earthworks
(Separator Layer)		
Pre-cast Concrete	Keyline/Marshalls	Install up 0.5m height retaining wall
block used for Slab on Edge		
Deck drain	ABG	Behind Sheet pile wall
Concrete mixed	Varies	Concrete piles
Sheet pile Mill Certificates	Anshan Zizhu Heavy Casting Co. , Ltd.	Sheet pile wall

8.3. Acceptability and performance of imported materials

The imported materials were deemed acceptable and performed as expected; in accordance with Table 6/1 of the specification for Highway Works [24] and Series 600 specification appendixes [14].

CGT provided AMAR with results of 1797 tests of 6N material. These tests were carried out between 28/04/2017 and 26/01/2018. A summary of these test results is presented in Table 13.

Table 13: Summary of 6N test results

Link	Average Moisture Content [%]	Average passing from sieve 0.067mm [%]	rom sieve Coefficient .067mm		Average MDD [2]	Average Oxidizable Sulphides	Average Water Soluble Sulphate
2	3.66	8.57	86.90	5.35	2.37	0.66	683.33
3	3.66	8.51	83.20	5.52	2.36	0.66	235.00
4A	3.56	7.80	75.14	5.57	2.35	NA[3]	NA[3]
4B	3.84	7.61	65.08	5.93	2.33	NA ^[3]	NA ^[3]

[1] MDD: Maximum Dry Density.

[2] OMC: Optimum moisture content.

[3] NA: Not Available.

Summary results of the tests carried out on each imported material type and approval forms are presented in the Health and Safety File [25].

9. Strengthened Earthworks

9.1. Description of strengthened earthworks types and locations

Not applicable.

9.2. Fill material used

Not applicable.

9.3. Records of soils and groundwater conditions encountered, and drainage measures required

Not applicable.

9.4. Inspection and maintenance requirements Not applicable.

9.5. Details of any in-situ testing Not applicable.

9.6. Details of any problems encountered Not applicable.

10. Structure Foundations

10.1. Confirmatory Ground Investigation

In line with the SMP design approach, no ground investigation was carried out during the design phase as a recent ground investigation had been carried out for a previous widening scheme. The ground investigations reviewed in the Ground Investigation Report [1] were supplemented at key locations by a confirmatory ("Just in time" or JIT) ground investigation. The GI was procured and supervised by Costain Galliford Try jv and carried out by Nicholls Colton Group during the siteworks period between April 2017 and November 2017. The drilling works were generally carried out in night shifts to avoid blocking the site for the main works and were attended by an AMAR engineer for geotechnical design oversight.

The scope was as shown in Table 14:

Table 14 Confirmatory (JIT) ground investigation

Exploratory hole type	Number
Dynamic sample/rotary core	48
Dynamic sample/rotary core (slope climbing rig)	4
Cone penetration test	4

Of these 52 exploratory holes, 32 were to confirm design of gantries (including both carriageways of portal gantries) and the remainder for large sign, technology and ROTTM foundations.

Figure 10-1 Dynamic sampling rig Link 4b NB ch 192900 (pulled onto verge during day shift)

Factual borehole logs from the JIT ground investigation are attached in Appendix G.

10.2. Gantries

10.2.1. General

Pile foundations were constructed to support the gantry structures, comprising 750mm and 900mm diameter bored piles in four-pile groups. Locations of gantry structures along with the as-built details are shown in Appendix B. In addition, the locations of design changes (Post DF5) are summarised in Table 17.

Table 15: Summary of gantries.

Gantry Type	Number
MS3 cantilever	2
MS4 cantilever	12
ADS cantilever	7
Super cantilever	3
Super span portal	3
TOTAL	28

10.2.2. Design validation

During the construction phase, each gantry pile foundation design base was validated using the results of the confirmatory (JIT) ground investigation. The design validation and checking by the AMAR site team included the following steps:

- Check and return comments on the confirmatory borehole logs.
- Compare the ground conditions encountered in the confirmatory borehole with the ground model used for DF5 design;
- Ensure that the minimum pile socket length in Mercia Mudstone is 2m (if encountered);
- Review the SPT results and shear strength parameters of each stratum
- Obtain the latest loading combinations (Serviceability Limit State SLS and Ultimate Limit State ULS) from AMAR structures team and determine initial pile length and diameter
- Perform pile group analysis using PIGLET software to obtain the axial load, lateral load and moment distribution along the pile shaft as well as the pile cap deflection.
- Perform sensitivity checks to evaluate both maximum lateral deflection and axial loads.

The design validation revealed that in all cases the DF5 design was adequate and no more adverse conditions were revealed. The pile design for DF5 was relatively conservative and the foundations could have been optimised using the results of JIT investigation. However, there was not enough time to accommodate this design change in the construction programme.

10.2.3. Construction

Piles for gantry foundations were constructed in accordance with the Works Information. The piling subcontractor was Van Elle Ltd. The piles were installed using Soilmec SR-75 and Hutte 207 piling rigs

for the 900mm and 750mm diameter piles respectively. CFA, SFA (Sectional Flight Auger) and rotary open hole boring methods were employed with temporary casing as required by the ground conditions

Figure 10-2 900mm diameter pile installation using Soilmec SR-75 rig

Figure 10-3 Completed 2x2 pile cap Gantry G203

Figure 10-4 750mm pile installation with Hutte rig (Gantry 318)

10.3. Record of soil and groundwater conditions encountered

No adverse or unexpected groundwater conditions were encountered as each pile group had a JIT borehole within a few metres of its location.

10.4. Temporary works required and their effectiveness

Temporary piling platforms were designed and installed by CGT. The piling platforms were certified by CGT in accordance with FPS guidance as part of the temporary works design.

10.5. Details of any problems encountered

No significant problems were encountered.

amey?" ARUP

10.6. Pile logs summary, pile test results and other relevant information

10.6.1. Installation

For gantries, CGT provided installation records of the concrete piles. These installation records show the following:

- Consistent ground conditions with the GDR
- Installation of piles agrees with the specified tolerance
- Drilled pile diameter agrees with the specified diameter

Concrete and steel reinforcement were delivered to site by CGT after submitting Material Approval Requests (MARs). Table 5 shows the MARs relevant to the foundation piling works,

Table 16: List of MARs used for piling works

MAR No.	Series and Element	Brief Description/ Product
0059	1600: Concrete Piles	C35/45 Mix 3 C32/40 Mix 4 C32/40 Mix 5
0093	1600: Concrete Piles	Rebar
0114	1600: Concrete Piles	Rebar Couplers
0139	1600: Concrete Piles	Mix 3: C35/45 Mix 5: C32/40
0218	1600: Concrete Piles	Concrete mix Design C35/45

Full installation records of gantries and MARs used for piling works are presented in the Health and Safety File.

Refer to Section 12 for details of pile testing.

10.7. Details of as-built foundations

As-built drawings of the pile foundations are attached in Appendix C.

10.8. Chemical attack on concrete

Table 17: Locations and Piled Foundations Details of Gantries

Asset	Chainage (m)	Carriageway		DF5			As Built						
			Number of Piles	Pile Diameter (mm)	Design Pile Length (m)	Number of Piles	Pile Diameter (mm)	Re-design Pile Length (m)	Installation method	Static load test Y/N			
Gantry 101 (MS4)	181950	NB	4 (2 x 2)	0.75	11	4 (2 x 2)	0.75	11	Bored	N			
Gantry 112 (Super Cantilever)	185180	SB	4 (2 x 2)	0.9	28	4 (2 x 2)	0.9	20	Bored	Y			
Gantry 202 (Super-span Portal)	186240	NB	3 (1 x 3)	0.9	15.5	3 (1 x 3)	0.9	16	Bored	N			
Gantry 202 (Super-span Portal)	186240	SB	3 (1 x 3)	0.9	15.5	3 (1 x 3)	0.9	16	Bored	Y			
Gantry 203 (ADS)	186390	SB	4 (2 x 2)	0.9	25	4 (2 x 2)	0.9	25	Bored	N			
Gantry 204 (Super Cantilever)	186526	NB	4 (2 x 2)	0.9	19	4 (2 x 2)	0.9	19	Bored	N			
Gantry 301 (Super-span Portal)	186847	NB	4 (2 x 2)	0.9	13	4 (2 x 2)	0.9	16	Bored	Y			
Gantry 301 (Super-span Portal)	186847	SB	4 (2 x 2)	0.9	13	4 (2 x 2)	0.9	16	Bored	Y			
Gantry 302 (ADS)	187073	SB	4 (2 x 2)	0.9	21	4 (2 x 2)	0.9	21	Bored	N			
Gantry 326 (MS4)	187300	SB	4 (2 x 2)	0.75	17	4 (2 x 2)	0.75	17	Bored	Y			
Gantry 303 (ADS)	187608	SB	4 (2 x 2)	0.9	20	4 (2 x 2)	0.9	21	Bored	Υ			
Gantry 304 (Super Cantilever)	187650	NB	4 (2 x 2)	0.9	12.5	4 (2 x 2)	0.9	12.5	Bored	Υ			
Gantry 305 (MS4)	187818	SB	4 (2 x 2)	0.75	9	4 (2 x 2)	0.75	12.5	Bored	Υ			
Gantry 307 (MS4)	188529	NB	4 (2 x 2)	0.75	15	4 (2 x 2)	0.75	15	Bored	N			
Gantry 308 (ADS)	188760	SB	4 (2 x 2)	0.9	26	4 (2 x 2)	0.9	26	Bored	Y			
Gantry 309 (MS3)	188947	SB	4 (2 x 2)	0.75	12	4 (2 x 2)	0.75	14	Bored	Y			
Gantry 310 (MS4)	189172	SB	4 (2 x 2)	0.75	6	4 (2 x 2)	0.75	14	Bored	N			
Gantry 311 (Super-span Portal)	189780	NB	4 (2 x 2)	0.9	15.5	4 (2 x 2)	0.9	16	Bored	Y			
Gantry 311 (Super-span Portal)	189780	SB	4 (2 x 2)	0.9	15.5	4 (2 x 2)	0.9	16	Bored	N			
Gantry 312 (MS4)	190605	SB	4 (2 x 2)	0.75	16	4 (2 x 2)	0.75	16	Bored	N			
Gantry 313 (MS3)	190771	NB	4 (2 x 2)	0.75	8	4 (2 x 2)	0.75	14	Bored	Y			
Gantry314 (MS4)	191096	NB	4 (2 x 2)	0.75	11	4 (2 x 2)	0.75	11	Bored	Y			
Gantry 315 (ADS)	191296	NB	4 (2 x 2)	0.9	25	4 (2 x 2)	0.9	26	Bored	Υ			
Gantry 316 (MS4)	191430	SB	4 (2 x 2)	0.75	10.5	4 (2 x 2)	0.75	10.5	Bored	N			
Gantry 318 (MS4)	191801	NB	4 (2 x 2)	0.75	13	4 (2 x 2)	0.75	13	Bored	N			
Gantry 319 (ADS)	192101	NB	4 (2 x 2)	0.9	25	4 (2 x 2)	0.9	25	Bored	N			
Gantry 320 (Super Cantilever)	192290	SB	4 (2 x 2)	0.9	12.5	4 (2 x 2)	0.9	12.5	Bored	N			
Gantry 321 (MS4)	192476	NB	4 (2 x 2)	0.75	15	4 (2 x 2)	0.75	15	Bored	Υ			
Gantry 322 (ADS)	192906	NB	4 (2 x 2)	0.9	15	4 (2 x 2)	0.9	15	Bored	Υ			
Gantry 323 (MS4)	193300	SB	4 (2 x 2)	0.75	6	4 (2 x 2)	0.75	6	Bored	Υ			
Gantry 324 (MS4)	193331	NB	4 (2 x 2)	0.75	7	4 (2 x 2)	0.75	7	Bored	Y			

10.9. Remote Operated Temporary Traffic Management Signs (ROTTMS)

Remote Operated Temporary Traffic Management Sign (ROTTMS) were installed with planted foundations. The typical foundation diameters were 450mm and 750mm, and the planted depth varied from 3.5m to 4.50m, except for FTP_SB5_800y which was constructed with two 450mm diameter piles 3.5m long. Locations of the ROTTMS structures along with the as-built details are shown in Appendix B. In addition, the locations of design changes (Post DF5) are summarised in Table18.

10.9.1. Record of soil and groundwater conditions encountered

Encountered ground conditions were broadly similar to the anticipated materials encountered during ground investigations works. No groundwater was recorded during the installation of the foundations.

10.9.2. Temporary works required and their effectiveness

No temporary works were required as the piles were installed from the existing hard shoulder using small plant.

10.9.3. Details of any problems encountered

No problems in installation of ROTTMS foundations were encountered.

10.9.4. Pile Logs summary, pile test results and other relevant information

For ROTTMS, CGT provided installation records of the concrete piles. These installation records show the following:

- Consistent ground conditions with the GDR,
- Installation of ROTTMS piles agrees with the specified tolerance; and
- Sheet pile wall sections agrees with the specified section.

Installation records are presented in the Health and Safety File.

10.9.5. Details of as-built foundations

As-built drawings are shown in Appendix C.

10.10. Chemical attack on concrete

Table18: Summary of design changes of foundations of ROTTMS

				D	F5			As	built		
Asset	Chainage (m)	Carriageway	Foundation type	Planted / Pile Diameter (mm)	Design Planted / Pile Length (m)	Bored Pile Length (m)	Foundation Type	Planted / Pile Diameter (mm)	Design Planted / Pile Length (m)	Bored Planted / Pile Length (m)	Reason for Change
RAD_02	182222	NB	Planted	Foundati	on Design not issu	ied in DF5	Planted			-	Implementation of BD 94/17
RAD_04	182812	NB	Planted	Foundati	on Design not issu	ed in DF5	Planted			-	Implementation of BD 94/17
RAD_05	183240	NB	Planted	Foundati	on Design not issu	ed in DF5	Single Pile	450	5.0	4.08	
RAD_07	183781	NB	Planted	Foundati	on Design not issu	ed in DF5	Planted			-	Implementation of BD 94/17
RAD_08	183850	SB	Planted	Foundati	on Design not issu	ed in DF5	Planted			-	Implementation of BD 94/17
RAD_09	184350	NB	Planted	Foundati	on Design not issu	ed in DF5	Planted			-	Implementation of BD 94/17
RAD_10	184420	SB	Planted	Foundati	on Design not issu	ed in DF5	Planted			-	Implementation of BD 94/17
RAD_11	184867	NB	Planted	Foundati	on Design not issu	ed in DF5	Single Pile	750	5.0	3.98	
RAD_12	184921	SB	Planted	Foundati	on Design not issu	ed in DF5	Planted			-	Implementation of BD 94/17
RAD_15	186265	SB	Planted	Foundati	on Design not issu	ed in DF5	Single Pile	450	5.0	3.98	
RAD_17	186873	NB	Planted	Foundati	on Design not issu	ed in DF5	Single Pile	450	5.0	3.98	
RAD_18	187290	SB	Planted	Foundati	on Design not issu	ed in DF5	Single Pile	750	5.0	3.98	
RAD_25	189769	NB	Planted	Foundati	on Design not issu	led in DF5	Single Pile	450	5.0	3.98	
RAD_28	191085	NB	Planted	Foundati	on Design not issu	led in DF5	Single Pile	450	5.0	3.98	
RAD_29	191440	SB	Planted	Foundation Design not issued in DF5			Planted			-	Implementation of BD 94/17
RAD_32	192313	SB	Planted	Foundation Design not issued in DF5			Planted			-	Implementation of BD 94/17
RAD_35	193290	SB	Planted	Foundation Design not issued in DF5			Planted			-	Implementation of BD 94/17
RAD_37	193970	SB	Single Pile	450	3.0	1.98	Single Pile	750	5.0	3.98	Removed from Schedule

10.11. Environmental Barriers

Environmental Barriers were installed at 25 locations. At 12 locations revised foundations were used, which consisted of 450mm diameter planted foundations. This foundation type was selected because of implementing BD94/17. Whilst BD 94/17 does not explicitly cover Environmental Barriers, the design method was adopted following discussions and approval from Highways England.

Where the foundations were converted from bored to planted, the pile caps were omitted. Therefore, this solution provided benefits to the scheme by reducing the construction time. Also, the planted foundation design was applied to a small number of foundations found on site where modifications were required due to topography inconsistencies relative to the LIDAR survey, or other on-site issues.

Locations of Environmental barriers along with the as-built details are shown in Appendix B. In addition, the locations of design changes (Post DF5) are summarised in Table19.

10.11.1. Record of soil and groundwater conditions encountered

The encountered ground conditions were similar to the reported ground conditions in the GIR. No groundwater was encountered in the foundation works.

10.11.2. Temporary works required and their effectiveness

Where possible, the piling works were carried out from the existing hard shoulder. Where used, the temporary piling platforms were certified by CGT in accordance with FPS guidance.

10.11.3. Details of any problems encountered

None encountered.

10.11.4. Pile test results and other relevant information

A summary of test results is included in Appendix F.

10.11.5. Details of as-built foundations

As-built drawings are shown in Appendix C.

10.11.6. Chemical attack on concrete

Table19: Summary of design changes of foundations of environmental barriers

								As Built								
	Chainage	Chainage		DF5				e		Normal	Section	End Se	ction	Next Se	ection	
Asset	Start (m)	End (m)	Length (m)	Noise Barrier Height (m)	Pile Type	Pile Diameter (mm)	Design Pile Length (m) (m)	Noise Barrier Height (m)	Pile Type	Dia (mm)	Planted Depth (m)	Dia (mm)	Planted Depth (m)	Dia (mm)	Planted Depth (m)	Reason for Change
NB7_2 (NB)	187870	187945	75	3	Bored	450	9.0	3	Planted	450	3.0	600	3.3	600	3.0	Implementation of BD 94/17
NB7_4 (NB)	188000	188195	195	3	Bored	450	9.0	3	Planted	450	3.0	600	3.3	600	3.0	Implementation of BD 94/17
ENS2_2 (SB)	189550	189690	140	4	Bored	750	8.0	4	Planted	600	2.5	600	3.0	600	2.8	Implementation of BD 94/17
	189690	189730	40						Planted	450	3.0	600	3.3	600	3.0	
	189730	189750	20						Planted	450	3.4	600	3.8	600	3.6	
	189750	189792	42						Planted	450	1.7	600	2.0	450	1.8	
ENS2_3 (SB)	189792	189820	28	3	Bored	450	7.0	3	Planted	450	3.0	600	3.3	600	3.0	Implementation of BD 94/17
	189820	189840	20	1					Planted	450	3.4	600	3.8	600	3.6	
	189840	189915	75						Planted	450	3.0	600	3.3	600	3.0	
	189915	189935	20	1					Planted	450	3.4	600	3.8	600	3.6	
	189950	190115	165			450	9.0		Planted	450	3.0	600	3.3	600	3.0	
	190115	190125	10	1		750	7.0		Planted	450	3.3	600	3.6	600	3.4	
ENS2_5 (SB)	190125	190245	120	3	Bored	450	9.0	3	Planted	450	3.0	600	3.3	600	3.0	Implementation of BD 94/17
	190245	190265	20			750	7.0		Planted	450	3.4	600	3.8	600	3.5	
	190265	190375	110			450	9.0		Planted	450	3.0	600	3.3	600	3.0	
ENS3_1 (SB)	190395	190655	260	3	Bored	450	9.0	3	Planted	450	3.1	600	3.4	600	3.2	Implementation of BD 94/17
ENS3_3 (SB)	190660	191030	370	3	Bored	450	6.0	3	Planted	450	3.1	600	3.4	600	3.2	Implementation of BD 94/17
ENS3_6 (SB)	191400	191455	55	4	Bored	750	6.0	4	Planted	600	2.8	600	3.3	600	3.0	Implementation of BD 94/17
ENS4_1	190835	190945	110		Б	450	4.0	0	D	450	3.0	600	3.3	450	3.3	
(NB)	190945	191025	80	2	Bored	450	4.0	2	Planted	450	2.5	600	2.8	450	2.8	Implementation of BD 94/17
	191025	191060	35				4.0			450	2.2	600	2.5	450	2.5	
ENS4_2	191060	191080	20			450	5.0		D	450	2.8	600	3.1	450	3.0	
(NB)	191080	191310	230	2	Bored	450	4.0	2	Planted	450	2.9	600	3.2	450	3.0	Implementation of BD 94/17
	191310	191360	50	1			4.0			450	2.8	600	3.1	450	3.0	
ENS4_4 (NB)	191365	191480	115	2	Bored	450	6.0	2	Planted	450	1.6	600	1.9	450	1.9	Implementation of BD 94/17
	192000	192020	20				4.0			600	2.5	600	3.0	600	2.8	
ENS5_2 (SB)	192020	192138	118	4	Bored	750	6.0	4	Planted	600	2.5	600	3.0	600	2.8	Implementation of BD 94/17
_ ` '	192138	192165	27	1			6.0	1		600	1.6	600	2.0	600	1.8	-
	192165	192240	75						Planted	450	1.7	600	2.0	600	1.8	
	192240	192260	20	1			8.0		Planted	450	1.7	600	2.0	600	1.8	
ENS5_3 (SB)	192260	192401	141	3	Bored	450		3	Planted	450	1.7	600	2.0	600 1.8	Implementatio	Implementation of BD 94/17
	192401	192530	129				7.0		Planted	450	1.7	600	2.0	600	1.8	

10.12. CCTV

Closed Circuit Television (CCTV) camera posts were installed at 34 locations. At eight locations, the existing foundations were used. At 26 locations, new foundations were installed on either single 450mm or 750mm diameter bored piles.

Location of CCTV structures along with the as-built details are shown in Appendix B. In addition, the summary of design changes of CCTVs foundation (Post DF5) are presented in Table20.

10.12.1. Record of soil and groundwater conditions encountered

The encountered ground conditions were similar to the reported ground conditions in the GIR. No groundwater was encountered in the foundation works.

10.12.2. Temporary works required and their effectiveness

Where possible, the piling works were carried out from the existing hard shoulder. Where used, the temporary piling platforms were certified by CGT in accordance with FPS guidance.

10.12.3. Details of any problems encountered

None encountered

10.12.4. Pile test results and other relevant information

CGT provided installation records of CCTV concrete piles. These installation records show the following:

- Consistent ground conditions with the GDR;
- Installation of CCTV concrete piles agrees with the specified tolerance; and

Installation records of 450mm piles installed for CCTV 02, CCTV 05, CCTV 07, CCTV 08 are presented in the Health and Safety File.

10.12.5. Details of as-built foundations

As-built drawings are shown in Appendix C.

10.12.6. Chemical attack on concrete

Table20: Summary of design changes of foundations of CCTVs

Asset	Chainage (m)	Carriageway	Foundation type	DF5 As-				As-Built		Reason for change
				Pile Diameter (mm)	Design Pile Length (m)	Bored Pile Length (m)	Pile Diameter (mm)	Design Pile Length (m)	Bored Pile Length (m)	
CCTV_04	182496	SB	Single Pile	750.0	7.0	6.0	750	5.0	3.975	Design standardisation
CCTV_05	183283	NB	Single Pile	450.0	5.0	4.0	450	7.0	5.975	Design standardisation
CCTV_10	185379	K	Single Pile	750.0	7.0	6.0	750	7.0	5.975	Design standardisation
CCTV_23	190983	SB	Single Pile	750.0	7.0	6.0	750	7.0	5.975	Design standardisation
CCTV_25	192272	SB	Single Pile	450.0	5.0	4.0	750	5.0	3.975	Design standardisation
CCTV_30	182766	L	Single Pile	450.0	3.0	2.0	750	7.0	5.975	Design standardisation
CCTV_33	184373	NB	Pad Foundation				L=2.0m	W=3.2m	D=1.5m	New location added
CCTV_34	191419	SB	Single Pile	-	-	-	750	5.0	3.975	New location added

10.13. RADARs

The RADAR foundations were either planted or bored piles of 450mm and 750mm diameter.

Appendix B includes the locations of RADARs structures along with as-built details. Table21 includes a summary of design changes of RADAR foundations.

10.13.1. Record of soil and groundwater conditions encountered

The encountered ground conditions were similar to the reported ground conditions in the GIR. No groundwater was encountered in the foundation works.

10.13.2. Temporary works required and their effectiveness

Where possible, the piling works were carried out from the existing hard shoulder. Where used, the temporary piling platforms were certified by CGT in accordance with FPS guidance.

10.13.3. Details of any problems encountered

None encountered.

10.13.4. Pile logs summary, pile test results and other relevant information

For RADAR foundation, CGT provided installation records of the concrete piles. These installation records show the following:

- Consistent ground conditions with the GDR; and
- Installation of RADAR piles agrees with the specified tolerance.

Installation records of RADAR piles RAD 01, RAD 03, RAD 05, RAD 06, RAD 13, RAD 14, RAD 15, RAD 16, RAD 17, RAD 19, RAD 21, RAD 22, RAD 23, RAD 25, RAD 26, RAD 11, RAD 18, RAD 20, RAD24, RAD 27 are presented in the Health and Safety File.

10.13.5. Settlement records with dates of each major stage including backfill of abutments and approach fills

Not applicable.

10.13.6. Details of as-built foundations

As-built drawings are shown on the drawings in Appendix C.

10.13.7. Chemical attack on concrete

Table21: Summary of design changes of foundations of Radars

		ay		DF	5			As-B	uilt		
Asset	Chainage (m)	Carriageway	Foundation type	Planted / Pile Diameter (mm)	Design Planted / Pile Length (m)	Bored Pile Length (m)	Foundation Type	Planted / Pile Diameter (mm)	Design Planted / Pile Length (m)	Bored Planted / Pile Length (m)	Reason for Change
RAD_02	182222	NB	Planted	Foundatio	n Design not iss	ued in DF5	Planted			-	Implementation of BD 94/17
RAD_04	182812	NB	Planted	Foundatio	n Design not iss	ued in DF5	Planted			-	Implementation of BD 94/17
RAD_05	183240	NB	Planted	Foundatio	n Design not iss	ued in DF5	Planted	450	2.5	2.5	Standard conservative design used for efficient construction.
RAD_07	183781	NB	Planted	Foundatio	n Design not iss	ued in DF5	Planted			-	Implementation of BD 94/17
RAD_08	183850	SB	Planted	Foundatio	n Design not iss	ued in DF5	Planted			-	Implementation of BD 94/17
RAD_09	184350	NB	Planted	Foundatio	n Design not iss	ued in DF5	Planted			-	Implementation of BD 94/17
RAD_10	184420	SB	Planted	Foundatio	n Design not iss	ued in DF5	Planted			-	Implementation of BD 94/17
RAD_11	184867	NB	Planted	Foundatio	n Design not iss	ued in DF5	Single Pile	750	5.0	3.98	Standard conservative design used for efficient construction.
RAD_12	184921	SB	Planted	Foundatio	n Design not iss	ued in DF5	Planted			-	Implementation of BD 94/17
RAD_15	186265	SB	Planted	Foundatio	n Design not iss	ued in DF5	Single Pile	450	5.0	3.98	Standard conservative design used for efficient construction.
RAD_17	186873	NB	Planted	Foundatio	n Design not iss	ued in DF5	Single Pile	450	5.0	3.98	Standard conservative design used for efficient construction.
RAD_18	187290	SB	Planted	Foundatio	n Design not iss	ued in DF5	Single Pile	750	5.0	3.98	Standard conservative design used for efficient construction.
RAD_25	189769	NB	Planted	Foundatio	n Design not iss	ued in DF5	Single Pile	450	5.0	3.98	Standard conservative design used for efficient construction.
RAD_28	191085	NB	Planted	Foundatio	n Design not iss	ued in DF5	Single Pile	450	5.0	3.98	Standard conservative design used for efficient construction.
RAD_29	191440	SB	Planted	Foundatio	n Design not iss	ued in DF5	Planted		- Implen		Implementation of BD 94/17
RAD_32	192313	SB	Planted	Foundatio	n Design not iss	ued in DF5	Planted	- Implementation of BD 94/17		Implementation of BD 94/17	
RAD_35	193290	SB	Planted	Foundatio	n Design not iss	ued in DF5	Planted		- Implementation of BD 94/17		
RAD_37	193970	SB	Single Pile	450	3.0	1.98	Single Pile	750	5.0 3.98 Removed from Schedule		

10.14. External Aspect Verification (EAV) Poles

EAV poles foundations consisted 450mm diameter bored piles. Location of the EAV Poles structures along with the As-built details are shown in Appendix B. In addition, the locations of design changes (Post DF5) are summarised in Table22.

10.14.1. Record of soil and groundwater conditions encountered

The encountered ground conditions were similar to the reported ground conditions in the GIR. No groundwater was encountered in the foundation works.

10.14.2. Temporary works required and their effectiveness

Where possible, the piling works were carried out from the existing hard shoulder. Where used, the temporary piling platforms were certified by CGT in accordance with FPS guidance.

10.14.3. Details of any problems encountered

None encountered.

10.14.4. Pile logs summary, pile test results and other relevant Information

For EAV poles, CGT provided installation records of concrete piles. These installation records show the following:

- Consistent ground conditions with the GDR;
- Installation of concrete pile with agrees with the specified tolerance; and
- Pile diameter agrees with the specified diameter.

Piling records of EAV01, EAV02, EA03, EA06 are presented in the Health and Safety File.

10.14.5. Details of as-built foundations

As-built drawings are presented in Appendix C.

10.14.6. Chemical attack on concrete

Table22: Summary of design changes of foundations of EAV poles

		Pile Cap Depth (m)		DF5			As- Built		
Asset	Chainage		Pile Diameter (mm)	Design Pile Length (m)	Pile length from cut off to toe level (m)	Pile Diameter (mm)	Design Pile Length (m)	Pile length from cut off to toe level (m)	Reason for Change
EAV_03	187914 (SB)	1.1	-	-	-	450	3.0	1.975	Replaced by EAV_05-3M
EAV_05-3M	187933 (SB)	-	450	7	7.075	-	-	-	Removed from design; due to HADECS Cameras location changes
EAV_06	189958 (SB)	1.1	-	-	-	450	3.0	1.975	Replaced by EAV_04-3
EAV_04-3	192490 (SB)	-	450	10	10.075	-	-	-	Removed from design; due to HADECS Cameras location changes

10.15. Large traffic signs

Large Traffic signs foundations consisted of pad, planted or bored piles, and location of structures along with the As-built details are shown in Appendix B. In addition, the locations of design changes (Post DF5) are summarised in Table 23.

10.15.1. Record of soil and groundwater conditions encountered

The encountered ground conditions were similar to the reported ground conditions in the GIR. No groundwater was encountered in the foundation works.

10.15.2. Temporary works required and their effectiveness

Where possible, the piling works were carried out from the existing hard shoulder. Where used, the temporary piling platforms were certified by CGT in accordance with FPS guidance.

10.15.3. Details of any problems encountered

None encountered

10.15.4. Pile logs summary, pile test results and other relevant Information

For large traffic signs, CGT provided installation records of the concrete piles. These installation records show the following:

- Consistent ground conditions with the GDR;
- Installation of concrete piles agrees with the specified tolerance; and
- Concrete pile diameter agrees with the specified diameter.

Installation records of the large traffic signs TS1, TS2, TS3, TS4 piles are presented in the Health and Safety File.

10.15.5. Using planted foundation for minor structures to improve efficiency

During DF5 stage, AMAR assumed that the maximum planted foundation depth would be 1.5m and any minor structure foundation requiring over 1.5m planted depth would be designed as a pile, based on the available construction information at the time.

During construction, it was proposed to construct deeper planted foundations which would reduce the time for construction. Some large traffic signs were therefore designed with a planted foundation based on BD94/17 and IHE Sign Structures Guide. The knowledge was approved by Highways England SES and then shared to other designers through the structures Peer to Peer (P2P) Group.

10.15.6. Details of as-built foundations

As-built drawings are shown on the drawings in Appendix C.

10.15.7. Chemical attack on concrete

Table 23: Summary of design change of foundations of large traffic signs

		ay	DF5		AS built	
Asset	Chainage	Carriagewa	Pad or Pile	Pad Size (w x I x d) (m)	Pad or pile	Reason for change
NB03	182109	NB	Pad	2.6 x 4.0 x 2.0	N/A	Not required

10.16. Single post traffic signs

Single Post Traffic Signs foundations consisted of Pad, planted or bored piles, Location of the structures along with the As-built details are shown in Appendix B. In addition, locations of design changes (Post DF5) are summarised in **Table24.**

10.16.1. Record of soil and groundwater conditions encountered

Ground conditions were as expected from the GIR and assumed in the design.

10.16.2. Temporary works required and their effectiveness

Where possible, the piling works were carried out from the existing hard shoulder. Where used, the temporary piling platforms were certified by CGT in accordance with FPS guidance.

10.16.3. Details of any problems encountered

None encountered.

10.16.4. Pile logs summary, pile test results and other relevant Information

For large traffic signs, CGT provided installation records of concrete piles. These installation records show the following:

- Consistent ground conditions with the GDR
- Installation of concrete piles with agrees with the specified tolerance
- Installed pile diameter agrees with the designed pile diameter.

Installation records of single post traffic sign SB28, SB37, SB 40, SB 48, SB 50, SB 54, SB55, SB 69, SB 72, SB 92, NB30, NB 31, NB 40, NB 41, NB 42, NB46, NB 52, NB 56, NBS05, NBS12 are presented in the Health and Safety File.

10.16.5. Settlement records with dates of each major stage including backfill of abutments and approach fills

Not applicable.

10.16.6. Details of as-built foundations

As-built drawings are shown in Appendix C.

10.16.7. Chemical attack on concrete

Table24: Summary of design changes of foundations of single post traffic signs

		>				DF5						As-Built		
Asset	Chainage	Carriageway	Pad or Pile	Pad Size (w x I x d) (m)	Pile Dia (mm)	Nos of Sign post legs (Nos of Piles)	Design Pile Length (m)	Bored Pile Length (m)	Pad, Pile, or Planted	Pile Dia (mm)	Nos of Sign post legs (Nos of Piles)	Design Pile Length (m)	Bored Pile Length (m)	Reason for Change
NB27	185595	NB	Pad	2.0 x 3.2 x 1.5	N/A	N/A	N/A	N/A	Pile	750	1	4.5		Standard conservative design used for efficient construction.
NB77	193171	NB	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	Pad	N/A	N/A	N/A	N/A	Sign No longer Required
SB08	193450	SB	Pad	2.0 x 3.2 x 1.5	N/A	N/A	N/A	N/A	Pile	750	1	4.5		Standard conservative design used for efficient construction.
SB10	192684	SB	Pad	2.0 x 3.2 x 1.5	N/A	N/A	N/A	N/A	Pile	750	1	4.5		Standard conservative design used for efficient construction.
SB36	189540	SB	Pad	2.0 x 3.2 x 1.5	N/A	N/A	N/A	N/A	Pile	750	1	4.5		Standard conservative design used for efficient construction.
NBS09	0 + 192	24a Entry Slip	Pad	2.0 x 3.2 x 1.5	N/A	N/A	N/A	N/A	Pile	750	1	4.5		Standard conservative design used for efficient construction.
NBS13	0 + 243	24a Entry Slip	-	-	-	-	-	-	Pad	N/A	N/A	N/A	N/A	Site and program constraints
SBS03	0 - 8	25 Entry Slip	Pad	2.0 x 3.2 x 1.5	N/A	N/A	N/A	N/A	Pile	750	1	4.5		Standard conservative design used for efficient construction.
SBS17	0 - 23	24 Entry Slip	Pad	2.0 x 3.2 x 1.5	N/A	N/A		N/A	Pile (if pad is not already constructed)	750	1	4.5		Standard conservative design used for efficient construction.

10.18. Cross-carriageway ducts

Locations of cross-carriageway ducts and as-built details are shown in Appendix H.

10.18.1. Record of soil and groundwater conditions encountered

Ground conditions were as expected from the GIR and assumed in the design.

10.18.2. Temporary works required and their effectiveness

No temporary works

10.18.3. Details of any problems encountered

None encountered

10.18.4. Settlement records with dates of each major stage including backfill of abutments and approach fills

The GDR assumed a very conservative 100% volume loss and predicted settlement up to 40mm. The predicted **settlements** for a more typical ground loss of up to 4% (Mair 1996) predict ground settlements of <5mm. Monitoring during the directional drilling was the responsibility of the contractor under self-certification. No non-conformances were reported.

10.18.5. Details of as-built foundations

Refer to Appendix H.

10.18.6. Chemical attack

Not applicable.

11. Earthworks Testing

11.1. Summary of site testing

Different types of testing and their corresponding specifications are summarised in the Table25 below.

Table25: List of Laboratory Tests

Material	Test	Specification	
6G (Imported)	Determination of Particle Size Distribution	BS EN 933 – 2 (Imported onto site)	
	Los Angeles coefficient	BS EN 13242 & Clause 635	
6N (Imported)	Determination of Particle Size Distribution	BS EN 1377: Part 2 (On-site) BS EN 933 – 2 (Imported onto site)	
	Uniformity coefficient	Clause 635	
	Los Angeles coefficient	Clause 635	
	Effective angel of internal friction (φ°)	Clause 635	
	Moisture Content (mc)	BS EN 1377: Part 2 (On-site)	
	Compaction Requirements Clause 612	(End product 95% of maximum dry density of BS 1377: Part 4 (vibrating hammer method)	
	Determination of Oxidisable Sulfides (OS)	TRL 447 Test 2 and 4	
	Determination of Water Soluble Sulphate (WSS)	TRL 447 Test 1	
	Determination of pH Value	BS 1377: Part 3: 1990	
5A - Topsoil (existing on site)	Determination of Particle Size Distribution	Clause 618	

11.2. Summary of test results

The following is a summary of the imported material testing presents in Appendix D. Compaction control testing was carried out as part of the ongoing works.

No problems were found during material testing and materials were found to be acceptable.

12. Pile Testing

12.1.1. Pile testing programme

The preliminary piles were constructed sufficiently in advance of the installation of the working piles to allow time for the test, the evaluation of the results and the adoption of modifications if these proved necessary. CGT allowed minimum 2 weeks between pile installation and testing to ensure adequate strength gain of the concrete. Cube test results of all test piles show that minimum 7 day strength was 20 MN/mm², while the maximum compressive stress in any test pile was 5 N/mm². These values show that the minimum cube strength is four times than maximum compressive stress in any test pile. This satisfies 1600 series (section 1609, clause 5), where the cube strength criteria defined is defined as:

"...The pile test shall not be started until the strength of the cubes taken from the pile exceeds twice the average direct stress in any pile section under the maximum required test load, and the strength of the cubes taken from the cap exceeds twice the average stress at any point in the cap under the same load".

CGT removed all temporary works following preliminary pile testing. The preliminary pile load tests were designed to achieve the following goals:

- Validate the pile design;
- Validate performance criteria; and
- Prove that piling method of construction can construct viable foundations in the local ground conditions encountered along M1 SMP J23a-25.

CGT also performed working piles load tests during the construction to verify the following:

- Construction method used has not changed to produce piles inferior to the preliminary piles
- Piles have satisfactory load-settlement performance.
- Ensure both structural and geotechnical soundness.

For both preliminary and working pile load test, construction detail and plant were the same as proposed for the main works. According to the drilling records, the reported ground conditions were as reported in GIR.

The testing procedures followed the requirements of HA549342-AMAR-HGT-SWI-SP-CE-000004 (Specification Schedules Series 1600). Each preliminary pile load tests included three cycles as follows:

- First cycle: Loading of test piles to 100 % working load;
- Second cycle: Loading the test pile to 150% working load; and
- Third cycle: Loading the pile to 200 % of the working load.

On the other hand, in the working pile load tests, the piles tested to 150% of the working load. The maximum test load, together with the test and reaction pile lengths are summarised in HA549342-AMAR-HGT-SWI-SP-CE-000004 (Specification Schedules Series 1600).

The pile testing arrangements are shown in Figure 12-1 and Figure 12-2.

Figure 12-1 Static load test on 0.75m diameter pile: Gantry 313 (Link 4b NB)

Figure 12-2 Static load test on 0.9m diameter pile: Gantry G311 Link 4b NB

12.2. Pile load test results

The contractor performed 3 No. preliminary pile tests (on non-working piles) at G101, G304, G112. Theses testes aimed to test the piles throughout the scheme in varying ground conditions. All tests for preliminary piles were carried out in three cycles for loading and unloading. Also, the contractor performed 13 working pile load tests at G202, G203, G301 NB, G301SB, G303, G311, G313, G315, G322, G322, G326, Rad 22, and G101.

Following each application of an increment of load, the load was maintained at the specified value for not less than the hold periods indicated in the specification above until the measured rate of settlement in a period of 30minutes was less than 0.5% of the current cumulative settlement which has occurred, subject to a minimum settlement rate of 0.05mm in 30minutes. The rate of settlement was calculated from the slope of the line obtained by plotting values of settlement versus time and drawing a smooth curve through the points.

For working pile load tests, adjacent working piles to the test pile were used as reaction piles. These reaction piles were monitored during static load testing. The movement was measured and recorded within an accuracy of 0.5mm.

All piles were installed primarily in Mercia Mudstone with two geologies as follows:

- Mercia Mudstone outcrops at the start/end of the scheme
- Embankment fill and flood plain deposits overlie the Mercia Mudstone along large section in the centre of the scheme (Ch 185+000 to Ch 191+300).

For both Mercia Mudstone settings, preliminary and working pile load test results suggested high level of consistency. This was achieved by close agreement in repeated results under the same conditions. Therefore, pile design and pile construction method showed high level of reliability.

Results of preliminary pile load tests showed that the maximum settlement was less than 8mm under 200% of the working loads, while results of working pile load tests showed settlement less than 2.5m under 150% of the working loads. Appendix F includes summary tables of pile test results.

It worth to mentioned that the recorded settlement during the pile load tests was relatively small. This could be attributed to the pile vertical capacity is not the governing factors of gantries, while the lateral capacity is the governing factor of the gantries.

Based on the above consistency and reliability, HE and AMAR agreed in December 2017 to reduce the remaining pile testing, since the further pile testing would add no further assurance to the design.

All Details of preliminary and working pile load tests are presented in Health and Safety File.

12.3. Pile integrity tests

12.3.1. General

The Pile Integrity Test (PIT) system performs a low strain integrity testing of piles. The test can be used for cast-in-place. It can detect potentially major defects such as cracks, necking, soil inclusions or voids and in some situations. Also, it can determine unknown lengths of piles.

The test consisted of attaching the accelerometer to the top of the test pile. The accelerometer acquired data resulted from the impact of a small hand-held hammer. If a defect was present along the shaft, its size and location could be estimated by back-analysing the propagation and reflection of the wave induced in the pile by the hammer impact

12.3.2. Details of pile integrity testing

CGT performed 214 Pile Integrity Tests (PIT) between 15/02/2017 and 25/09/2018. These test cover most of the pile foundations including gantries, radars, ROTTMs, traffic signs, etc. Results of PIT tests showed satisfactory shaft formation and they showed no obvious indication of any pile defects. Also, they indicated consistent workmanship and piling construction practice. All details of PIT are presented in Health and Safety File.

However, CGT did not provide results of Pile Integrity Test (PIT) of NBS05, RAD 23, RAD 26, CCTV10, CCTV12, CCTV30, G314, SB54, G301, G311, G319, G315, G303, G304.

Lack of PIT record for under 10% of piles was considered an acceptable non-conformance by AMAR and CGT on the basis that no defects were detected from any of the 214 PITs carried out and all PIT testing suggested good and consistent workmanship and piling construction practice.

12.4. Concrete test results

CGT provided AMAR with concrete test results of 13280 samples collected from 28-07-2017 to 23-02-2018. These samples were collected during construction of piles of different structures such as gantries, ROTTOMs, RADARs, ERA, small signs etc. The nominal concrete strength of concrete piles was 40 and 45 N/mm2.

Table 26: Summary concrete test results

Concrete Type	Age [days]	Average [N/mm2]	Max [N/mm2]	Min [N/mm2]	Standard Deviation [N/mm2]
C40	7	33	54.8	15.1	7.9
C40	28	50.3	140.1	18.4	9.5
C40	56	62.5	75.4	50.5	5.1
C45	7	40.8	55.3	19.7	7.1
C45	28	57.1	72.4	45.1	5.8

All Details of concrete test results are presented in the Health and Safety File.

13. Instrumentation

No instrumentation was installed to monitor geotechnical works as part of this scheme. The SMP design approach requires robust and standardised designs. There were no special risks on the site and therefore no instrumentation was proposed.

14. Summary of problems experienced and design changes

14.1. Summary of problems and details of design changes

As with any construction project, various minor issues and design changes arose during the siteworks which resulted in changes from the design presented in the GDR. These are discussed in the individual sections above and summarised below.

14.1.1. Programming of geotechnical design and construction

SMP schemes have a rapid design and procurement model compared to traditional highway improvements, with a relatively short period for delivery of the multidisciplinary design. The geotechnical widening solutions can only be finalised when the highway verge, drainage and technology layouts are complete, so that the appropriate retaining structures and earthworks can be designed and drawn up for the Works Information. Any late changes in these disciplines can delay the production of IFC geotechnical drawings and schedules. However, the earthworks contract is one of the early activities in the site programme, requiring the IFC geotechnical information at an early stage. Various last-minute design changes, together with the late changes of topographical information (see below), resulted in a large amount of geotechnical redesign being carried out in a short time, with a corresponding increase in the size of the geotechnical site team.

Similarly, delays in mobilisation of the Confirmatory Ground Investigation meant that some validation boreholes had insufficient time between drilling and the programmed start of piling works. The programme must allow enough time for the validation boreholes to be drilled, reported, laboratory testing received and then the design validation to be carried out and checked, which amounts to about two months. In some cases, the ground investigation delays then constrained the piling programme.

14.1.2. Topographical survey changes (Section 2.2.1)

In accordance with the SMP Survey Guide, no foot-based topographic survey or walkover survey was carried out during the design phase. The topographic model for design was generated from a LIDAR point cloud survey, mainly taken from vehicle mounted scanners. Once the contractor could gain access to the site, after vegetation clearance, and carry out a foot based traditional survey, the ground profile was found to be different to the design model. In many cases these changes were large enough that the retaining wall and slope calculations needed to be re-checked and revised by a site based geotechnical design team, and revised construction drawings produced.

This issue was substantially mitigated by having a integrated, multidisciplinary site-based design support team who could respond rapidly to changes and queries.

14.1.3. Implementation of new standards

As noted in Section 10, the implementation of BD94/17 "Design of Minor Structures" permitted a number of efficiencies in the foundation design of technology structures and signs.

14.2. How problems might be avoided in the future, including suggested revisions required to the SHW and DMRB

The issues noted above need to be considered in the overall planning and programming of schemes, which involves the Project Control Framework and procurement approach as well as design and specification.

15. Residual Health and Safety Risks

15.1. Locally over-steepened slope

As noted in 4.1, two short localised sections of 1 in 1.6 slope were constructed on the northbound side, from 188+720 to 188+750 and from 188+840 to 188+980. This solution was a consequence of the verge widening in conjunction with constraints of widening the embankment due to floodplain levels and was discussed during the construction phase with HE representatives. The imported fill material used for these slopes exceeded the specified shear strength such that the slope stability factor of safety was still maintained. There is a residual risk of potentially more challenging access for maintenance due to the steeper slope.

Maintenance access is also required for the noise barriers. The noise barriers adjacent to residential properties (on the southbound carriageway south of J25) are not new installations due to SMP but are replacement of existing barrier that was previously present. The existing access for maintenance has been kept as existing or improved by addition of gates within the barrier.

15.2. As-built details of cross-carriageway ducts

As-built profiles of the cross-carriageway duct runs have not been captured on the earthworks and general arrangement drawings. The CCDs were all constructed directly between the start and finish chambers listed in Appendix H. As-built schematic drawings showing the nominal location of the cross-carriageway connections were produced by the technology and lighting disciplines. Details of all construction materials and as-built records for all disciplines are contained in the Health and Safety File for the project which is held by Highways England.

Any future works in the vicinity of the CCDs should take account of the uncertainty as to the precise depth below the carriageway and include consultation with the appropriate technology/communications or lighting system maintenance provider.

16. References

- [1] Amey Arup Joint Venture. SMP M1 J23a-25, "Ground Investigation Report- Report Ref. HA549342-AMAR-HGT- SWI-RP-CE-000002- Rev P01- HAGDMS Ref. 28929," Amey International Design Hub, Birmingham, 2016.
- [2] Amey Arup Joint Venture. SMP M1 J23a-25, "Geotechnical Design Report Report Ref: HA549342-AMAR-HGT-SWI-RP-CE-000003, HAGDMS Ref: 29152,," Amey Internation Design Hub, Birmingham, 2017.
- [3] Highways England, "Smart Motorways Programme- Design Guide Version 3.01- Annex E3.04: Geotechnical Retaining Systems," Highways England, Birmingham, 2016.
- [4] Geo-Slope International, "SLOPE/W Slope Stability Analysis," Geo Studio , 2012.
- [5] Geosolve, WALLAP Retaining Wall Analysis Program, 2014.
- [6] Highways England, "Design Manual for Roads and Bridges- Volume 4- Geotechnics and Drainage- Managing Geotechnical Risk (HD22/08)," Highways England, Birmingham, 2008.
- [7] BSI Publications, "BS EN 1997-1:2004+A1:2013-Eurocode 7: Geotechnical Design Part 1: General Rules," BSI Publications, 2013.
- [8] "Just in time GI.....Ref missing".
- [9] Amey Arup Joint Venture M1 J23a J25, "Statement of Intent, Report Ref. HA549342-AMAR-HGT-SWI-RP-CE-000001, Rev P01, HAGDMS Ref. 28704.," Amey International Design Hub, Birmingham, October 2015.
- [10] Amey Arup joint Venture. SMP J23a-25, "Geotechnical Design Report- Directional Drilling-Report Ref: HA549342-AMAR-HGT-SWI-RP-CE-000006- HAGDMS Ref: 29378," Amey Internation Design Hub, Birmingham, 2017.
- [11] "Ove Arup & Partners, M1 Widening: Junctions 21-30, Preliminary Sources Study Report, March 2005, Report Ref: 0017PSSR M1 J21-30 RevA;".
- [12] BSI Standard Publications, "UK National Annex to Eurocode 7: Geotechnical Design Part 1: General Rules-NA+A1:2004 to BS EN 1997-1:2004+A1:2013," BSI Standard Publications, 2013.
- [13] Amey Arup joint Venture. SMP J23a-25, "Specification Schedules Series 100: 1/5-1 Testing to be Carried Out by the Contractor," Amey Intrnation Design Hub, Birmingham, 2017.
- [14] Amey Arup Joint Venture M1 J23a J25, "Smart Motorways Programme- M1 J23a 25-Volume 2 Works Information- Specification Appendices series 600- EARTHWORKS," Amey International Design Hub, Birmingham, 2017.
- [15] Highways England, "Manual of Contact Document for Highways Works Volume 1-Series 600 EARTHWORKS," Highways England, Birmingham, 2016.
- [16] Higways Agency , "DMRB Volume 2 Section 1 Part 2 (BD 42/00) Highway structures- Design (substructures and special structures) material. Substructures-Design of embedded retaining walls and bridge abutments (Withdrawn)," Higways Agency , 2000.

- [17] BSI Publications, "BS 8002:2015 Code of Practice for Earth Retaining Structures," BSI Publications, 2015.
- [18] ArcelorMittal, "Piling Handbook 9th edidtion," ArcelorMittal Commercial RPS, Luxembourg, 2016.
- [19] Amey Arup Joint Venture. SMP J23a-25, "Design of Sheet Pile Retaining Wall (HA549342-AMAR-HGT-SWI-RP-CE-000004)," Amey Internation Design Hub, birmingham, 2017.
- [20] BRE, "BRE Special Digest- Concrete in Aggressive Ground," 2005.
- [21] Highways England, "Smart Motorways- Interim Advice Note 161/15," Highways England Company Limited, Birmingham, 2015.
- [22] Highways England, "Design Manual for Roads and Bridges, Volume 4, Section 2, Drainage," Highways England, Birmingham, 2008.
- [23] Amey Arup Joint Venture. SMP M1 J23a-25, "Drainage Strategy Report- Report Ref. HA549342-AMAR- HDG- SWI-RP-CD-000001-Rev P02," Amey International Design Hub, Birmingham, 2016.
- [24] Highways England, "Manual of Contract Documents for Highways Works- Volume 1-Specification for Highways Works-Series 600 EARTHWORKS," Highways England, 2016.
- [25] A. Arup, "Health and Safety File".
- [26] "Randolf, M.F., Piglet: Analysis and Design of Pile Groups, Version 5.1, July 2006;".
- [27] "Berezantzev, V.G., Load bearing capacity and deformation of piled foundations, Proceedings of the 5th International Conference on Soil Mechanics. 1961;".
- [28] "Crown International, TALL Consulting Structural Engineers, CCTV Pole, Structural Calculations, Issue 01, March 2014;".
- [29] "Valmont Stainton, '6m, 8m, 10m & 12m Plain Top Tubular Columns c/w 1 No Cable Gland Hole & Plastic Pole Cap', Drawing No. CC7942, Rev 00, December 2013;".
- [30] "Valmont Stainton, Appendix 13/2, Specification for Highways Works, Column and Bracket Data Sheet, 12M RADAR COLUMN (CC7942), April 2015;".
- [31] Environment Agency, "Groundwater protection: Principles and practice (GP3)," Environment Agency Bristol, Version 1.1, August 2013.
- [32] A. Bond and A. Harris, Decoding Eurocode 7, Abingdon: Taylor & Francis, 2008.
- [33] "King Sheet Piling Technical Guidance, V 1.2/15.4.14, obtained from www.ksp-piling.co.uk.," [Online].
- [34] Highways England, "Interim Advice Note 73/06-Revision 1- Design Guidance for Road Pavement Foundation (Draft HD25)," Highways England, 2009.
- [35] Highways England, "Design Manual for Roads and Bridges, Volume 4, Section 1, Part 2, HD22/08, Managing Geotechnical Risk;," Highways England, Birmingham, 2008.

- [36] Environment Agency., "Guidance on the Classification and Assessment of Waste-Technical Guidance WM3 1st edition," Environment Agency, Scottish Environment, Bristol, 2015.
- [37] "Atkins, ATRISK Soil," Atkins, 29 January January 2015. [Online]. Available: http://www.atrisksoil.co.uk/index.php/login.
- [38] BSI Publications, "NA to BS EN 1990:2002+A1:2005, Eurocode Basis of Structural Design," BSI Publications, 2005.
- [39] Department for Environment, Food and Rural Affairs (DEFRA), "Category 4 Screening Levels (C4SLs) Screening Levels for Assessment of Land Affected by Contamination," Department for Environment, Food and Rural Affairs (DEFRA), 2014.
- [40] Amey Arup Joint Venture. SMP M1J23a-25, "Gantries and ERAs Lateral Solutions Options Report, Document Ref HA549342-AMAR-SGT-SWI-RP-CB-000001," Amey International Design Hub, Birmingham, 2016.
- [41] Highways England, "Design Manual for Roads and Bridges. Volume 2, Section 2, Part 1, Design of Minor Structures (BD95/07)," Highways England, Birmingham, 2007.
- [42] Highways England, "Design Manual for Roads and Bridges- Volume 4 Geotechnics and Drainage- Section 1 Earthworks- Part 3 Maintenance of Highway Geotechnical Assets (HD 41/15)," Highways England, Birmingham, 2015.
- [43] Highways England, "Design Manual for Roads and Bridges- Volume 4- Geotechnics and Drainage- Maintenance of Geotechnical Assets (HD41/03)," Highways England, Birmingham, 2003.
- [44] BSI Publications, "BS 6031:2009-Code of Practice for Earthworks," BSI Publications, 2009.
- [45] Highways England, "Design Manual for Roads and Bridges- Volume 1, Section 1, Part 1, Technical Approval of Highway Structures (BD 2/12)," Highways England, 2012.
- [46] BSI Publications, "BS 8004:2015 Code of Practice for Foundations," BSI Publications, 2015.
- [47] BSI Publications, "BS EN 1993-5 2007: Eurocode 3: Design of Steel Structures Part 5: Piling," BSI Publications, 2007.
- [48] Highways England, "Design Manual for Roads and Bridges, Volume 1 (Highways Structures: Approval Procedures and General Design) Section 3 (General Design) Part 14 (Loads For Highway Bridges) (BD 37/01)," Highways England, 2001.
- [49] Highways England, "Design Manual for raods and bridges-Volume 2-Section 2-part 1 BD97/17-Design of Minor Structures," Highways England, Birmingham, 2017.
- [50] Highways England, "Smart Motorways Programme- Design Guide Version 3.01- Annex E3.04- Geotechnical Retaining Systems," Highways England, Birmingham, 2016.

Appendix A Earthworks Schedule (As-Built)

A.1: Major Structure - Geotechnical Schedule

A.2: Mainline Widening Solutions Schedule Northbound

A.3: Mainline Widening Solutions Schedules Southbound

A.4: Mainline Merge & Diverge Widening Schedule

A.1: Major Structures - Geotechnical Schedule

	Widening							Widening Ex	xtents (Approx.)		Proposed Solution	on
SMIS Structure Name	Asset	SMP Reference	Chainage	Carriageway	Marker Post	New/ Remaining	Asset Type	Longitudinal Length (m)	Proposed Verge Widening (m)	Earthwork Retaining Solution	Max Proposed Retained Earthwork Height (m)	Comments
Sign Gantry Number 1	Gantry	N/A	180500	NB	180/5A+00	REMAINING	Sign/Signal Gantry	-	-	NO SOLUTION REQUIRED	N/A	
MS3 Cantilever Gantry 3805A	Gantry	N/A	180700	NB	180/7A+00	REMAINING	Sign/Signal Gantry	-	-	NO SOLUTION REQUIRED	N/A	
Sign Gantry Number 2	Gantry	N/A	181000	SB	181/0B+00	REMAINING	Sign/Signal Gantry	-	-	NO SOLUTION REQUIRED	N/A	
	Gantry	N/A	181200	NB	181/2A+00	REMAINING	Sign/Signal Gantry	- Link	- 1	NO SOLUTION REQUIRED	N/A	
	Gantry	101	181930	NB	181/9A+30	NEW	MS4 Cantilever	N/A	N/A	LOCAL REGRADE	N/A	
	Gantry	102	182244	NB	182/2AB+44	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
	Gantry	102	182244	SB	182/2AB+44	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
	Gantry	103	182786	Central	182/7B+86	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
	Gantry	103	182786	SB	182/7B+86	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
Sign Gantry Number 7	Gantry	104	183270	NB	183/2A+70	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
Sign Gantry Number 8	Gantry	105	183274	SB	183/2B+74	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
Sign Gantry Number 9	Gantry	106	183813	NB	183/8A+13	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
Sign Gantry Number 11	Gantry	107	183820	SB	183/8B+20	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
	Gantry	108	184180	SB	184/1B+80	REMAINING	MS3 Cantilever	NA	N/A	NO SOLUTION REQUIRED	N/A	
Sign Gantry Number 12	Gantry	109	184390	NB	184/3A+90	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
Sign Gantry Number 14	Gantry	113	184390	SB	184/3B+90	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
	Gantry	110	184900	NB	184/9A+00	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
0: 1.14 1.4 0 1.14	Gantry	111	184900	SB	184/9B+00	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
Signals Mast Arm Gantry N/B Off-slip	Gantry	N/A	185100	Off Slip	185/1+00	REMAINING	Signals Mast Arm Gantry N/B Off-Slip	NA Link	-	NO SOLUTION REQUIRED	N/A	
Vma Gantry No. 51		1		i	i	i		LIIIN				
(M1/23a/1/S)	Gantry	112	185180	SB	185/1B+80	NEW	Super Cantilever	65.0	6.7	1:3 Full Height Regrade	N/A	
	Gantry	201	185634	NB	185/6A+34	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
	Gantry	202	186240	NB	186/2A+40	NEW	Superspan Portal	90.0	5.9	SHEET PILE	2.6	Sheet Pile is required to prevent buildout into the flood plain.
	Gantry	202	186240	SB	186/2B+40	NEW	Superspan Portal	90.0	12.0	Full Height Embankment Widening 1:2	2.9	Assumes land purchase;
Sign Gantry Number 16	Gantry	203	186400	SB	186/4B+00	NEW	ADS Cantilever	55.0	5.3	Full Height Embankment Widening 1:2	1.6	
	Gantry	204	186517	NB	186/5A+17	NEW	Super Cantilever	70.0	5.2	SHEET PILE	1.4	Sheet Pile is required to prevent buildout into the flood plain.
	Gantry	301	186847	NB	186/8b+47	NEW	Superspan Portal	35.0	N/A	LOCAL REGRADE	N/A	
	Gantry	301	186847	SB	186/8B+47	NEW	Superspan Portal	70.0 Link	7.4 4a	Full Height Embankment Widening 1:2	N/A	
	Gantry	302	187073	SB	187/0B+73	NEW	ADS Cantilever	65.0	7.9	Regrade Full Height 1:2	N/A	
	Gantry	326	187300	SB	187/3B+00	NEW	MS4 Cantilever	30.0	5.6	Full Height Embankment Widening 1:2	N/A	Gantry base can be moved in allowing for a 1:2 regrade
	Gantry	303	187608	SB	187/6B+03	NEW	ADS Cantilever	50.0	6.4	Full Height Embankment Widening 1:2	N/A	
	Gantry	304	187650	NB	187/6A+50	NEW	Super Cantilever	70.0	3.8	Granular Wedge at Embankment Crest 1:2	N/A	
	Gantry	305	187818	SB	187/8B+18	NEW	MS4 Cantilever	30.0	3.4	SHEET PILE	2.1	Sheet Pile is required to prevent buildout into the flood plain.
	Gantry Gantry	306 307	188034 188529	SB NB	188/0B+34 188/5A+29	REMAINING NEW	MS3 Cantilever MS4 Cantilever	NA 25.0	N/A 5.4	NO SOLUTION REQUIRED Full Height Embankment Widening 1:2.2	N/A N/A	Due to Veg.
	Gantry	308	188760	SB	188/7B+60	NEW	ADS Cantilever	30.0	3.3	SHEET PILE	1.8	Sheet Pile is required to prevent buildout into the flood plain.
	Gantry	309	188947	SB	188/9B+47	NEW	MS3 Cantilever	40.0	3.1	SHEET PILE	1.7	Sheet Pile is required to maintain existing vegetation.
Cantilever VMS 188.0 South	Gantry	310	189160	SB	189/1B+60	NEW	MS4 Cantilever	30.0	5.7	SHEET PILE	2.3	Sheet Pile is required to prevent buildout into the flood plain.
	Gantry	311	189780	NB	189/7AB+80	NEW	Superspan Portal	30.5	6.5	Granular Wedge at Embankment Crest 1:2	N/A	
	Gantry	311	189780	SB	189/7AB+80	NEW	Superspan Portal	80.0	8.1	SHEET PILE	2.4	Sheet Pile is required to prevent buildout into the flood plain.
	Gantry	312	190610	SB	190/6B+10	REMAINING	MS4 Cantilever	NA Link	3.2 4b	NO SOLUTION REQUIRED	0.2	
	Gantry Gantry	313 314	190771 191096	NB NB	190/7A+71 191/0A+96	NEW NEW	MS3 Cantilever MS4 Cantilever	30.0 30.0	4.9 6.7	Granular Wedge at Embankment Crest 1:2 Granular Wedge at Embankment Crest 1:2	N/A N/A	

Document Reference HA549342-AMAR-HGT-SWI-RP-CE-000008

								Widening Ex	tents (Approx.)		Proposed Solution	on
SMIS Structure Name	Asset	SMP Reference	Chainage	Carriageway	Marker Post	New/ Remaining	Asset Type	Longitudinal Length (m)	Proposed Verge Widening (m)	Earthwork Retaining Solution	Max Proposed Retained Earthwork Height (m)	Comments
	Gantry	315	191296	NB	191/2A+96	NEW	ADS Cantilever	28.0	8.6	Full Height Embankment Widening 1:2	N/A	Amended from local regrade following increase in buildout 13/10/2016
	Gantry	316	191430	SB	191/4B+30	NEW	MS4 Cantilever	50.0	7.3	Granular Wedge At Embankment Crest 1:2	N/A	
	Gantry	317	191577	NB	191/5A+77	REMAINING	MS3 Cantilever	NA	N/A	NO SOLUTION REQUIRED	N/A	
	Gantry	318	191801	NB	191/8A+01	NEW	MS4 Cantilever	40.0	6.0	Regrade Full Height 1:3	N/A	
	Gantry	319	192101	NB	192/1A+01	NEW	ADS Cantilever	40.0	7.2	Full Height Embankment Widening 1:3.5	N/A	
	Gantry	320	192285	SB	192/2B+90	NEW	Super Cantilever	60.0	3.5	SHEET PILE	2.1	Sheet Pile is required to maintain existing vegetation.
	Gantry	321	192476	NB	192/4A+76	NEW	MS4 Cantilever	50.0	4.1	Full Height Embankment Widening 1:2	N/A	
	Gantry	322	192906	NB	192/9A+06	NEW	ADS Cantilever	40.0	10.0	LOCAL REGRADE	N/A	
								Link				<u></u>
	Gantry	323	193300	SB	193/3B+00	NEW	MS4 Cantilever	45.0	4.0	NO SOLUTION REQUIRED*	1.1	*Gantry base to be used as retaining structure.
Cantilever VMS 191.5 North	Gantry	324	193331	NB	193/3A+31	NEW	MS4 Cantilever	30.0	4.9	SHEET PILE	2.1	Sheet Pile is required to prevent buildout into the flood plain.
	Gantry	325	193950	SB	193/9B+50	REMAINING	Portal	NA	N/A	NO SOLUTION REQUIRED	N/A	
								Link	3			
	ERA	E1-A1	185195- 185305	NB	185/2A+50	NEW	ERA	100.0	5.8	SHEET PILE	2.6	Sheet Pile is required to maintain existing vegetation.
	ERA	E2-A1	186645- 186755	NB	186/7A+00	NEW	ERA	100.0	5.7	Full Height Embankment Widening 1:2	N/A	
	•							Link	4a			
	ERA	E3-B1	188425- 188525	SB	188/5B+50	NEW	ERA	100.0	4.5	SHEET PILE	2.3	
	ERA	E3-A1	188765- 188865	NB	188/8A+10	NEW	ERA	100.0	6.0	SHEET PILE and Granular Wedge	2.4	Sheet Pile is required to maintain existing vegetation. Regrade solution applied for Ch188720 to 188760 and from Ch188850 to 188890. The base benching width reduced to 3.1m.
	1	1	1	1	<u> </u>			Link	4b			1
	ERA	E3-B2	190465- 190565	SB	190/3B+00	NEW	ERA	100.0	5.0	Granular Wedge At Embankment Crest 1:2	N/A	
	ERA	E3-A2	190800- 190900	NB	190/8A+60	NEW	ERA	100.0	2.5	Granular Wedge at Embankment Crest 1:2	N/A	
	ERA	E3-B3	191845- 191955	SB	191/9B+00	NEW	ERA	100.0	N/A	SHEET PILE	1	

A.2 - Mainline Widening Solutions Schedule Northbound

Chainage Start	Chainage End	Length (m)	Earthwork Type	Worst Case Existing Vegetation (RAG)	Max. Flood Risk (mAOD)	Earthworks Widening solution	Max. Retained Height (m)	Max Buildout Width (m)*	Max Cut / Fill Height (m)	Comments
			T	.		Link 2		1		
182000	182050	50	Embankment	G		No Solution Used		N/A	N/A	No solution required based on RFI 114
182060	182160	100	At Grade	G		No Solution Used		N/A	N/A	No solution required based on RFI 114
182170	182220	50	At Grade	G	None	No Solution Used		2.3	0.68	No solution required based on RFI 114
182230	182450	220	Cutting	G	None	No Solution Used		N/A	N/A	No solution required based on RFI 261
182460	182470	10	Cutting	G	None	No Solution Used		0.2	5.6	No solution required based on RFI 261
182480	182640	160	Cutting	G	None	No Solution Used		0.3	1	No solution required based on RFI 261
182650	182710	60	Cutting	G	None	No Solution Used		0.2	3.5	No solution required based on RFI 261
182720	182740	20	Cutting	G	None	No Solution Used		N/A	N/A	No solution required based on RFI 261
182750	182790	40	-	-	-	Overbridge		N/A	N/A	
182800	182890	90	Cutting	G	None	Full Height Cutting Regrade 1:2.5		N/A	N/A	Refer to RFI 403, Gabion wall built and demolished
182880	182890	10	Cutting	6	None	Ret. Wall (Plastic Sheet Pile)	0.4	N/A	N/A	na
182890	182910	20	Cutting	G	None	<500mm Cut		N/A	N/A	Additional regrade required RFI 403
182910	183000	90	Cutting	G	None	<500mm Fill		N/A	N/A	Additional regrade required RFI 403
183000	183070	70	At Grade	G	None	<500mm Cut		N/A	N/A	Additional regrade required RFI 403
183080	183150	70	Embankment	G	None	Granular Wedge at Embankment Crest 1:2		2.4	5	
183160	183400	240	Embankment	G	None	Full Height Embankment Widening 1:2		4.1	6.5	
183410	183430	20	At Grade	G	None	<500mm Fill		N/A	N/A	==
183440	183570	130	Cutting	G		No Solution Used		N/A	N/A	No solution required based on RFI 142
183580	183610	30	Cutting	G		No Solution Used		2.5	1.9	No solution required based on RFI 142
183620	183700	80	Cutting	6	None	Regrade Full Height 1:3	_	2	7.6	
183620	183700	80	Cutting	G	None	No Solution Used		2	7.6	No solution required based on RFI 142
183710	183780	70	Cutting	G	None	No Solution Used		N/A	N/A	No solution required based on RFI 142
183790	183830	40	Cutting	G	None	No Solution Used		N/A	N/A	No solution required based on RFI 142
183840	183920	80	Cutting	G	None	No Solution Used		N/A	N/A	No solution required based on RFI 142
183930	183960	30	Cutting	G		No Solution Used		N/A	N/A	No solution required based on RFI 142
183960	184035	75	Cutting	<u> </u>		Full Height regrade 1:2.5. kegworth Bypass (by others)		14/7	14/7 (The Solution required based of the time.
183980	184000	20	Cutting	C	None	Regrade Full Height 1:3				
184000	184020	20	Cutting	G		No Solution Used		N/A	0.7	No solution required based on RFI 142
184030	184060	30	-	-	-	Overbridge		N/A	N/A	
184040	184450	410	Cutting	G		Full Height Cutting Regrade1:2.5		N/A	N/A	
184460	184480	20	At Grade	G		No Solution Used		N/A	N/A	
184490	184550	60	At Grade	G	None	<500mm Cut		N/A	N/A	
184560	184700	140	At Grade	G	None	Regrade Full Height 1:2.5		2	0.7	
184710	184740	30	Embankment	G		<500mm Fill		N/A	N/A	
184740	184920	180	Embankment	G		Full Height Embankment Widening 1:2		3.1	3.5	
104740	104320	100	LIIDAIIKIIICIIL	0	None	Link 3		3.1	3.3	
184910	185110	200	At Grade	G	None	No Solution Used		N/A	N/A	
184910	185010	100	At Grade	6	None	<500mm Cut		IN//	IN/A	
185020	185020	100	Cutting	9	HUHE	SOORTH Cut SOORTH Cut				
185030	185060	30	Cutting	+	-	SOORM Cut				
185070	185100	30 10	Cutting	G	None	< 500mm Cut				
185070 185110	185120	10	- БишН	9	None -	Overbridge		N/A	N/A	
185110 185130	185120 185140	10 10	- Cutting	- G	- None	Overbridge <500mm Cut		N/A N/A	N/A N/A	
							- 2.0			-
185140	185220	80	Cutting	G	None	Retaining Wall (Sheet Pile)	2.0	N/A	N/A	
185220	185270	50	Cutting	G	None	Retaining Wall (Sheet Pile)	2.3	N/A	N/A	
185270	185320	50	Cutting	G	None	Retaining Wall (Sheet Pile)	2.0	N/A	N/A	
185330	185340	10	Cutting	G	None	No Solution Used		N/A	N/A	
185350	185360	10	- C::#::==:	-	- Name	Overbridge		N/A	N/A	
185370	185640	270	Cutting	A	None	<500mm Cut		N/A	N/A	
185640	185820	180	At Grade	A	None	<500mm Cut		N/A	N/A	
185830 185860	185850 185880	20	At Grade Embankment	A	None 32.30	No Solution Used Granular Wedge at Embankment Crest		N/A 1.2	N/A 1.6	
						1:2			1.0	
185880	185904	24	Embankment	A	32.30	<500mm Fill		0.6		1:2.5 Partial Re-grade
185904	185960	56	Embankment	A		Retaining Wall (Sheet Pile)	2.0	N/A	N/A	Sheet pile to start 1.0m north of exisiting culvert
185960	185990	30	Embankment	A		Retaining Wall (Sheet Pile)	2.1	N/A	N/A	
185990	186040	50	Embankment	A	32.30	Retaining Wall (Sheet Pile)	2.0	N/A	N/A	

Chainage Start	Chainage End	Length (m)	Earthwork Type	Worst Case Existing Vegetation (RAG)	Max. Flood Risk (mAOD)	Earthworks Widening solution	Max. Retained Height (m)	Max Buildout Width (m)*	Max Cut / Fill Height (m)	Comments
186040	186090	50	Embankment	А	32.30	Retaining Wall (Sheet Pile)	2.3	N/A	N/A	
186090	186230	140	Embankment	А	32.30	Retaining Wall (Sheet Pile)	2.0	N/A	N/A	
186230	186270	40	Embankment	А		Retaining Wall (Sheet Pile)	2.5	N/A	N/A	
186270	186340	70	Embankment	А	32.30	Retaining Wall (Sheet Pile)	2.0	N/A	N/A	
186340	186370	30	Embankment	A	32.30	Full Height Embankment Widening 1:2		N/A	N/A	
186370	186390	20	Embankment	Α	32.30	<500mm Cut		N/A	N/A	
186390	186440	50	Embankment	A	32.30	<500mm Fill	1.4	N/A	N/A	following RFI 685
186440	186450	10	Embankment	Α	32.30	<500mm Fill		N/A	N/A	
186460	186489	29	Embankment	Α	32.30	No Solution Used		N/A	N/A	
186489	186535	46	Embankment			Retaining Wall (Sheet Pile)	1.9	N/A	N/A	
186540	186580	40		-	-	Overbridge		N/A	N/A	
186590	186670	80	Embankment	R	None	No Solution Used		N/A	N/A	
186680	186760	80	Embankment	A	None	Full Height Embankment Widening 1:2		6.7	3	
186770	186840	70	Embankment	A	None	No Solution Used		N/A	N/A	==
186850	186900	50	Embankment	A	None	No Solution Used		N/A	N/A	
186900	186960	60	Embankment	A	None	No Solution Used		1.3	6.4	
186970	187070	100	Embankment	А	None	No Solution Used		1	6.5	
407000	107000	10	T			Link 4a		h1/A	N 1/A	
187080	187090	10		-	-	Overbridge		N/A	N/A	
187100	187180	80	Embankment	А	30.90	<500mm Fill		N/A	N/A	
187190	187250	60	Embankment	А	30.90	Granular Wedge at Embankment Crest 1:2		4	5.9	
187260	187270	10	-	-	-	Underbridge		N/A	N/A	
187280	187320	40	Embankment	А	30.90	<500mm Fill		N/A	N/A	
187330	187340	10	-	-	-	Culvert		N/A	N/A	
187350	187510	160	Embankment	Α	30.90	Granular Wedge at Embankment Crest 1:2		4.6	2.6	
187510	187390	-120	Embankment	А		No Solution Used				
187390	187540	150	Embankment	А	30.90	No Solution Used		N/A	N/A	
187550	187790	240	Embankment	А	31.30	Granular Wedge at Embankment Crest 1:2	_	4.3	2.6	-
187540	187800	260	Embankment	А	31.3	Granular Wedge at Embankment Crest 1:2				
187800	187865	65	Embankment	А	31.3	Granular Wedge at Embankment Crest 1:2				
187870	187880	10	-	-	-	Granular Wedge at Embankment Crest 1:2		N/A	N/A	
187890	187920	30	Embankment	А	31.40	Granular Wedge at Embankment Crest 1:2		N/A	N/A	
187930	187950	20	Embankment	А	32.40	Granular Wedge at Embankment Crest 1:2		2	1.3	
187950	187990	40	-	-	-	River Trent Bridge		N/A	N/A	
188000	188190	190	Embankment	R	31.70	Granular Wedge at Embankment Crest 1:2		N/A	N/A	
188130	188190	60	Embankment	R	31.70	Granular Wedge at Embankment Crest 1:2		3.9	5.2	
188190	188460	270	Embankment	R	31.70	No Solution Used		N/A	N/A	
188460	188510	50	-	-	-	Granular Wedge at Embankment Crest 1:2		N/A	N/A	
188290	188520	230	Embankment	R	31.90	No Solution Used	_	N/A	N/A	
						Granular Wedge at Embankment Crest				
188490	188510	20	Embankment	R	31.90	1:2	_	1.9	2.6	-
188510	188520	10	Embankment	R	31.90	No Solution	_	N/A	N/A	-
188510	188540	30	Embankment	R	31.90	Full Height Embankment Regrade 1 in 2.2			N/A	
188550	188570	20	Embankment	R	31.90	No Solution Used		N/A	N/A	
188570	188730	160	-	-		River Trent Bridge		N/A	N/A	
188730	188760	30	Embankment	R	32.20	Full Height Embankment Widening 1:1.6		N/A	N/A	
188760	188850	90	Embankment	R	32.20	Retaining Wall (Sheet Pile)	2.8	N/A	N/A	
188850	188890	40	Embankment	R		Full Height Embankment Widening 1:1.6		N/A	N/A	
188900	188980	80	Embankment	R		Full Height Embankment Widening 1:1.6	-	N/A	N/A	
188990	189150	160	-	-	-	River Trent Bridge		N/A	N/A	

	1					İ			Mary Cost /	
Chainage Start	Chainage End	Length (m)	Earthwork Type	Worst Case Existing	Max. Flood Risk	Earthworks Widening solution	Max. Retained	Max Buildout	Max Cut /	Comments
Chamage Start	Chamage End	Length (III)	Lattilwork Type	Vegetation (RAG)	(mAOD)	Laithworks widening solution	Height (m)	Width (m)*	(m)	Comments
189160	189320	160	Embankment	A	32.20	No Solution Used		N/A	N/A	
189320	189500	180	_	-	-	River Trent Bridge		N/A	N/A	
189500	189520	20	Cutting	A	32.20	<500mm Cut		N/A	N/A	
189520	189530	10	-	-	-	Overbridge		N/A	N/A	
189540	189630	90	Embankment	A	32.20	<500mm Fill		N/A	N/A	
189640	189660	20	Embankment	G	32.20	<500mm Cut		N/A	N/A	
			LINDANKITICITE			Granular Wedge at Embankment Crest				
189670	189760	90	Embankment	G	32.20	1:2		N/A	N/A	
100700	100000	70			22.22	Granular Wedge at Embankment Crest		0.0	0.00	
189760	189830	70	Embankment	G	32.20	1:2		6.3	3.28	
189810	189930	120	Embankment	G	32.20	<500mm Fill		N/A	N/A	
189940	189950	10	-	-	-	Culvert		N/A	N/A	
				•		Link 4b	1	•		
189960	190150	190	Embankment	G	None	<500mm Fill		N/A	N/A	
190160	190360	200	Embankment	G	None	No Solution Used		N/A	N/A	
190380	190390	10	-	-	_	Overbridge		N/A	N/A	
190400	190520	120	Embankment	G	31.20	No Solution Used		N/A	N/A	***
						Granular Wedge at Embankment Crest				
190530	190560	30	Embankment	G	32.20	1:2		4.4	4.1	
190570	190650	80	Embankment	G	31.20	<500mm Fill		N/A	N/A	
190660	190670	10	_	_	_	Culvert		N/A	N/A	
190680	190730	50	Embankment	G	31.20	<500mm Fill		N/A	N/A	
						Granular Wedge at Embankment Crest				
190740	190940	200	Embankment	G	31.20	1:2		4.9	2.9	
190940	190970	30	Embankment	G	31.20	<500mm Fill		N/A	N/A	
190980	191050	70	Embankment	A	31.20	No Solution Used		N/A	N/A	
191060	191080	20	Embankment	A	31.20	<500mm Fill		N/A	N/A	
191090	191190	100	Embankment	A	31.20	Full Height Embankment Widening 1:2		5	2.1	
191200	191220	20	Embankment	A	31.20	No Solution Used		N/A	N/A	
191230	191280	50	Embankment	A	31.20	<500mm Fill		N/A	N/A	
191290	191310	20	Embankment	A	31.20	Full Height Embankment Widening 1:2		N/A	N/A	
191320	191350	30	Embankment	A	31.20	<500mm Fill		N/A	N/A	
191360	191370	10	-	-	-	Culvert		N/A	N/A	
191380	191450	70	Cutting	A	31.20	<500mm Cut		N/A	N/A	
	191490	30	Cutting		32.20	Regrade Full Height 1:3	+	3.7	1.6	
191460	191550	50		A		Kegrade Full Height 1.3 <500mm Cut		3.7 N/A	N/A	
191500			Cutting	A R	33.20					Penlacement to about nile well
191560	191580	20	Cutting		None	Regrade Full Height 1:2.0		N/A	N/A	Replacement to sheet pile wall
191590	191640	50	Cutting	R	None	<500mm Cut		N/A	N/A	
191650	191660	10	-	-	-	Overbridge		N/A	N/A	
191670	191770	100	Cutting	G	None	No Solution Used		N/A	N/A	
191762	191830	68	Sheet Pile Wall	G	None	Sheet Pile Wall		5.8	1.7	
191830	192060	230	At Grade	G	None	No Solution Used		N/A	N/A	
192070	192090	20	Embankment	G	None	<500mm Fill		N/A	N/A	
192090	192110	20	Embankment	G	None	Full Height Embankment Widening 1:2			1.1	
192110	192160	50	Embankment	A	None	<500mm Fill		N/A	N/A	
192160	192370	210	Embankment	А	None	Granular Wedge at Embankment Crest		N/A	N/A	
102100	102010	210	Lindinillon	/ /	140110	1:2		1 4// 1	14//3	
192370	192460	90	Embankment	Α	None	Granular Wedge at Embankment Crest		N/A	N/A	
						1:2		1		
192210	192400	190	Embankment	A	None	Granular Wedge at Embankment Crest 1:2	_	4	4 .62	_
192410	192460	50	Embankment	A	None	+-∠ <500mm Fill		N/A	N/A	
192410 192460	192520	60	Embankment Embankment			Full Height Embankment Widening 1:2	_	N/A 4		-
				A	None	Full Height Embankment Widening 1:2 <500mm Fill		7	6.2	
192500	192510	10	Embankment	A	None		_	 NI/A	 NI/A	-
192520	192530	10	Factor of	- A	- Name	Underbridge		N/A	N/A	
192540	192970	430	Embankment	A	None	<500mm Fill		N/A	N/A	
192980	193010	30	Cutting	A	None	Full Height Cutting Regrade 1:2.5		N/A	N/A	The solution has changed from gabion wall to regrade
193010	193020	10	Cutting	A	None	Full Height Cutting Regrade 1:2.2		N/A	N/A	The solution has changed from gabion wall to regrade
	 		1	_	1	Link 5		1	 	
193050	193060	10	-	-	-	Overbridge		N/A	N/A	==
193070	193190	120	At Grade	A	None	<500mm Cut		N/A	N/A	
193200	193250	50	Cutting	A	None	<500mm Cut		N/A	N/A	
193250	193320	70	Cutting	A	None	Gabion Wall	0.5	N/A	N/A	
		· · · · · · · · · · · · · · · · · · ·				·				

Chainage Start	Chainage End	Length (m)	Earthwork Type	Worst Case Existing Vegetation (RAG)	Max. Flood Risk (mAOD)	Earthworks Widening solution	Max. Retained Height (m)	Max Buildout Width (m)*	Max Cut / Fill Height (m)	Comments
193320	193350	30	Cutting	A	None	Retaining Wall (Sheet Pile)	2.3	N/A	N/A	
193350	193420	70	Cutting	A	None	Gabion Wall	1.0	N/A	N/A	
193430	193470	40	Cutting	A	None	Gabion Wall	0.5	N/A	N/A	
193470	193480	10	Cutting	A	None	<500mm Cut		N/A	N/A	
193490	193500	10	-	-	-	Overbridge		N/A	N/A	
193510	193570	60	Cutting	A	None	No Solution Used		N/A	N/A	***
193560	193590	30	-	-	-	Overbridge		N/A	N/A	***
193600	193640	40	Cutting	G	None	No Solution Used		N/A	N/A	***
193650	193660	10	-	-	-	Overbridge		N/A	N/A	***
193670	193680	10	Cutting	G	None	No Solution Used		N/A	N/A	***
193690	193700	10	Cutting	G	None	<500mm Cut		N/A	N/A	
193710	193730	20	Cutting	G	None	No Solution Used		N/A	N/A	***
193740	193780	40	Cutting	G	None	No Solution Used		N/A	N/A	
193790	193800	10	Cutting	G	None	No Solution Used		N/A	N/A	
193810	193830	20	Cutting	A	None	<500mm Cut		N/A	N/A	==
193840	194900	1060	Cutting	A	None	No Solution Used		N/A	N/A	==
194910	194920	10	-	-	-	Overbridge		N/A	N/A	**
194930	195000	70	Cutting	N/A	None	No Solution Used		N/A	N/A	

A.3 - Mainline Widening Solutions Schedule Southbound

Chainage Start	Chainage End	Length (m)	Earthwork Type	Worst Case Existing Vegetation (RAG)	Max. Flood Risk (mAOD)	Earthworks Widening solution	Max. Retained Height (m)	Max Buildout Width (m)*	Max Cut / Fill Height (m)	Comments
	1		+	1	1	Link 2	-1		<u> </u>	
182000	182020	20	Cutting	G	None	No Solution Used		N/A	N/A	
182030	182090	60	-	-	-	Overbridge		N/A	N/A	
182100	182150	50	Cutting	A	None	Regrade Full Height 1:3.0		2.8	5.5	
182150	182680	460	Cutting	?	None	Regrade Full Height 1:3.0		2.9	7.3	A
182630	182700	70	Cutting	A	None	<500mm Cut		N/A	N/A	Areas of cut and fill present
182710	182730	20	-	-	-	Overbridge		N/A	N/A	
182740	182780	40	At Grade	A	None	No Solution Used		N/A	N/A	
182790	182890	100	At Grade	A	None	No Solution Used		N/A	N/A	
182900	182930	30	Embankment	A	None	<500mm Fill		N/A	N/A	
182940	183310	370	Embankment	A	None	Granular Wedge At Embankment Crest 1:2		2.9	8	
183320	183420	100	Embankment	A	None	Full Height Embankment Widening 1:2		3.9	5.2	
183440	183460	20	At Grade	A	None	<500mm Cut		N/A	N/A	
183460	183520	60	At Grade	G	None	No Solution Used		2.4	1	
183520	183700	180	Cutting	G	None	Regrade Full Height 1:2.5		N/A	N/A	
183700	183800	100	Cutting	G	None	No Solution Used		N/A	N/A	DEIOAA
183665	183780	115	Cutting	G	None	No Solution Used		N/A	N/A	RFI614
183780	183790	10	Cutting	G	None	No Solution Used		N/A	N/A	RFI614
183800	183860	60	Cutting	G	None	Gabion wall		N/A	N/A	
183860	183950	90	Cutting	G	None	Ret. Wall (Sheet Pile)	1.1	N/A	N/A	W. J
183950	184065	115				NO WORKS REQUIRED				Works removed, refer to PMI 20.
183980	184020	00	0 "		N	NO WORKS REQUIRED		N1/A	A1/A	Full Height regrade 1:2.5. Kegworth Bypass bridgeby others.
184030	184060	30	Cutting	G	None	<500mm Cut		N/A	N/A	
184065	184107	42	-	-	-	Overbridge		N/A	N/A	
184107	184112	5	Cutting	G		Regrade Full Height 1:2		N/A	N/A	
184112	184130	18	Cutting	G		Regrade Full Height 1:2.5		2.6	6.5	
184130	184170	40	Cutting	G	None	Regrade Partial Height 1:2.5		2.0	3.4	
184170	184200	30	Cutting	G	None	<500mm Cut		N/A	N/A	
184210	184220	10	Cutting	G	None	Regrade Partial Height 1:2.5		1.9	2.6	
184230	184270	40	Cutting	G	None	<500mm Cut		N/A	N/A	
184280	184330	50	Cutting	G	None	Regrade Partial Height 1:2.5		5.2	4.5	
184340	184380	40	Cutting	G	None	<500mm Cut		N/A	N/A	
184390	184470 184620	80	Cutting	G	None	Regrade Full Height 1:2.5		4.8	2.9	
184470		150	At Grade	A	None	<500mm Cut / No Solution		N/A	N/A	
184620	184740 184840	120	Embankment	A	None	Full Height Embankment Widening 1:2		5.2	2.6 N/A	
184740	184840	100	Embankment	R	None	No Solution Used		N/A	IN/A	
184840	185100	260	Cutting	R	None	Link 3	1	N/A	N/A	
185110	185120	10	Cutting	K	None	<500mm fill Overbridge		N/A	N/A N/A	
185130	185160	30	Cutting	R	None	No Solution Used		N/A N/A	N/A N/A	
185160	185220	60	Cutting	R	None	Regrade Full Height 1:3		5.6	3.1	
185220	185330	110	Cutting	R	None	Compared to the second se		N/A	N/A	
185340			ŭ		†				N/A N/A	
185340	185360 185380	20 10	- Cutting	- R	- None	Overbridge <500mm Fill		N/A N/A	N/A N/A	
185370 185380	185380 185500	10 120	Cutting	R	None None	<500mm Cut		N/A N/A	N/A N/A	
185380	185560	180	Cutting	G	None	Regrade Full Height 1:3		1.7	N/A 2.8	
185560	185630	70	At Grade	G	None	<500mm Cut		N/A	N/A	Slope is approximately at-grade / shallow slope which is formed between the new EMG J24A SB on slip and the realigned EMG J24 SB off slip. Note this is predominantly "cutting" between the M1 and J24 SB off slip / new EMG J24A SB on slip
185630	185700	70	At Grade	G	None	<500mm Fill		N/A	N/A	Slope is approximately at-grade / shallow slope which is formed between the new EMG J24A SB on slip and the realigned EMG J24
185700	185770	70	At Grade	G	None	Gabion wall	1	N/A	N/A	Refer to PMI 150 and 166
185770	185860	90	At Grade	G	None	<500mm Fill		N/A	N/A	Slope is "cutting" and formed by new earthworks embankment for new EMG J24A SB on slip. Includes 2 small gabion retaining solutions at 2 chambers and 2 small slab on edge retaining solutions at 2 lighting
185860	185900	40	Embankment	А	30.6	Granular Wedge At Embankment Crest 1:2		1.9	2.3	Area between M1 and new EMG J24A SB on slip embankment has also been infilled / reprofiled to create an at-grade region.
185900	185940	40	Emboules au	Α.	20.6	Granular Wedge At Embankment Crest 1:2		N/A	N/A	Area between M1 and new EMG J24A SB on slip embankment has also been infilled / reprofiled to create an at-grade region
185940	186200	260	Embankment	A	30.6	Granular Wedge At Embankment Crest 1:2		1.9	3	
186200	186330	130	Embankment	A		Full Height Embankment Widening 1:2		4.7	2.9	
186330	186410	80	Embankment	A	None	<500mm Fill		N/A	N/A	
186450	186520	70	At Grade	A	None	No Solution Used		N/A	N/A	

Chainage Start	Chainage End	Length (m)	Earthwork Type	Worst Case Existing Vegetation (RAG)	Max. Flood Risk (mAOD)	Earthworks Widening solution	Max. Retained Height (m)	Max Buildout Width (m)*	Max Cut / Fill Height (m)	Comments
186530	186560	30	-	-	-	Overbridge		N/A	N/A	
186570	186770	200	Embankment	G	30.5	No Solution Used		N/A	N/A	RFI614
186770	186830	60	Embankment	G	30.5	Granular Wedge At Embankment Crest 1:2		3.6	5.7	
186830	186860	30	Embankment	G	30.5	Full Height Embankment Widening 1:2		3.6	5.7	
186860	186880	20	Embankment	G	32.5	Granular Wedge At Embankment Crest 1:2		3.6	5.7	
186890	187090	200	Embankment	G	30.5	Full Height Embankment Widening 1:2			6.5	
						Link 4a				
187090	187140	50	-	-	-	Underbridge		N/A	N/A	
187140	187260	120	Embankment	A	None	Granular Wedge At Embankment Crest 1:2		1	5.5	
187260	187275	15	-	-	-	Culvert		N/A	N/A	
187275	187330	55	Embankment	A	30.9	Full Height Embankment Widening 1:2		4.3	2	
187330	187350	20	-	-	-	Culvert		N/A	N/A	
187350	187450	100	Embankment	A	30.9	Granular Wedge At Embankment Crest 1:2		1.0	4.5	
187500	187590	90	Embankment	A	30.9	<500mm Fill		N/A	N/A	
187600	187620 187790	20	Embankment	A	30.9	Full Height Embankment Widening 1:2		5.1	2	PEICAA
187620 187800	187790	170 35	Embankment	A	30.9 31.0	<500mm Cut Ret. Wall (Sheet Pile)	2.3	N/A N/A	N/A N/A	RFI614
187840	187850	10	Embankment Embankment	A A	31.0	<500mm Cut	2.3	N/A	N/A N/A	
187860	187870	10	-	-	-	Culvert		N/A	N/A	
187880	187900	20	Embankment	A	31.0	No Solution Used		N/A	N/A	
187910	187930	20	Embankment	A		Ret. Wall (Sheet Pile)	1.2	N/A	N/A N/A	
187940	187960	20	Embankment	A	31.0	No Solution Used		N/A	N/A	
187960	188010	50	-	-	-	Underbridge		N/A	N/A	
188020	188090	70	Embankment	A	31.0	No Solution Used		N/A	N/A	RFI614
188100	188130	30	Embankment	A		Ret. Wall (Sheet Pile)	1.4	N/A	N/A	
188140	188220	80	Embankment	A	31.0	No Solution Used		N/A	N/A	
188220	188250	30	Embankment	A	31.0	Full Height Embankment Widening 1:2		3.3	7.3	
188250	188300	50	-	-	-	Underbridge		N/A	N/A	
188310	188370	60	Embankment	А	31.1	No Solution Used		N/A	N/A	
188380	188400	20	Embankment	А	31.1	Granular Wedge At Embankment Crest 1:2		4.3	4.8	
188408	188500	92	Embankment	R	31.1	Ret. Wall (Sheet Pile)	2.7	N/A	N/A	
188500	188546	46	Embankment	R	31.1	Ret. Wall (Sheet Pile)	2.0	N/A	N/A	
188560	188720	160	-	-	-	Underbridge		N/A	N/A	
188720	188740	20	Embankment	R	32.2	No Solution Used		N/A	N/A	
188750	188770	20	Embankment	R		Ret. Wall (Sheet Pile)	2.3	N/A	N/A	
188780	188860	80	Embankment	R	32.2	<500mm Cut		N/A	N/A	
188870	188930	60	Embankment	R	32.2	<500mm Fill		N/A	N/A	Areas of cut and fill present
188930	188950	20	Embankment	R	32.2	Ret. Wall (Sheet Pile)	2.1	N/A	N/A	
188950	188980	30	Embankment	R	32.2	<500mm Fill		N/A	N/A	
188990	189150	160		-	-	Underbridge		N/A	N/A	
189160	189180	20	Embankment	A		Ret. Wall (Sheet Pile)	2.5	N/A	N/A	
189180	189180	0	Embankment	A		No Solution Used		N/A	N/A	
189180	189190	10	Embankment	A		<500mm fill		N/A	N/A	
189200	189270	70	Embankment	A		No Solution Used	0	N/A	N/A	
189280	189305	25 160	Embankment	Α		Ret. Wall (Sheet Pile)	1.5	N/A	N/A	
189320 189490	189480 189510	160 20	- Cutting	- A	32.2	Underbridge No Solution Used		N/A N/A	N/A N/A	RFI614
189520	189530	10	- Cutting	- A		Overbridge		N/A N/A	N/A N/A	
189540	189550	10	Cutting	- A		No Solution Used		N/A	N/A N/A	RFI614
189560	189740	180	Embankment	A		Granular Wedge At Embankment Crest 1:2		N/A	1.3	
189750	189790	40	Embankment	A		Ret. Wall (Sheet Pile)	2.8	N/A	N/A	
189790	189930	140	Embankment	A		Granular Wedge At Embankment Crest 1:2		3.9	2.7	
189940	189950	10	-	-		Underbridge		N/A	N/A	
.55515	.55555		l			Link 4b		. 47.1	. 47.3	
189960	190280	320	Embankment	A	32.2	Granular Wedge At Embankment Crest 1:2		N/A	4.5	
190290	190320	30	Embankment	A	32.2	<500mm Fill		N/A	N/A	
190330	190370	40	Embankment	A		Granular Wedge At Embankment Crest 1:2		N/A	5.8	
190380	190390	10	-	-	-	Underbridge		N/A	N/A	
190400	190440	40	Embankment	А	31.2	<500mm Fill		4.1	6.3	
190440	190650	210	Embankment	А	31.2	Granular Wedge At Embankment Crest 1:2		4.1	6.3	
190660	190670	10	-	-	-	Culvert		N/A	N/A	
190680	191050	370	Embankment	Α	31.2	Granular Wedge At Embankment Crest 1:2		1	2.6	
191050	191410	360	Embankment	А	31.2	No Solution Used		N/A	N/A	RFI614
191420	191450	30	Embankment	А		Granular Wedge At Embankment Crest 1:2			2.8	
191450	191500	50	Embankment	А		No Solution Used		N/A	N/A	RFI614
191500	191530	30	At Grade	А	None	No Solution Used		N/A	N/A	RFI614

Chainage Start	Chainage End	Length (m)	Earthwork Type	Worst Case Existing Vegetation (RAG)	Max. Flood Risk (mAOD)	Earthworks Widening solution	Max. Retained Height (m)	Max Buildout Width (m)*	Max Cut / Fill Height (m)	Comments
191530	191550	20	Cutting	А	None	<500mm Fill		N/A	N/A	
191560	191570	10	Cutting	А	None	Regrade Partial Height 1:3		1.5	1	
191580	191650	70	Cutting	А	None	No Solution Used		N/A	N/A	RFI614
191660	191680	20	-	-	-	Overbridge		N/A	N/A	
191690	191830	140	At Grade	R	None	<500mm Fill		N/A	N/A	
191840	191930	90	Cutting	R	None	<500mm Cut		N/A		
191940	191960	20	Cutting	R	None	<500mm Cut		N/A		
191960	191970	10	Cutting	R	None	No Solution Used		N/A	N/A	
191970	191990	20	Cutting	R	None	<500mm Cut		N/A		
191990	192000	10	Embankment	R	None	<500mm Fill		N/A	N/A	
192000	192090	90	Embankment	R	None	Granular Wedge At Embankment Crest 1:2		4.4	1.9	
192090	192140	50	Embankment	R	None	Ret. Wall (Sheet Pile)	2.0	N/A	N/A	
192140	192190	50	Embankment	R	None	Ret. Wall (Sheet Pile)	3.8	N/A	N/A	
192190	192250	60	Embankment	R	None	Ret. Wall (Sheet Pile)	3.1	N/A	N/A	
192250	192260	10	Embankment	R	None	Ret. Wall (Sheet Pile)	2.0	N/A	N/A	
192260	192300	40	Embankment	R	None	Ret. Wall (Sheet Pile)	3.1	N/A	N/A	
192300	192360	60	Embankment	R	None	Ret. Wall (Sheet Pile)	3.8	N/A	N/A	
192360	192400	40	Embankment	R	None	Ret. Wall (Sheet Pile)	3.1	N/A	N/A	
192400	192480	80	Embankment	R		Ret. Wall (Sheet Pile)	2.1	N/A	N/A	
192480	192520	40	Embankment	R		Ret. Wall (Sheet Pile)	2.3	N/A	N/A	
192520	192560	40	_	-	_	Underbridge		N/A	N/A	
192560	192710	150	Embankment	A	None	Full Height Embankment Widening 1:2		2.5	6.3	
192710	192770	60	Embankment	A	None	Ret. Wall (Sheet Pile)	2.9	N/A	N/A	
192770	192830	60	Embankment	A	None	Ret. Wall (Sheet Pile)	2.0	N/A	N/A	
192830	192890	60	Embankment	A	None	No Solution Used		N/A	N/A	RFI614
192890	192940	50	Cutting	A	None	Regrade Full Height 1:2.5		N/A	N/A	
						Link 5				
192940	193040	100	Cutting	А	None	Full Height Embankment Widening 1:2		N/A	N/A	
193230	193290	60	At Grade	A		Full Height Embankment Widening 1:2		N/A	N/A	
193300	193320	20	Cutting	A		Ret. Wall (Sheet Pile)	1.1	N/A	N/A	Original Sheet pile solution to be used
193320	193470	150	Cutting	A	None	Ret. Wall (Gabion)		N/A	N/A	Original Gabion solution to be used
193500	193510	10	-	-	-	Overbridge		N/A	N/A	
193520	193570	50	Cutting	A	None	No Solution Used		N/A	N/A	
193580	193590	10	-	-	-	Overbridge		N/A	N/A	
193600	193640	40	Cutting	A	None	<500mm Cut		N/A	N/A	
193650	193670	20	-	-	-	Overbridge		N/A	N/A	
193680	193690	10	Cutting	A	None	No Solution Used		N/A	N/A	Change of design from sheet pile to full height regrade
193695	193715	20	Cutting	A	None	No Solution Used		N/A	N/A	Phange from no solution to earthwork solution, refer to RFT 1077 and
193716	193730	14	Cutting	A	None	No Solution Used		N/A	N/A	
193740	193730	100	Cutting	A		No Solution Used		N/A	N/A	
193850	193860	100	At Grade	A	None	No Solution Used		N/A	N/A	
193860	193880	20	At Grade	A	None	No Solution Used		N/A	N/A	
193880	194080	200	Cutting	A	None	No Solution Used		N/A	N/A	
194080	194100	20	- Cutting	-	-	Overbridge		N/A	N/A	
194100	194320	220	Cutting	- A	None	No Solution Used		N/A	N/A N/A	
194330	194500	170	Cutting	A	None	No Solution Used		N/A	N/A N/A	
194330	194930	420	Cutting	A	None	No Solution Used		N/A N/A	N/A N/A	
194510	194930	10	- Cutting	- A	None -	Overbridge		N/A N/A	N/A N/A	
194940	195000	60	Cutting	N/A	None	No Solution Used		N/A N/A	N/A N/A	
194940	190000	ÜÜ	Guilling	IN/A	INOTIE	NO SOIULION OSEU		IN/A	IN/A	

<u>A4</u> - Mainline Widening Solutions Schedule Merges & Diverges

Chainage Start	Chainage End	Length (m)	Junction	NB/SB	Carriageway	Earthwork Type	Worst Case Existing Vegetation (RAG)	Max. Flood Risk (mAOD)	Earthworks Widening solution	Max. Retaind Height (m)	Max Buildout Width (m)*	Max Cut / Fill Height (m)	Comments
_	_				_		_		Link 2				
182480	182630	150	23a	SB	M1-A42 (east)	Cutting	Green	None	<500mm Fill	-	1.5	N/A	
182630	182650	20	23a	SB	M1-A42 (east)	Cutting	Green	None	<500mm Cut		1.5	N/A	
182650	182720	70 40	23a	SB	M1-A42 (east)	Cutting	Green	None None	Overbridge		N/A 4.0	N/A	
182720 182760	182760 182770	10	23a 23a	SB SB	M1-A42 (east) M1-A42 (east)	Cutting Cutting	Green Green	None	Regrade Full Height 1:3 No Solution Used		4.0	1.6 ??	Insufficient topo data for full earthwork height
182770	182780	10	23a	SB	M1-A42 (cast)	Cutting	Green	None	<500mm Cut	-	4.0	-	insumoient topo data for full cartifivory hoight
182780	182790	10	23a	SB	M1-A42 (east)	Cutting	Green	None	Regrade Full Height 1:3	_	5.0	1.1	
182790	182830	40	23a	SB	M1-A42 (east)	Cutting	Green	None	No Solution Used		5.0	??	Insufficient topo data for full earthwork height
182830	182900	70	23a	SB	M1-A42 (east)	Cutting	Green	None	Regrade Full Height 1:3	-	4.0	1.3	
181810	181860	50	23a	NB	A42-M1 (west)	Embankment			Granular Wedge At Embankment Crest 1:3	-	4.0	2.5	Limited topo data. Solution to be verified on-site follow removal of vegetation
181960	182070	110	23a	NB	A42-M1 (west)	Cutting	Green	None	No Solution Used		0.0	N/A	
182080	182110	30	23a	NB	A42-M1 (west)	Cutting	Green	None	Overbridge		N/A 3.8	N/A 3.3	
182120 182150	182140 182240	20 90	23a 23a	NB NB	A42-M1 (west) A42-M1 (west)	Cutting Cutting	Green Green	None None	Granular Wedge At Embankment Crest 1:2 <500mm Fill		3.0	N/A	
182250	182280	30	23a	NB	A42-M1 (west)	Cutting	Green	None	No Solution Used		1.6	N/A	
102200	102200	00	200	IND	7.42 WT (WOOL)	Outung	Ciccii	140110	110 00141011 0004		1.0	1471	
184900	185100	200	24	NB	M1-A453/A50/A6 Offslip (west)	??	Green	None	No solution used				There are no changes to thecurrent highways model, therefore, no geotechnical solution will be required.
184860	184910	50	24	SB	A453/A50/A6-M1 Onslip (east)	Embankment	Red	None	Full Height Embankment Widening 1:2		4.9	3	Solution changed from sheet pile wall
184920	185040	120	24	SB	A453/A50/A6-M1 Onslip (east)	Embankment	Red	None	Full Height Embankment Widening 1:2.5		6.3	5	Refer to RFI 460 and drawing HA549342-AMAR-HGT-SWI-DR-CE-000620
184970	185000	30	24	SB	A453/A50/A6-M1 Onslip (cast)	Embankment	Red	None	No solution used	-	-	-	There are no changes to the current highways model, therefore, no geotechnical solution will be required.
									Link 3				
185010	185100	90	24	SB	A453/A50/A6-M1 Onslip (east)	Embankment	Red	None	No solution used				Insufficient topo data
405000	405400	00	04	NID	A 450/A50/A0 M4 Out live (100 at)	Fort returned	A male a m	None	No Columbia and Dominia and		0.0	NI/A	No tone data
185380	185400 185510	20	24	NB NB	A453/A50/A6-M1 Onslip (west)	Embankment	Amber	None	No Solution Required		0.0 4.0	N/A	No topo data
185400 185510	185540	110 30	24 24	NB NB	A453/A50/A6-M1 Onslip (west) A453/A50/A6-M1 Onslip (west)	Embankment Embankment	Amber Amber	None None	Full Height Embankment Widening 1:2 <500mm Fill		4.0	1.8 N/A	
185540	185550	10	24	NB	A453/A50/A6-M1 Onslip (west)	Embankment	Amber	None	<500mm Cut		4.0	N/A	
185550	185590	40	24	NB	A453/A50/A6-M1 Onslip (west)	At Grade	Amber	None	Regrade Partial Height 1:3		4.0	0.8	
185590	185610	20	24	NB	A453/A50/A6-M1 Onslip (west)	At Grade / Cutting	Amber	None	No Solution Used		4.0	??	Insufficient topo data
185610	185640	30	24	NB	A453/A50/A6-M1 Onslip (west)	Cutting	Amber	None	Regrade Partial Height 1:3		4.0	1.3	·
186200	186450	250	24	SB	M1-A453/A50/A6 Offslip (east)	-			See mainiline widening schedule	-			
100700	400700		0.4	N/D	A 50 MA Ov. " ()	Post of the state	A. 1	NI.	No Color	 	0.0	A1/A	
186700	186760	60	24a	NB	A50-M1 Onslip (west)	Embankment	Amber	None	No Solution Used		0.0	N/A	Local build out at Ch180 required for CCA abambar, Additional 1.2m yida 2m lang
186760	186970	210	24a	NB	A50-M1 Onslip (west)	Embankment	Green	None	Full Height Embankment Widening 1:2	-	3.0	6.2	Local build out at Ch180 rquired for CCA chamber. Additional 1.2m wide 3m long build out required at this location. Refer to RFI 791.
186970	187070	100	24a	NB	A50-M1 Onslip (west)	Embankment	Green	None	Granular Wedge At Embankment Crest 1:2	-	3.0	5.9	
186550	186640	90	24a	SB	M1-A50 Offslip (east)	-			See mainiline widening schedule	-		-	
									Link 5			T .	
193110	193250	140	25	NB	M1-A52 Offslip (west)	Cutting	Amber	None	<500mm Cut		3.0	N/A	Tanada da Arria
193260	193500	240	25	NB	M1-A52 Offslip (west)	Cutting	Amber	None	No Solution Used		3.0	N/A	Topo data does not cover full slope
193120	193260	140	25	SB	A52-M1 Onslip (east)	Cutting	Amber	None	<500mm Cut		3.8	N/A	Topo data does not cover full slope
193120	193400	140	25	SB	A52-M1 Onslip (east)	Cutting	Amber	None	No Solution Used		3.8	N/A N/A	Topo data does not cover full slope Topo data does not cover full slope
193400	193420	20	25	SB	A52-M1 Onslip (east)	Cutting	Amber	None	<500mm Fill		3.8	N/A	Topo data does not cover full slope
193420	193500	80	25	SB	A52-M1 Onslip (east)	Cutting	Amber	None	No Solution Used		3.8	N/A	Topo data does not cover full slope
					1 \ / /			1	-	1			'
193680	193950	270	25	NB	A52-M1 Onslip (west)	Embankment	Green	None	No Solution Used	-	0.0	N/A	
400700	101100	400	05	CD	M4 A52 Off-11:- (Fresh and the same	A / !	Ness	Na Caluffer Head	 	0.0	N1/A	
193700	194100	400	25	SB	M1-A52 Offslip (east)	Embankment	Amber	None	No Solution Used		0.0	N/A	

Appendix B Retaining structures and structure foundation schedule (As-Built)

- **B.1 Sheet Pile Wall Schedule Northbound**
- **B.2 Sheet Pile Wall Schedule Southbound**
- B.3 Slab-on-edge Schedule
- **B.4 Gantries Foundation Schedule**
- **B.5 ROTTOMS Foundation Schedule**
- **B.6 Environmental Barriers Foundation Schedule**
- **B.7 CCTVs Foundation Schedule**
- **B.8 Radar's Foundation Schedule**
- **B.9 EAV Poles Foundation schedule**
- **B.10 Large Traffic Signs Foundation schedule**
- **B.11 Single Post Traffic Signs Foundation Schedule**

B.1 - Sheet Piling Schedule Northbound

										King Sheet Pi	le Wall						
Chainage	Chainage	Earthwork Type	Sheet Pile Type	Total Structure	Max. Retained		Sheet Pile Wa	ıll			KSP (700mm	Sections)			Intermediate k	(SP Sections (700mi	m)
Start	End	Lattiwork Type	oneer the type	Length (m)	Height (m)	Max. Embedment Depth (m)	Total Pile Length (m)	Section	Steel Grade	Max. Embedment Depth (m)	Total Pile Length (m)	Section	Steel Grade	Section	Steel Grade	Min. Embedment Depth (mbgl)	Total Length (m)
				I		I .		Link2	I				_!!		·I		1
						•		Link 3			-						
185140	185220	Cutting	Steel	80	2.0	-	-	-	-	6.0	8.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.0
185220	185270	Cutting	Steel	50	2.3	-	-	-	-	7.7	10.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.3
185270	185320	Cutting	Steel	50	2.0	-	-	-	-	6.0	8.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.0
185904	185950	Embankment	Steel	46	2.0	-	-	-	-	4.5	6.5	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.0
185950	185990	Embankment	Steel	40	2.1	-	-	-	-	4.4	6.5	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.1
185990	186040	Embankment	Steel	50	2.0	-	-	-	-	4.5	6.5	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.0
186040	186090	Embankment	Steel	50	2.3	-	-	-	-	5.2	7.5	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.3
186090	186230	Embankment	Steel	140	2.0	-	-	-	-	4.5	6.5	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.0
186230	186270	Embankment	Steel	40	2.5	-	-	-	-	5.0	7.5	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.5
186270	186340	Embankment	Steel	70	2.0	-	-	-	-	4.5	6.5	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.0
186500	186530	Embankment	Steel	30	1.9	-	-	-	-	4.1	6.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	2.9
188530	188550	Embankment	Steel	20	2.7	-	-	-	-	8.3	11.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.7
	•							Link 4a		-			•		-		
188720	188760	Embankment	Steel	40	2.0	-	-	-	-	6.0	8.0	ZZ26	S-355-GP	ZZ18	S-355-GP	4.0	3.0
188760	188850	Embankment	Steel	90	2.8	-	-	-	-	6.2	9.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.5	4.3
188850	188865	Embankment	Steel	15	2.0	-	-	-	-	7.0	9.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.0
188865	188890	Embankment	Steel	25	2.0	-	-	-	-	6.0	8.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.0
191557	191582	Cutting	Steel	25	0.9	-	-	-	-	3.8	4.7	ZZ18	S 355 GP	ZZ18	S 355 GP	1.0	1.9
	•					-		Link 5	•	'			, ,				•
191770	191830	Embankment	Steel	60	1.8	-	-	-	-	4.3	6.0	ZZ26	S 355 GP	-	-	-	-
193320	193350	Cutting	Steel	30	2.3	-	-	-	-	7.7	10.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.3

B.2 - Sheet Piling Schedule Southbound

													King Shee	t Pile Wall			
Chainage	Chainage	Earthwork Type	Sheet Pile	Total Structure	Max. Retained		Sheet Pile W	/all			KSP (700mm s	ections)			Intermediate K	SP Sections (700mm)	
Start	End	Euraiwork Type	Туре	Length (m)	Height (m)	Max. Embedment Depth (m)	Total Pile Length (m)	Section	Steel Grade	Max. Embedment Depth (m)	Total Pile Length (m)	Section	Steel Grade	Section	Steel Grade	Min. Embedment Depth (mbgl)	Total Length (m)
					'				Link2				<u> </u>				
183860	183950	Cutting	Steel	90	1.4	-	1	-	-	4.1	5.5	ZZ18	S 355 GP	ZZ18	S 355 GP	1.0	2.4
								I	_ink 4a								
187800	187830	Embankment	Steel	30	2.3	-	-	-	-	4.2	6.5	ZZ 26	S 355 GP	ZZ18	S 355 GP	1.0	3.3
187910	187930	Embankment	Steel	20	1.2	-	-	-	-	6.9	7.5	ZZ18	S 355 GP	ZZ18	S 355 GP	1.0	1.6
188100	188130	Embankment	Steel	30	1.4	-	-	-	-	5.6	7.0	ZZ18	S 355 GP	ZZ18	S 355 GP	1.0	2.4
188410	188500	Embankment	Steel	90	2.7	-	-	-	-	8.3	11.0	AZ46	S 390 GP	ZZ18	S 355 GP	1.0	3.7
188500	188540	Embankment	Steel	40	2.0	-	ı	-	-	6.0	8.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.0
188750	188770	Embankment	Steel	20	2.3	-	-	-	-	5.2	7.5	ZZ26	S 355 GP	ZZ18	S 355 GP	2.5	4.8
188930	188950	Embankment	Steel	20	2.1	-	-	-	-	5.7	8.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.3
189160	189180	Embankment	Steel	20	2.5	-	-	-	-	5.3	8.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.7
189280	189305	Embankment	Steel	25	1.5	-	-	-	-	5.0	6.5	ZZ18	S 355 GP	ZZ18	S 355 GP	1.0	2.5
189750	189790	Embankment	Steel	40	2.9	-	-	-	-	6.1	9.0	ZZ26	S 355 GP	ZZ18	S 355 GP	1.0	3.9
								I	ink 4b								
192090	192140	Embankment	Steel	50	2.0	-	-	-	-	6.0	8.0	AZ36	S 390 GP	ZZ18	S 355 GP	1.0	3.0
192140	192190	Embankment	Steel	50	3.9	9.1	13.0	AZ50	S 390 GP	-	-	-	-		-	-	-
192190	192240	Embankment	Steel	50	3.1	-	-	-	-	7.9	11.0	AZ36	S 390 GP	ZZ18	S 355 GP	1.0	4.1
192240	192260	Embankment	Steel	20	2.0	-	-	-	-	6.0	8.0	AZ36	S 390 GP	ZZ18	S 355 GP	1.0	3.0
192260	192300	Embankment	Steel	40	3.1	-	-	-	-	7.9	11.0	AZ36	S 390 GP	ZZ18	S 355 GP	1.0	4.1
192300	192370	Embankment	Steel	70	3.9	9.1	13.0	AZ50	S 390 GP	-	-	-	-		-	-	-
192370	192400	Embankment	Steel	30	3.1	-	-	-	-	7.9	11.0	AZ36	S 390 GP	ZZ18	S 355 GP	1.0	4.1
192400	192480	Embankment	Steel	80	2.4	-	-	-	-	9.6	12.0	AZ36	S 390 GP	ZZ18	S 355 GP	1.0	3.4
192480	192519	Embankment	Steel	39	2.3	-	-	-	-	9.7	12.0	AZ36	S 390 GP	ZZ18	S 355 GP	1.0	3.3
192710	192747	Embankment	Steel	37	3.4	-	-	-	-	9.1	12.5	AZ50	S 390 GP	ZZ18	S 355 GP	1.0	4.4
192770	192832	Embankment	Steel	62	2.5	-	-	-	-	6.0	8.5	AZ36	S 390 GP	ZZ18	S 355 GP	1.0	3.5
193300	193320	Cutting	Steel	20	1.1	-	-	-	-	4.2	5.0	ZZ18	S 355 GP	ZZ18	S 355 GP	1.0	1.8
193680	193691	Cutting	Steel	11	1.5	-	-	-	-	5.5	7.0	ZZ2 6	S-355-GP	ZZ18	S-355 GP	1.0	2. 5

B.3 - Slab-on-edge Schedule

					As-built		
Asset	Earthwork Type	Carriageway	Structure Location	Chainage Start	Chainage End	Length (m)	Comments
PC17	Cutting	NB	Lighting Column	182286	182292	6	
PC19	Cutting	NB	Lighting Column	182313	182319	6	
PC21	Cutting	NB	Lighting Column	182340	182347	7	
PC23	Cutting	NB	Lighting Column	182366	182372	6	
PC25	Cutting	NB	Lighting Column	182393	182399	6	
PC27	Cutting	NB	Lighting Column	182420	182426	6	
PC29	Cutting	NB	Lighting Column	182447	182453	6	
PC31	Cutting	NB	Lighting Column	182474	182480	6	
PC33	Cutting	NB	Lighting Column	182500	182506	6	
PC35	Cutting	NB	Lighting Column	182538	182544	6	
PC37	Cutting	NB	Lighting Column	182576	182582	6	
PC39	Cutting	NB	Lighting Column	182614	182620	6	
PC41	Cutting	NB	Lighting Column	182653	182659	6	
PC43	Cutting	NB	Lighting Column	182691	182697	6	Slab-on-Edge solution included (Post DF5) to provide up to 0.5m high retaining wall
PC46	Cutting	NB	Lighting Column	182730	182736	6	behind lighting column and A chambers locations.
PC57	Cutting	NB	Lighting Column	182895	182901	6	
PC59	Cutting	NB	Lighting Column	182928	182933	5	
PC61	Cutting	NB	Lighting Column	182960	182966	6	
PC63	Cutting	NB	Lighting Column	182992	182998	6	
PC38	Cutting	SB	Lighting Column	182578	182575	3	
PC40	Cutting	SB	Lighting Column	182617	182613	4	
PC92	Cutting	SB	Lighting Column	183492	183487	5	
PC94	Cutting	SB	Lighting Column	183524	183519	5	
PC96	Cutting	SB	Lighting Column	183554	183549	5	
PC98	Cutting	SB	Lighting Column	183585	183580	5	
PC104	Cutting	SB	Lighting Column	183678	183673	5	
A041	Cutting	SB	A Chamber	182491	182486	5	
A018	Cutting	SB	A Chamber	181965	181960	5	

B.4 - Gantries Foundation Schedule

											Working I	Pile Test Detai	ls		Design Valid	ation
Asset	SMP Reference	Chainage (m)	Carriageway	Foundation type	Pile Type (Construction Method)	Number of Piles	Pile Diameter (mm)	Pile Spacing (m)	As-built Pile Length (m)	Test	Representativ e Load (kN)	Max. Test Load (kN)	Permitted Settlement at 150% Representative Load (mm)	Geotech	Borehole No.	Static Load Test Y/N
Gantry (MS4)	101	181950	NB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	11						BH-G101	
Gantry (Super Cantilever)	112	185180	SB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	20	Υ	1225	1838	13	Complete	BH-G112	Y
Gantry (Superspan Portal)	202	186240	NB	Pile Group	Bored	3 (1 x 3)	0.9	2.7	16			No test req	uired	Complete	BH-G202	
Gantry (Superspan Portal)	202	186240	SB	Pile Group	Bored	3 (1 x 3)	0.9	2.7	16	Υ	849	1274	14	Complete	BH-G202	Y
Gantry (ADS)	203	186390	SB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	25			No test req	uired	Complete	BH-G203	
Gantry (Super Cantilever)	204	186526	NB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	19			No test req	uired	Complete	BH-G204	
Gantry (Superspan Portal)	301	186847	NB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	16	Υ	1539	2309	20	Complete	BH-G301A	Y
Gantry (Superspan Portal)	301	186847	SB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	16	Υ	1539	2309	20	Complete	BH-G301B	Y
Gantry (ADS)	302	187073	SB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	21			No test req	uired	Complete	BH-G302	N
Gantry (MS4)	326	187300	SB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	17	Υ	576	864	8	Complete	BH-G326	Y
Gantry (ADS)	303	187608	SB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	21	Υ	1040	1560	8	Complete	BH-G303	Y
Gantry (Super Cantilever)	304	187650	NB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	12.5	Υ	1386	2079	8	Complete	BH-G304	Y
Gantry (MS4)	305	187818	SB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	12.5	Υ	497	745	8	Complete	BH-G305	Y
Gantry (MS4)	307	188529	NB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	15			No test req	uired	Complete	BH-G307	N
Gantry (ADS)	308	188760	SB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	26	Υ	912	1369	8	Complete	BH-G308	Y
Gantry (MS3)	309	188947	SB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	14	Υ	498	747	8	Complete	BH-G309	Y
Gantry (MS4)	310	189172	SB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	14			No test req	uired	Complete	BH-G310	N
Gantry (Superspan Portal)	311	189780	NB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	16	Υ	578	885	12	Complete	BH-G311A	Y
Gantry (Superspan Portal)	311	189780	SB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	16			No test req	uired	Complete	BH-G311B	N
Gantry (MS4)	312	190605	SB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	16			No test req	uired	Complete	BH-G312	N
Gantry (MS3)	313	190771	NB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	14	Υ	412	618	8	Complete	BH-G313	Y
Gantry (MS4)	314	191096	NB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	11	Υ	428	642	8	Complete	BH-G314	Y
Gantry (ADS)	315	191296	NB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	26	Υ	937	1406	9	Complete	BH-G315	Y
Gantry (MS4)	316	191430	SB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	10.5			No test req	uired	Complete	BH-G316	N
Gantry (MS4)	318	191801	NB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	13			No test req	uired	Complete	BH-G318	N
Gantry (ADS)	319	192101	NB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	25			No test req	uired	Complete	BH-G319	N
Gantry (Super Cantilever)	320	192290	SB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	12.5			No test req	uired	Complete	BH-G320	N
Gantry (MS4)	321	192476	NB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	15	Υ	498	748	8	Complete	BH-G321	Y
Gantry (ADS)	322	192906	NB	Pile Group	Bored	4 (2 x 2)	0.9	2.7	15	Υ	799	1198	12	Complete	BH-G322	Y
Gantry (MS4)	323	193300	SB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	6	Υ	318	478	10	Complete	BH-G322A	Y
Gantry (MS4)	324	193331	NB	Pile Group	Bored	4 (2 x 2)	0.75	2.25	7	Υ	361	542	8	Complete	BH-G324	Y

B.5 - ROTTMS Foundation Schedule

Asset	SMP Reference	Chainage (m)	Carriageway	Foundation type	Pad Size (W x L x D) (m)	Pile Type	Number of Piles	Pile Diameter (mm)	Pile Spacing (m)	Total Pile Length (m)	Easting*	Northing*	Ground Level (m)	Pile length from cut off to toe level	Top of Pile Cap Level	Pile Toe Level	Pile Cap Depth	Pile Cut off Level	Comments
ROTTM	FTP_NB2_200y	187768	NB	Single Pile	N/A	Planted	1	450	N/A	4.0	446852.02	330045.46	33.570						
ROTTM	FTP_NB2_400y	187551	NB	Single Pile	N/A	Planted	1	450	N/A	4.0	446919.88	329840.19	33.780						
ROTTM	FTP_NB2_600y	187369	NB	Single Pile	N/A	Planted	1	450	N/A	4.0	446978.5	329667.06	35.900						
ROTTM	FTP_NB2_800y	187216	NB	Single Pile	N/A	Planted	1	450	N/A	4.0	447023.1	329520.47	37.900						
ROTTM	FTP_NB2_1m	186321	NB	Single Pile	N/A	Planted	1	450	N/A	4.0	447303.02	328670.64	33.300						
ROTTM	FTP_NB2_1m_2	186950	NB	Single Pile	N/A	Planted	1	450	N/A	4.0	447104.52	329257.25	37.630						
ROTTM	FTP_NB4_200y	191967	NB	Pad Foundation	2.3m x 2.0m x 1.5m	N/A	N/A	N/A	N/A	N/A	447246.87	334012.77	35.550						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_NB4_400y	191785	NB	Pad Foundation	2.3m x 2.0m x 1.5m	N/A	N/A	N/A	N/A	N/A	447266.74	333834.07	33.550						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_NB4_600y	191560	NB	Pad Foundation	2.3m x 2.0m x 1.5m	N/A	N/A	N/A	N/A	N/A	447264.69	333611.9	33.020						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_NB4_800y	191485	NB	Pad Foundation	2.3m x 2.0m x 1.5m	N/A	N/A	N/A	N/A	N/A	447257.35	333537.47	33.160						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_NB4_1m	190541	NB	Single Pile	N/A	Planted	1	450	N/A	4.0	446914.9	332678.85	37.860						'
ROTTM	FTP_SB2_200y	192176	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	447241.04	334224.37	40.080						
ROTTM	FTP_SB2_400y	192356	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	447197.74	334398.33	43.430						
ROTTM	FTP_SB2_600y	192564	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	447168.88	334602.34	45.520						
ROTTM	FTP_SB2_800y	192731	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	447167.03	334766.11	45.450						
ROTTM	FTP_SB2_1m_1	193695	SB	Single Pile	N/A	Planted	1	750	N/A	4.5	447209.03	335729.76	50.947						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_SB2_1m_2	193439	М	Single Pile	N/A	Planted	1	750	N/A	4.5	447239.35	335472.64	53.673						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_SB3_200y	190368	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	446853.84	332512.65	39.390						
ROTTM	FTP_SB3_400y	190640	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	447000.72	332740.5	36.590						
ROTTM	FTP_SB3_600y	190749	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	447060.01	332832.57	35.300						
ROTTM	FTP_SB3_800y	190931	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	447146.11	332996.1	33.780						
ROTTM	FTP_SB3_1m	191812	SB	Pad Foundation	2.3m x 2.0m x 1.5m	N/A	N/A	N/A	N/A	N/A	447304.34	333864.86	34.630						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_SB4_200y	187922	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	446841.07	330204.28	33.860						
ROTTM	FTP_SB4_400y	188116	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	446780.95	330388.49	37.190						
ROTTM	FTP_SB4_600y	188238	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	446742.36	330504.91	38.050						
ROTTM	FTP_SB4_800y	188395	SB	Single Pile	N/A	Planted	1	450	N/A	4.0	446694.55	330654.31	38.330						
ROTTM	FTP_SB4_1m	189299	SB	Single Pile	N/A	Planted	1	450	N/A	3.5	446511.66	331526.02	33.650						
ROTTM	FTP_SB5_200y	184115	SB	Pad Foundation	2.3m x 2.0m x 2.0m	N/A	N/A	N/A	N/A	N/A	447429.35	326502.17	66.380						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_SB5_400y	184307	SB	Pad Foundation	2.3m x 2.0m x 2.0m	N/A	N/A	N/A	N/A	N/A	447480.01	326690.2	66.680						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_SB5_600y	184475	SB	Pad Foundation	2.3m x 2.0m x 2.0m	N/A	N/A	N/A	N/A	N/A	447511.98	326855.27	56.280						Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_SB5_800y	184672	SB	Pile Group	N/A	Bored	2	450	1.35	3.5	447540.69 447542.03	327051.15 327051.02	50.400 50.400	2.575 2.575	50.40 50.40	46.90 46.90	1.00 1.00	49.475 49.475	already built, as informed by Denis Shapley on 23/1/18
ROTTM	FTP_SB5_1m_2	184917	М	Pad Foundation	2.3m x 2.0m x 2.0m	N/A	N/A	N/A	N/A	N/A	447573.75	327303.87	43.030						Name changed from FTP_SB5_1m(b); Easting and Northig are assumed at the centre of the pad
ROTTM	FTP_SB5_1m	185389	SB	Pad Foundation	2.3m x 2.0m x 1.5m	N/A	N/A	N/A	N/A	N/A	447547.05	327772.11	34.780						Name changed from FTP_SB5_1m_2; Easting and Northig are assumed at the centre of the pad

^{*} Easting and Northing for the planted foundations is the centre of the pile and for the pad foundations is the centre of the pad.

B.6 - Environmental Barriers Foundation Schedule

Asset	SMP Reference	Chainage Start (m)	Chainage End (m)	Length (m)	Carriageway	Marker Post Start	Marker Post End	Noise Barrier Height (m)	Pile Type	Norma	al Section	End	l Section	Next	t Section
								rieight (iii)		Diameter (mm)	Planted Depth (m)	Diameter (mm)	Planted Depth (m)	Diameter (mm)	Planted Depth (m)
Noise Barrier	NB7_1	187865	187870	5	NB	187/8A+65	187/8A+70	3	Fixed to existing parapet plinth						
Noise Barrier	NB7_2	187870	187945	75	NB	187/8A+70	187/9A+45	3	Planted	450	3.0	600	3.3	600	3.0
Noise Barrier	NB7_3	187945	188000	55	NB	187/9A+45	188/0A+00	3	Fixed to existing parapet plinth						
Noise Barrier	NB7_4	188000	188195	195	NB	188/0A+00	188/1A+95	3	Planted	450	3.0	600	3.3	600	3.0
Noise Barrier	ENS2_1	189535	189550	15	SB	189/5B+35	189/5B+60	3	Existing to be retained						
Noise Barrier	ENS2_2	189550	189690	140	SB	189/5B+60	189/6B+90	4	Planted	600	2.5	600	3.0	600	2.8
		189690	189730	40					Planted	450	3.0	600	3.3	600	3.0
		189730	189750	20					Planted	450	3.4	600	3.8	600	3.6
		189750	189792	42					Planted	450	1.7	600	2.0	450	1.8
Noise Barrier	ENS2_3	189792	189820	28	SB	189/6B+90	189/9B+35	3	Planted	450	3.0	600	3.3	600	3.0
		189820	189840	20					Planted	450	3.4	600	3.8	600	3.6
		189840	189915	75					Planted	450	3.0	600	3.3	600	3.0
		189915	189935	20					Planted	450	3.4	600	3.8	600	3.6
Noise Barrier	ENS2_4	189935	189950	15	SB	189/9B+35	189/9B+50	2	Existing to be retained						
		189950	190115	165		189/9B+50	190/1B+15		Planted	450	3.0	600	3.3	600	3.0
		190115	190125	10		190/1B+15	190/1B+25	1	Planted	450	3.3	600	3.6	600	3.4
Noise Barrier	ENS2_5	190125	190245	120	SB	190/1B+25	190/2B+45	3	Planted	450	3.0	600	3.3	600	3.0
	_	190245	190265	20		190/2B+45	190/2B+65	1	Planted	450	3.4	600	3.8	600	3.5
		190265	190375	110		190/2B+65	190/3B+75		Planted	450	3.0	600	3.3	600	3.0
Noise Barrier	ENS3_1	190395	190655	260	SB	190/3B+95	190/6B+55	3	Planted	450	3.1	600	3.4	600	3.2
Noise Barrier	ENS3_2	190655	190660	5	SB	190/6B+55	190/6B+60	3	Fixed to existing parapet plinth						
Noise Barrier	ENS3_3	190660	191030	370	SB	190/6B+60	191/0B+30	3	Planted	450	3.1	600	3.4	600	3.2
Noise Barrier	ENS3_4	191030	191080	50	SB	191/0B+30	191/0B+80	3	Existing to be retained						
Noise Barrier	ENS3_5	191080	191400	320	SB	191/0B+80	191/4B+00	4	Existing to be retained						
Noise Barrier	ENS3_6	191400	191455	55	SB	191/4B+00	191/4B+55	4	Planted	600	2.8	600	3.3	600	3.0
Noise Barrier	ENS3_7	191455	191535	80	SB	191/4B+55	191/5B+35	4	Existing to be retained						
Noise Barrier	ENS3_8	191535	191665	130	SB	191/5B+35	191/6B+65	4	Existing to be retained						
N : D :	ENO4.4	190835	190945	110	ND	400/04 - 05	404/04 : 05	_	D	450	3.0	600	3.3	450	3.3
Noise Barrier	ENS4_1	190945	191025	80	NB	190/8A+35	191/0A+25	2	Planted	450	2.5	600	2.8	450	2.8
		191025	191060	35		191/0A+25	191/0A+60			450	2.2	600	2.5	450	2.5
N . D .	ENO4 0	191060	191080	20	ND.	191/0A+60	191/0A+80		D	450	2.8	600	3.1	450	3.0
Noise Barrier	ENS4_2	191080	191310	230	NB	191/0A+80	191/3A+10	2	Planted	450	2.9	600	3.2	450	3.0
		191310	191360	50		191/3A+10	191/3A+60	1		450	2.8	600	3.1	450	3.0
Noise Barrier	ENS4 3	191360	191365	5	NB	191/3A+60	191/3A+65	2	Existing to be retained						
Noise Barrier	ENS4_4	191365	191480	115	NB	191/3A+65	191/4A+80	2	Planted	450	1.6	600	1.9	450	1.9
Noise Barrier	ENS4_5	191480	191640	160	NB	191/4A+80	191/6A+40	2	Existing to be retained						
Noise Barrier	ENS5_1	191680	192000	320	SB	191/6B+80	192/0B+00	4	Existing to be retained						
	_	192000	192020	20		192/0B+00	192/0B+20			600	2.5	600	3.0	600	2.8
Noise Barrier	ENS5 2	192020	192138	118	SB	192/0B+20	192/1B+40	4	Planted	600	2.5	600	3.0	600	2.8
	_	192138	192165	27	1	192/1B+40	192/1B+65	1		600	1.6	600	2.0	600	1.8
		192165	192240	75					Planted	450	1.7	600	2.0	600	1.8
	ENG	192240	192260	20	6-	100/17	100/57	_	Planted	450	1.7	600	2.0	600	1.8
Noise Barrier	ENS5_3	192260	192401	141	SB	192/1B+65	192/2B+65	3	Planted	450	1.7	600	2.0	600	1.8
		192401	192530	129	1				Planted	450	1.7	600	2.0	600	1.8
Visual Barrier	VB1	188720	188910	190	SB	188/7B+20	188/9B+10	*1.5	Planted	450	2.7	450	3.0	450	2.9

Notes *1.5m above highway level

B.7 - CCTVs FoundationSchedule

Asset	SMP Reference	New or Modified Existing	Chainage (m)	Carriageway	Foundation type	Pile Type	Pile Diameter (mm)	Pile Length (m)	Eastings	Northings	Pile length from cut off to toe level (m)	Top of Pile Cap Level (mAOD)	Pile Toe Level (mAOD)	Pile Cap Depth (m)	Pile Cut off Level (mAOD)
CCTV	CCTV_01	Modified	182040	SB	Existing					Existing	foundation to be reused				
CCTV	CCTV_02	New	182234	SB	Single Pile	Bored	450	3.0	446901.23	324700.89	1.975	66.33	63.330	1.1	65.305
CCTV	CCTV_03	Modified	182769	NB	Existing					Existing	foundation to be reused				
CCTV	CCTV_04	New	182496	SB	Single Pile	Bored	750	5.0	446955.02	324954.89	3.975	71.465	66.465	1.1	70.44
CCTV	CCTV_05	New	183283	NB	Single Pile	Bored	450	7.0	447143.26	325719.86	5.975	76.87	69.870	1.1	75.845
CCTV	CCTV_06	New	183825	NB	Single Pile	Bored	450	3.0	447302.42	326237.85	1.975	71.53	68.530	1.1	70.505
CCTV	CCTV_07	New	184166	SB	Single Pile	Bored	450	3.0	447445.65	326556.68	1.975	65.25	62.250	1.1	64.225
CCTV	CCTV_08	New	184906	NB	Single Pile	Bored	450	5.0	447501.29	327296.25	3.975	42.63	37.630	1.1	41.605
CCTV	CCTV_09	Modified	185095	M	Existing						foundation to be reused				
CCTV	CCTV_10	New	185371	K	Single Pile	Bored	750	7.0	447474.69	327748.70	5.975	40.74	33.740	1.1	39.715
CCTV	CCTV_11	New	186034	SB	Single Pile	Bored	750	7.0	447429.36	328409.59	5.975	33.98	26.980	1.1	32.955
CCTV	CCTV_12	New	186532	NB	Single Pile	Bored	450	5.0	447237.53	328871.12	3.975	33.33	28.330	1.1	32.305
CCTV	CCTV_13	Modified	186547	SB	Existing						foundation to be reused				
CCTV	CCTV_14	New	186835	SB	Single Pile	Bored	750	5.0	447195.38	329177.07	3.975	36.08	31.080	1.1	35.055
CCTV	CCTV_15	New	187064	SB	Single Pile	Bored	750	5.0	447112.86	329390.68	3.975	38.27	33.270	1.1	37.245
CCTV	CCTV_16	New	187661	NB	Single Pile	Bored	750	5.0	446885.12	329943.85	3.975	33.44	28.440	1.1	32.415
CCTV	CCTV_17	New	187805	SB	Single Pile	Bored	750	5.0	446880.47	330094.27	3.975	33.70	28.700	1.1	32.675
CCTV	CCTV_18	New	188540	NB	Single Pile	Bored	750	7.0	446608.74	330777.97	5.975	38.55	31.550	1.1	37.525
CCTV	CCTV_19	New	188751	SB	Single Pile	Bored	750	5.0	446583.15	330991.99	3.975	35.89	30.890	1.1	34.865
CCTV	CCTV_20	Modified	189265	NB	Existing					Existing	foundation to be reused				
CCTV	CCTV_21	New	189793	NB	Single Pile	Bored	750	5.0	446558.42	332017.29	3.975	36.40	31.400	1.1	35.375
CCTV	CCTV_22	New	190225	NB	Single Pile	Bored	750	5.0	446743.24	332411.35	3.975	40.62	35.620	1.1	39.595
CCTV	CCTV_23	New	190985	SB	Single Pile	Bored	750	7.0	447169.02	333048.15	5.975	33.67	26.670	1.1	32.645
CCTV	CCTV_24	New	191698	SB	Single Pile	Bored	750	5.0	447307.60	333750.24	3.975	33.86	28.860	1.1	32.835
CCTV	CCTV_25	New	192272	SB	Single Pile	Bored	750	5.0	447216.13	334317.83	3.975	41.98	36.980	1.1	40.955
CCTV	CCTV_26	New	192915	NB	Single Pile	Bored	750	5.0	447134.13	334952.78	3.975	45.76	40.760	1.1	44.735
CCTV	CCTV_27	New	193391	M	Single Pile	Bored	750	5.0	447238.16	335424.31	3.975	52.34	47.340	1.1	51.315
CCTV	CCTV_28	Modified	193497	NB	Existing		-		-	Existing	foundation to be reused				
CCTV	CCTV_29	Modified	193602	NB	Existing					Existing	foundation to be reused				
PTZ Camera	CCTV_30	New	182766	L	Single Pile	Bored	750	7.0	447042.21	325211.37	5.975	75.11	68.110	1.1	74.085
PTZ Camera	CCTV_31	New	192486	NB	Single Pile	Bored	750	5.0	447134.89	334520.34	3.975	44.60	39.600	1.1	44.575
CCTV	CCTV_32	Modified	193949	L	Existing		-			Existing	foundation to be reused	-		-	•
CCTV	CCTV_33	New	184373	NB	Pad Foundation	-	-	-	447446.4	326763.94	-	-	-	_	_
CCTV	CCTV 34	New	191421	SB	Single Pile	Bored	750	5.0	447289.30	333468.36	3.975	33.573	28.573	1.1	32.548

Notes

CCTV 33:Pad Foundation
Length [m] (Perpendicular to carriageway):2.0
Width [m] (paralleled to carriage way):3.2
Depth [m]: 1.5

B.8 - Radars Foundation Schedule

												=					Working Pile Tes	t Details
Asset	SMP Reference	Chainage (m)	Carriageway	Foundation type	Planted Depth (m)	Pile Type	Pile Diameter (mm)	Pile Length (m)	Eastings	Northings	Pile length from cut off to toe level (m)	Top of Pile Cap Level (mAOD)	Pile Toe Level (mAOD)	Pile Cap Depth (mAOD)	Pile Cut off Level (mAOD)	Representative Load (kN)	Max. Test Load (kN)	Permitted Settlement at 150% Representative Load (mm)
Radar	RAD_01	181914	NB	Single Pile	N/A	Bored	450	5.0	446830.06	324387.18	3.975	60.25	55.3	1.1	59.225			
Radar	RAD_02	182222	NB	Planted	1.5	N/A	N/A	N/A	446860.90	324695.00	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_03	182275	SB	Single Pile	N/A	Bored	450	5.0	446909.93	324740.22	3.975	67.47	62.5	1.1	66.445			
Radar	RAD_04	182812	NB	Planted	1.5	N/A	N/A	N/A	447003.93	325270.42	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_05	183240	NB	Planted	2.5	N/A	750	N/A	447130.61	325681.11	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_06	183285	SB	Single Pile	N/A	Bored	450	5.0	447188.73	325708.17	3.975	75.98	71.0	1.1	N/A			
Radar	RAD_07	183781	NB	Planted	1.5	N/A	N/A	N/A	447289.59	326196.02	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_08	183850	SB	Planted	1.5	N/A	N/A	N/A	447354.31	326247.85	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_09	184350	NB	Planted	1.5	N/A	N/A	N/A	447441.66	326741.73	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_10	184420	SB	Planted	1.5	N/A	N/A	N/A	447501.43	326800.70	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_11	184867	NB	Single Pile	N/A	Bored	750	5.0	447501.90	327250.90	3.975	43.43	38.4	1.1	42.405			
Radar	RAD_12	184921	SB	Planted	1.5	N/A	N/A	N/A	447557.74	327301.40	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_13	185210	SB	Single Pile	N/A	Bored	450	5.0	447558.16	327592.23	3.975	36.17	31.2	1.1	35.145			
Radar	RAD_14	185621	NB	Single Pile	N/A	Bored	450	5.0	447476.43	327997.09	3.975	33.624	28.624	1.1	32.599			
Radar	RAD_15	186265	SB	Single Pile	N/A	Bored	450	5.0	447364.08	328631.01	3.975	33.2	27.2	1.1	32.175			
Radar	RAD_16	186505	SB	Planted	1.5	N/A	450	N/A	447283.90	328862.42	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_17	186873	NB	Planted	1.5	N/A	450	N/A	447129.33	329198.60	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_18	187290	SB	Single Pile	N/A	Bored	750	5.0	447041.47	329604.87	3.975	35.92	30.9	1.1	34.895			
Radar	RAD_19	187619	NB	Single Pile	N/A	Bored	450	5.0	446897.41	329904.12	3.975	33.41	28.4	1.1	32.385			
Radar	RAD_20	187829	SB	Single Pile	N/A	Bored	450	5.0	446870.88	330115.87	3.975	33.92	28.9	1.1	32.895			
Radar	RAD_21	188156	SB	Single Pile	N/A	Bored	450	5.0	446768.88	330426.79	3.975	37.47	32.5	1.1	36.445			
Radar	RAD_22	188501	NB	Single Pile	N/A	Bored	450	7.0	446623.09	330741.01	5.975	38.66	31.7	1.1	37.635	120	180	8
Radar	RAD_23	188854	SB	Single Pile	N/A	Bored	450	5.0	446555.97	331090.10	3.975	34.92	29.9	1.1	33.895			
Radar	RAD_24	189190	SB	Single Pile	N/A	Bored	450	5.0	446510.83	331418.41	3.975	33.92	28.9	1.1	32.895			
Radar	RAD_25	189769	NB	Single Pile	N/A	Bored	450	5.0	446551.61	331994.35	3.975	35.30	30.3	1.1	34.275			
Radar	RAD_26	190205	NB	Single Pile	N/A	Bored	450	7.0	446732.30	332395.35	5.975	40.61	33.6	1.1	39.585			
Radar	RAD_27	190630	SB	Single Pile	N/A	Bored	450	5.0	446996.27	332730.56	3.975	36.71	31.7	1.1	35.685			
Radar	RAD_28	191085	NB	Single Pile	N/A	Bored	450	5.0	447166.78	333153.99	3.975	32.56	27.6	1.1	31.535			
Radar	RAD_29	191440	SB	Planted	1.5	N/A	N/A	N/A	447292.65	333487.62	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_30	191775	NB	Single Pile	N/A	Bored	450	5.0	447266.10	333824.50	3.975	33.64	28.6	1.1	32.615			_
Radar	RAD_31	192128	NB	Single Pile	N/A	Bored	450	5.0	447214.57	334168.61	3.975	38.43	33.4	1.1	37.405			_
Radar	RAD_32	192313	SB	Planted	1.5	N/A	N/A	N/A	447207.94	334357.07	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_33	192466	NB	Single Pile	N/A	Bored	450	5.0	447139.52	334499.06	3.975	45.44	40.4	1.1	44.415			
Radar	RAD_34	192834	NB	Single Pile	N/A	Bored	450	5.0	447127.79	334871.76	3.975	45.76	40.8	1.1	44.735			
Radar	RAD_35	193290	SB	Planted	1.5	N/A	N/A	N/A	447209.60	335322.30	N/A	N/A	N/A	N/A	N/A			
Radar	RAD_36	193732	NB	Single Pile	N/A	Bored	450	5.0	447167.24	335764.64	3.975	50.8	45.8	1.1	49.775			
Radar	RAD 37	193970	÷	Single Pile	N/A	Bored	750	5.0	447203.77	336005.35	3.975	54.59	49.6	1.1	53.565			

B.9 - EAV Poles Foundation Schedule

Asset	SMP Reference	Chainage (m)	Carriageway	Foundation type	Pile Type	Pile Diameter (mm)	Pile Length (m)	Eastings	Northings	Pile length from cut off to toe level (m)	Top of Pile Cap Level (mAOD)	Pile Toe Level (mAOD)	Pile Cap Depth (m)	Pile Cut off Level (mAOD)
EAV Pole	EAV_01	183618	NB	Single Pile	Bored	450	3.0	447242.65	326039.75	1.975	74.42	71.42	1.1	73.395
EAV Pole	EAV_02	184590	SB	Single Pile	Bored	450	3.0	447530.16	326969.90	1.975	52.91	49.91	1.1	51.885
EAV Pole	EAV_03	187914	SB	Single Pile	Bored	450	3.0	446845.14	330195.01	1.975	34.73	31.73	1.1	33.705
EAV Pole	EAV_04	189630	NB	Single Pile	Bored	450	3.0	446517.50	331858.01	1.975	34.54	31.54	1.1	33.515
EAV Pole	EAV_06	189958	SB	Single Pile	Bored	450	3.0	446655.13	332158.04	1.975	38.10	35.10	1.1	37.075
EAV Pole	EAV_05	191702	NB	Single Pile	Bored	450	5.0	447269.74	333749.07	3.975	33.36	28.36	1.1	32.335
ERA SIGN	NB86	185062	NB	Planted Foundation	Planted	750*	2.5**	447520.79	327443.89	NA	NA	NA	NA	NA
ERA SIGN	NB88	188495	NB	Planted Foundation	Planted	750*	4.5**	446625.86	330736.90	NA	NA	NA	NA	NA
ERA SIGN	NB89	190589	NB	Planted Foundation	Planted	750*	4.5**	446941.56	332719.03	NA	NA	NA	NA	NA
ERA SIGN	NB87	186358	NB	Planted Foundation	Planted	750*	4.5**	447292.52	328706.83	NA	NA	NA	NA	NA
ERA SIGN	SB100	192153	SB	Planted Foundation	Planted	750*	4.5**	447246.91	334202.44	NA	NA	NA	NA	NA
ERA SIGN	SB101	1908333	SB	Planted Foundation	Planted	750*	4.5**	447101.49	332907.69	NA	NA	NA	NA	NA
ERA SIGN	EAV_04	192478	SB	Single Pile				•	•	Removed from schen	ne	•		

Planted Diamter im m Planted Depth in m

B.10 - Large Traffic Signs Foundation Schedule

Asset	SMP Reference	Chainage	Carriageway	Pad or Pile	Pad Size (w x I x d) (m)	No of Piles Required per Sign Post Leg	Pile Group Layout (Width x Length)	Total No of Piles Required	Pile Type	Pile Diameter (mm)	Pile Length (m)	Pile Number	Easting	Northing	Ground level (mAOD)	Pile Cut off level (mAOD)
Large Traffic Sign	NB03	182109	NB	Pad	2.6 x 4.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A					
Large Traffic Sign Large Traffic Sign	NB04 NB07	182413 183411	NB NB	Pad Pad	2.6 x 4.0 x 2.0 2.6 x 4.0 x 2.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A					
Large Traffic Sign	NB11	183700	NB	Pad	2.6 x 2.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A					
Large Traffic Sign	NB13	184135	NB	Pad	2.6 x 4.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A					
Large Traffic Sign	NB19	184905	NB	Pad	2.6 x 2.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A					
Large Traffic Sign	NB21	185180	NB	Pad	2.6 x 4.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A					
												1	447250.00	328831.48	33.1280	32.103
Large Traffic Sign	NB30	186490	NB	Pile	N/A	1	N/A	2	Bored	450	5.0	2	447251.73	328832.06	33.3450	32.320
												1	447155.19	329117.26	34.8290	33.804
												2	447155.61	329115.98	34.8060	33.781
Large Traffic Sign	NB31	186790	NB	Pile	N/A	2	1 x 2	4	Bored	450	5.0	3	447157.20	329117.92	35.5410	34.516
												4	447157.62	329116.64	35.5110	34.486
Large Traffic Sign	NB32	186630	NB	Pad	2.6 x 4.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A					
												1	446951.18	329743.55	34.7290	33.704
Large Traffic Sign	NB41	187450	NB	Pile	N/A	1	N/A	2	Bored	450	5.0	2	446952.91	329744.13	34.7110	33.686
												1	446893.76	329914.68	33.2530	32.228
				_,,								2	446894.18	329913.40	33.2560	32.231
Large Traffic Sign	NB42	187630	NB	Pile	N/A	2	1 x 2	4	Bored	450	5.0	3	446895.60	329915.29	33.4340	32.409
												4	446896.02	329914.01	33.4380	32.413
1 T#:- O:	ND40	400770	ND	Dil.	N/A	1	NI/A		D d	450	40.0	1	446536.55	330998.24	36.6560	35.631
Large Traffic Sign	NB46	188770	NB	Pile	N/A	1	N/A	2	Bored	450	10.0	2	446538.32	330998.79	36.7030	35.678
Large Traffic Sign	NB50	188556	NB	Pile	N/A	1	N/A	2	Bored	450	10.0	1	446606.23	330793.36	38.5300	37.505
Large Trainic Sign	INDOU	100000	IND	F IIC	IN/A	<u>'</u>	14/74		Borea	400	10.0	2	446607.98	330793.91	38.6600	37.635
Large Traffic Sign	NB58	190820	NB	Pile	N/A	1	N/A	2	Bored	450	5.0	1	447060.27	332915.18	33.7200	32.695
						· ·						2	447061.90	332914.30	33.7700	32.745
Large Traffic Sign	NB75	193186	NB	Pad	2.6 x 2.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A		447164.31	335221.9		
Large Traffic Sign	SB03	194700	SB	Pad	2.6 x 2.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A					
												1	447208.71	334346.18	42.4800	41.455
Large Traffic Sign	SB11	192302	SB	Pile	N/A	2	1 x 2	4	Bored	450	9.0	2	447209.02	334344.86	42.4550	41.430
Largo Tramo oign	95	.02002	0.5			_		'	20.04	.00	0.0	3	447.210.77	334346.65	42.5530	41.528
												4	447211.08	334345.34	42.5290	41.504
Large Traffic Sign	SB12	192430	SB	Pile	N/A	1	N/A	2	Bored	450	10.0	1	447183.96	334469.43	44.4490	43.424
	SB14	101070	SB	Ded	26 × 40 × 20	NI/A	N/A	NI/A	NI/A	NI/A	N/A	2	447185.80	334469.66	44.5140	43.489
Large Traffic Sign	3014	191970	SB	Pad	2.6 x 4.0 x 2.0	N/A	IN/A	N/A	N/A	N/A	IN/A	1	446967.45	332687.28	37.3270	36.302
Large Traffic Sign	SB28	190578	SB	Pile	N/A	1	N/A	2	Bored	450	10.0	2	446969.22	332686.13	37.2740	36.249
								1				1	446509.20	331428.21	33.9120	32.887
												2	446509.23	331426.86	33.9160	32.891
Large Traffic Sign	SB37	189200	SB	Pile	N/A	2	1 x 2	4	Bored	450	5.0	3	446511.31	331428.26	33.7210	32.696
												4	446511.34	331426.91	33.6780	32.653
												1	446549.90	331114.60	34.6030	33.578
Large Traffic Sign	SB40	188880	SB	Pile	N/A	1	N/A	2	Bored	450	5.0	2	446551.70	331115.00	33.8940	32.869
												1	446654.80	330774.12	37.9580	36.933
Large Traffic Sign	SB43	188522	SB	Pile	N/A	1	N/A	2	Bored	450	10.0	2	446656.80	330774.82	37.9050	36.880
												1	446714.26	330586.28	38.3650	37.340
												2	446714.69	330585.00	38.3620	37.337
Large Traffic Sign	SB48	188321	SB	Pile	N/A	2	1 x 2	6	Bored	450	9.0	3	446716.27	330586.94	38.3120	37.287
Large Traine Oigh	0040	100321	OB	1 lic	IV/A	-	1 1 1 2		Dorca	430	3.0	4	446716.69	330585.66	38.3040	37.279
												5	446718.28	330587.60	37.6520	36.627
												6	446718.70	330586.32	37.6600	36.635
												1	446760.72	330449.26	37.7120	36.687
Large Traffic Sign	SB50	188180	SB	Pile	N/A	2	1 x 2	4	Bored	450	9.0	2	446761.14	330447.98	37.7020	36.677
												3	446762.73	330449.92	36.9910	35.966
												4	446763.15	330448.64	36.9720	35.947
												1	446905.80	330004.92	33.3860	32.361
Large Traffic Sign	SB54	187712	SB	Pile	N/A	2	1 x 2	4	Bored	450	5.0	2	446906.22 446907.80	330003.64 330005.58	33.3830 33.0210	32.358 31.996
1		1]		3	446907.80	330005.58	33.0210	31.976
<u> </u>		 					1	1	 	-		1	446966.51	329820.00	33.9560	32.931
Large Traffic Sign	SB55	187520	SB	Pile	N/A	1	N/A	2	Bored	450	5.0	2	446968.25	329820.00	33.8670	32.931
	+	1							†	-		1	447251.04	328953.15	33.3520	32.327
	1	1]		2	447251.04	328951.87	33.3500	32.325
Large Traffic Sign	SB69	186493	SB	Pile	N/A	2	1 x 2	4	Bored	450	5.0	3	447252.82	328953.73	33.3820	32.357
	1	1]		4	447253.56	520000.70	33.4520	32.427
	+								†	1		•	255.00	1	30020	
Large Traffic Sign	SB72	186182	SB	Pad	2.6 x 2.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A]			
Large Traffic Sign	SB84	184220	SB	Pad	2.6 x 2.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A			1		1
Large Traffic Sign	SB86	183876	SB	Pad	2.6 x 2.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A		1	İ	1	1
Large Traffic Sign	SB89	183565	SB	Pad	2.6 x 4.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A		1	1	†	1
												1	447232.57	325852.27	76.1010	75.076
Large Traffic Sign	SB92	183436	SB	Pile	N/A	1	N/A	2	Bored	450	5.0	2	447234.31	325851.73	75.6840	74.659
Large Traffic Sign	SB96	182544	SB	Pad	2.6 x 4.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A					
	NDCCE	0 : 045	220 Fmtm : 01111	Dila	NI/A	1	NI/A	2	Dave -1		F.0	1	446851.51	324662.08	66.3940	65.369
Slip Road Sign	NBS05	0 + 245	23a Entry Slip	Pile	N/A	-	N/A	2	Bored	450	5.0	2	446853.31	324661.63	66.1450	65.120
Slip Road Sign	NBS07	0 +160	24 Entry Slip	Pad	2.6 x 2.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A		447476.06	327937.62		
Slip Road Sign	NBS12	0 + 035	24a Entry Slip	Pile	N/A	1	N/A	2	Bored	450	7.0	1	447129.09	329190.84	36.8970	35.872
						·						2	447127.23	329190.86	36.8920	35.867
Slip Road Sign	NBS17	0+330	24a Entry Slip	Pad	2.6 x 2.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A		446966.90	328956.44		
Slip Road Sign	SBS04	0 + 60	25 Entry Slip	Pile	N/A	1	N/A	2	Bored	450	5.0	1	447219.38	335422.32	50.9720	49.947
						-						2	447221.23	335422.15	51.6430	50.618
Slip Road Sign	SBS07	0 + 310	24a Exit Slip	Pad	2.6 x 4.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A		447278.00	328933.00	ļ	ļ
Slip Road Sign	SBS08	0 + 308	24a Exit Slip	Pile	N/A	1	N/A	2	Planted	750	4.5		447262.00	328930.00		

Asset	SMP Reference	Chainage	Carriageway	Pad or Pile	Pad Size (w x l x d) (m)	No of Piles Required per Sign Post Leg	Pile Group Layout (Width x Length)	Total No of Piles Required	Pile Type	Pile Diameter (mm)	Pile Length (m)	Pile Number	Easting	Northing	Ground level (mAOD)	Pile Cut off level (mAOD)
Slip Road Sign	SBS12	0 + 30	24a Entry Slip	Pad	2.6 x 2.0 x 2.0 (With Duct opening) Refer to drawing HA549342- AMAR-SMN-SWI-DR-CB-160011	N/A	N/A	N/A	N/A	N/A	N/A				34.9250	
01: 5 10:	00040	0 . 000	00 5 7 05	5 .		N//A	A I / A	A1//A	21/2	N//A	N/A		447508.82	328117.91		
Slip Road Sign	SBS18	0 + 360	23a Exit Slip	Pad	2.6 x 4.0 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A	4	446996.00	324940.00	77.0000	70.405
												1	447197.63 447197.19	325916.46 325915.18	77.2200 77.1960	76.195 76.171
												3	447197.19	325915.16	76.9360	75.911
												4	447199.19	325913.77	76.9250	75.900
Ghost Island Sign	TS1	183485	NB	Pile	N/A	2	1 x 2	8	Bored	450	5.0	5	447199.19	325915.08	76.3360	75.311
												6	447201.19	325913.80	76.5970	75.572
												7	447203.63	325914.39	75.8480	74.823
												8	447203.19	325913.11	75.8750	74.850
												1	447316.84	326302.87	71.7190	70.694
												2	447316.44	326301.58	71.7050	70.680
												3	447318.86	326302.24	71.2000	70.175
Ghost Island Sign	TS2	183890	NB	Pile	N/A	2	1 x 2	8	Bored	450	5.0	4	447318.46	326300.95	71.2250	70.200
Griost Island Sign	132	103090	IND	File	IN/A	2	1 X Z	O	Boreu	430	5.0	5	447320.87	326301.62	70.4990	69.474
												6	447320.48	326300.33	70.5210	69.496
												7	447322.89	326301.00	70.1670	69.142
												8	447322.50	326299.71	70.1920	69.167
												1	447439.28	326532.95	65.5040	64.479
												2	447438.93	326531.65	65.5370	64.512
Ghost Island Sign	TS3	184146	SB	Pile	N/A	2	1 x 2	6	Bored	450	3.0	4	447441.32 447440.97	326532.39	65.5850	64.560 64.606
													447440.97	326531.09 326531.83	65.6310 66.4320	65.407
												5	447443.36	326531.83	66.4740	65.449
												1	447323.79	326151.34	72.5900	71.565
												2	447323.79	326150.05	72.6100	71.585
												3	447325.81	326150.72	72.9390	71.914
Ghost Island Sign	TS4	183748	SB	Pile	N/A	2	1 x 2	6	Bored	450	3.0	4	447325.41	326149.43	72.9590	71.934
												5	447327.83	326150.09	73.7860	72.761
												6	447327.43	326148.80	73.8060	72.781

B.11 - Signle Post Traffic Signs Foundation Schedule

Asset	SMP	Chainage	Carriageway	Planted Option	Minimum Planted	Alternative	Pad Size	No of Piles Required per	Pile Group Layout	Total No of Piles	Pile Type	Pile Diameter	Pile Length	Easting	Northing	Ground Level	Pile Cut off level
Single Post Sign	Reference NB01	181808	NB	Possible No	Depth (m) N/A	Pad or Pile Pad	(w x l x d) (m) 2.0 x 3.2 x 1.5	Sign Post Leg N/A	(Width x Length) N/A	Required N/A	N/A	(mm) N/A	(m) N/A	Luoting	Northing	(mAOD)	(mAOD)
Single Post Sign	NB02	181970	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB05	182460	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB06 NB08	182948 183445	NB NB	Yes Yes	0.8	Pad Pad	1.2 x 2.0 x 1.2 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	NB09	183654	NB		NAL socke	et foundation to be used		N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB10 NB12	183750 183945	NB NB	No Yes	N/A 0.8	Pad Pad	2.0 x 3.5 x 2.0 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	NB14	184016	NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB15	184335	NB	No	N/A	Pad	2.0 x 3.5 x 2.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB16 NB17	184109 184455	NB NB	Yes Yes	0.6 0.8	Pad Pad	1.0 x 1.2 x 1.0 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	NB18	184202	NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB20	184970	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB22 NB23	185227 185243	NB NB	Yes Yes	0.8 0.6	Pad Pad	1.2 x 2.0 x 1.2 1.0 x 1.2 x 1.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	NB23A	185243	NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB24	185255	NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB25 NB27	185500 185595	NB NB	Yes Yes	0.8 4.5	Pad Planted	1.2 x 2.0 x 1.2 2.0 x 3.5 x 2.0	N/A 1	N/A N/A	N/A 1	N/A Planted	N/A 750	N/A 4.5				
Single Post Sign	NB28	186112	NB	No	N/A	Pile	N/A	1	N/A	1	Bored	450	7.0	447364.900	328471.870	33.277	32.252
Single Post Sign	NB29	186154	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB33 NB34	186675 186693	NB NB	Yes Yes	0.8 0.6	Pad Pad	1.2 x 2.0 x 1.2 1.0 x 1.2 x 1.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	NB35	186693	NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB36	186703	NB NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB39 NB40	187120 187500	NB NB	Yes No	0.8 N/A	Pad Pile	1.2 x 2.0 x 1.2 N/A	N/A 1	N/A N/A	N/A 1	N/A Bored	N/A 450	N/A 7.0	446936.370	329791.450	34.151	33.126
Single Post Sign	NB43	187598	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB44 NB45	188167 188089	NB NB	No Yes	N/A 0.8	Pile Pad	N/A 1.2 x 2.0 x 1.2	1 N/A	N/A N/A	1 N/A	Bored N/A	450 N/A	7.0 N/A	446728.380	330424.740	37.663	36.638
Single Post Sign Single Post Sign	NB47	188793	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2 1.2 x 2.0 x 1.2	N/A	N/A N/A	N/A N/A	N/A	N/A	N/A				
Single Post Sign	NB48	189013	NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB48A NB49	189013 189024	NB NB	Yes Yes	0.6 0.6	Pad Pad	1.0 x 1.2 x 1.0 1.0 x 1.2 x 1.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign Single Post Sign	NB51	188977	NB	Yes	0.8	Pad	1.0 x 1.2 x 1.0 1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB52	189250	NB	No	N/A	Pile	N/A	1	N/A	1	Bored	450	7.0	446471.440	331477.520	34.563	33.538
Single Post Sign Single Post Sign	NB53 NB55	189492 189976	NB NB	Yes Yes	0.8	Pad Pad	1.2 x 2.0 x 1.2 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	NB56	190063	NB	No	N/A	Pile	N/A	1	N/A	1	Bored	450	7.0	446665.320	332268.700	40.017	38.992
Single Post Sign	NB57	190449	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB59 NB60	190845 190866	NB NB	Yes Yes	0.8 0.6	Pad Pad	1.2 x 2.0 x 1.2 1.0 x 1.2 x 1.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	NB61	190866	NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB62	190872	NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB63 NB65	190947 191476	NB NB	Yes Yes	0.8 0.8	Pad Pad	1.2 x 2.0 x 1.2 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	NB66	191850	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB68 NB69	192240 192635	NB NB	Yes Yes	0.8 0.6	Pad Pad	1.2 x 2.0 x 1.2 1.0 x 1.2 x 1.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign Single Post Sign	NB71	192033	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	NB72	192731	NB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	NB73 NB78	192811 193300	NB NB	Yes Yes	0.6 0.8	Pad Pad	1.0 x 1.2 x 1.0 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	NB80	193547	NB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB07	193535	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	SB08 SB09	193450 192798	SB SB	Yes Yes	4.5 0.8	Planted Pad	2.0 x 3.5 x 2.0 1.2 x 2.0 x 1.2	1 N/A	N/A N/A	N/A	Planted N/A	750 N/A	4.5 N/A				
Single Post Sign	SB10	192684	SB	Yes	4.5	Planted	2.0 x 3.5 x 2.0	1	N/A	1	Planted	750	4.5				
Single Post Sign	SB13 SB15	192250 191944	SB SB	Yes Yes	0.8 0.8	Pad Pad	1.2 x 2.0 x 1.2 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign Single Post Sign	SB15 SB17	191944	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2 1.0 x 1.2 x 1.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				
Single Post Sign	SB18	191902	SB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	SB19 SB22	191887 191550	SB SB	Yes No	0.6 N/A	Pad Pile	1.0 x 1.2 x 1.0 N/A	N/A 1	N/A N/A	N/A 1	N/A Bored	N/A 450	N/A 7.0	447302.990	333598.990	33.673	32.648
Single Post Sign	SB24	191347	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A N/A	N/A	N/A	N/A	N/A	771 302.330	000000.880	33.013	32.040
Single Post Sign	SB25	191140	SB	No	N/A	Pile	N/A	1	N/A	1	Bored	450	7.0	447222.090	333192.970	33.459	32.434
Single Post Sign Single Post Sign	SB26 SB29	191040 190550	SB SB	Yes Yes	0.8	Pad Pad	1.2 x 2.0 x 1.2 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	-			
Single Post Sign	SB30	190532	SB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB31	190532	SB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	SB32 SB34	190514 189873	SB SB	Yes Yes	0.6 0.8	Pad Pad	1.0 x 1.2 x 1.0 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	-			
Single Post Sign	SB35	189570	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB36	189540	SB	Yes	4.5	Planted	2.0 x 3.2 x 1.5	1	N/A	1	Planted	750	4.5				
Single Post Sign Single Post Sign	SB38 SB39	189275 188971	SB SB	Yes Yes	0.8 0.8	Pad Pad	1.2 x 2.0 x 1.2 1.2 x 2.0 x 1.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				+
Single Post Sign	SB41	188820	SB	No	N/A	Pile	N/A	1	N/A	1	Bored	450	7.0	446562.810	331057.03	35.875	34.185
Single Post Sign	SB44	188474	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	SB45 SB46	188454 188454	SB SB	Yes Yes	0.6 0.6	Pad Pad	1.0 x 1.2 x 1.0 1.0 x 1.2 x 1.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				+
Single Post Sign	SB47	188434	SB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB49	188192	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign Single Post Sign	SB53 SB57	187783 187383	SB SB	Yes Yes	0.8 0.6	Pad Pad	1.2 x 2.0 x 1.2 1.0 x 1.2 x 1.0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	1			-
Omgle Fust Sigil	3031	101 303	JD.	100	0.0	Fau	1.0 A 1.2 A 1.0	IN/A	11//1	14//	IN/A	11//	IN/A	1	1		<u> </u>

Asset	SMP Reference	Chainage	Carriageway	Planted Option Possible	Minimum Planted Depth (m)	Alternative Pad or Pile	Pad Size (w x I x d) (m)	No of Piles Required per Sign Post Leg	Pile Group Layout (Width x Length)	Total No of Piles Required	Pile Type	Pile Diameter (mm)	Pile Length (m)	Easting	Northing	Ground Level (mAOD)	Pile Cut off level (mAOD)
Single Post Sign	SB58	187280	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB59	187310	SB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB60	187188	SB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB63	186746	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB64	186730	SB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB65	186650	SB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB66	186570	SB	Yes	0.6	Pad	1.0 x 1.2 x 1.0	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB68	186463	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB73	186095	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB75	185450	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB79	184974	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB83	184450	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB85	184202	SB		NAL socke	et foundation to be used		N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB87	183945	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB91	183456	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB95	182945	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A				
Single Post Sign	SB97	185809	SB	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A		328189.400		
Slip Road Sign	NBS01	0 + 62.5	23a Entry Slip	No	N/A	Pad	2.0 x 3.2 x 1.5	N/A	N/A	N/A	N/A	N/A	N/A		324495.000		
Slip Road Sign	NBS06	0 + 120	24 Entry Slip	No	N/A	Pad	2.0 x 3.2 x 1.5	N/A	N/A	N/A	N/A	N/A	N/A		327897.000		
Slip Road Sign	NBS09	0 + 192	24a Entry Slip	Yes	4.5	Planted	2.0 x 3.2 x 1.5	1	N/A	1	Planted	750	4.5		329162.000		
Slip Road Sign	NBS13	0 + 243	24a Entry Slip	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A		329008.280		
Slip Road Sign	SBS03	0 - 8	25 Entry Slip	Yes	4.5	Planted	2.0 x 3.2 x 1.5	1	N/A	1	Planted	750	4.5		335490.000		
Slip Road Sign	SBS09	0 + 180	24a Exit Slip	Yes	1.0	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A	447236.000	329056.000		
Slip Road Sign	SBS10	_															
Slip Road Sign	SBS17	0 - 23	24 Entry Slip	Yes	4.5	Planted	2.0 x 3.2 x 1.5	1	N/A	1	Planted	750	4.5		327407.000		
Slip Road Sign	SBS20	0 + 230	24a Exit Slip	Yes	0.8	Pad	1.2 x 2.0 x 1.2	N/A	N/A	N/A	N/A	N/A	N/A	447252.000	329008.000		

Appendix C As-Built Drawings

- C.1 Series 1600 As-built Drawings
- C.2 Series 600 As-built Drawings
- C.3 ERA's and Gantries As-built Drawings
- C.4 Mainline General Arrangement As-built Drawings

C.1 - Mainline Drawings - As-Built

Title	Drawing Numbers
Earthworks - Legend / Notes	HA549342-AMAR-HGT-MLC-DR-CE-000001.
Earthworks Plan 1	HA549342-AMAR-HGT-MLC-DR-CE-000002.
Earthworks Plan 2	HA549342-AMAR-HGT-MLC-DR-CE-000003.
Earthworks Plan 3	HA549342-AMAR-HGT-MLC-DR-CE-000004.
Earthworks Plan 4	HA549342-AMAR-HGT-MLC-DR-CE-000005.
Earthworks Plan 5	HA549342-AMAR-HGT-MLC-DR-CE-000006.
Earthworks Plan 6	HA549342-AMAR-HGT-MLC-DR-CE-000007.
Earthworks Plan 7	HA549342-AMAR-HGT-MLC-DR-CE-000008.
Earthworks Plan 8	HA549342-AMAR-HGT-MLC-DR-CE-000009.
Earthworks Plan 9	HA549342-AMAR-HGT-MLC-DR-CE-000010.
Earthworks Plan 10	HA549342-AMAR-HGT-MLC-DR-CE-000011.
Earthworks Plan 11	HA549342-AMAR-HGT-MLC-DR-CE-000012.
Earthworks Plan 12	HA549342-AMAR-HGT-MLC-DR-CE-000013.

C.2 - List of Series 600 Drawings - As-Built

Title	Drawing Numbers
Typical Earthworks Solutions	HA549342-AMAR-HGT-SWI-DR-CE-000601.
Typical Retaining Solutions - Gabion Wall	HA549342-AMAR-HGT-SWI-DR-CE-000602.
Gabion Wall 193200-193321 & 193350 - 193475	HA549342-AMAR-HGT-SWI-DR-CE-000611.
Gabion Wall 193200-193321 & 193350 - 193475	HA549342-AMAR-HGT-SWI-DR-CE-000612.
Gabion Wall 193200-193311 & 193357 - 193475	HA549342-AMAR-HGT-SWI-DR-CE-000613.
Gabion Wall 193320 - 193497 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-000614.
Gabion Wall 193320 - 193497 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-000615.
Gabion Wall 193320 - 193497 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-000616.
Benching required at regrade	HA549342-AMAR-HGT-SWI-DR-CE-000617.
Earthworks Solution Plan and Elevation ch 183800 - 183854 SB Sheet 1 of 2	HA549342-AMAR-HGT-SWI-DR-CE-000618.
Earthworks Solution Plan and Elevation ch 183800 - 183854 SB Sheet 2 of 2	HA549342-AMAR-HGT-SWI-DR-CE-000619.

C.3 - List of Series 1600 Drawings - As-Built

Title	Drawing Numbers
Retaining Solutions - Sheet pile	HA549342-AMAR-HGT-SWI-DR-CE-001601.
Typical Retaining Solutions - Low Height Walls	HA549342-AMAR-HGT-SWI-DR-CE-001602.
King Sheet Pile 185139-185321 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001613.
King Sheet Pile 185139-185321 Earthworks Design Solution - Cross section	HA549342-AMAR-HGT-SWI-DR-CE-001614.
King Sheet Pile 185139-185321 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001615.
King Sheet Pile 185893-186360 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001616.
King Sheet Pile 185893-186360 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001617.
King Sheet Pile 185893-186360 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001618.
King Sheet Pile 185893-186360 Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001619.
King Sheet Pile 186489-186535 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001622.
King Sheet Pile 186489-186535 Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001623.
King Sheet Pile 188721 - 188893 Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-001626.
King Sheet Pile 188721 - 188893 Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-001628.
King Sheet Pile Wall 193320-193350 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001634.
King Sheet Pile Wall 193320-193350 Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001637.
KSP Sheet Pile 183798- 183950 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-001638.
KSP Sheet Pile 183798 - 183950 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-001639.
King Sheet Pile 187800 - 187835 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001640.
King Sheet Pile 187800 - 187835 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001641.
King Sheet Pile 187910 - 187931 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001642.
King Sheet Pile 187910 - 187931 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001643.
King Sheet Pile 188100 - 188129 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001644.
King Sheet Pile 188100 - 188129 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001645.
King Sheet Pile 188408 - 188546 SB Earthworks Design Solution -Plan	HA549342-AMAR-HGT-SWI-DR-CE-001646.
King Sheet Pile 188408 - 188546 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001648.
King Sheet Pile 188746 - 188769 SB Earthworks Design Solution- Plan	HA549342-AMAR-HGT-SWI-DR-CE-001649.
King Sheet Pile 188746 - 188769 SB Earthworks Design Solution- Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001650.
King Sheet Pile 188934 - 188956 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001651.
King Sheet Pile 188934 - 188956 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001652.
King Sheet Pile 189167 - 189183 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001653.
King Sheet Pile 189167 - 189183 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001654.
King Sheet Pile 189280 - 189305 SB Earthworks Design Solution- Plan	HA549342-AMAR-HGT-SWI-DR-CE-001655.
King Sheet Pile 189280 - 189305 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001656.
King Sheet Pile 189750 - 189791 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001657.
King Sheet Pile 189750 - 189791 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001658.
King Sheet Pile 192085 - 192523 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001659.
King Sheet Pile 192085 - 192523 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001660.
King Sheet Pile 192085 - 192523 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001661.
King Sheet Pile 192085 - 192523 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001662.
King Sheet Pile 192709 - 192832 SB Earthworks Design Solution- Plan	HA549342-AMAR-HGT-SWI-DR-CE-001663.
King Sheet Pile 192709- 192832 SB Earthworks Design Solution - Cross section	HA549342-AMAR-HGT-SWI-DR-CE-001664.
King sheet Pile 193301 - 193320 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001665.
King Sheet Pile 193301 - 193320 SB Earthworks Design Solution - Cross section	HA549342-AMAR-HGT-SWI-DR-CE-001669.
Kingsheet pile Solution plan Ch191762 - ch191830 NB Sheet 1 of 2	HA549342-AMAR-HGT-SWI-DR-CE-001675.
Kingsheet pile Solution cross section Ch191762 - ch191830 NB Sheet 2 of 2	HA549342-AMAR-HGT-SWI-DR-CE-001676.

C.4 - ERA and Gantries Drawings - As-Built

Title	Drawing Numbers
Gantry 112 Earthworks Design Solution	HA549342-AMAR-HGT-G112-DR-CE-000001.
Gantry 202 NB Earthworks Design Solution	HA549342-AMAR-HGT-G202-DR-CE-000001.
Gantry 202 SB Earthworks Design Solution	HA549342-AMAR-HGT-G202-DR-CE-000002.
Gantry 203 Earthworks Design Solution	HA549342-AMAR-HGT-G203-DR-CE-000001.
Gantry 204 Earthworks Design Solution	HA549342-AMAR-HGT-G204-DR-CE-000001.
Gantry 301 NB Earthworks Design Solution	HA549342-AMAR-HGT-G301-DR-CE-000001.
Gantry 301 SB Earthworks Design Solution	HA549342-AMAR-HGT-G301-DR-CE-000002.
Gantry 302 Earthworks Design Solution	HA549342-AMAR-HGT-G302-DR-CE-000001.
Gantry 303 Earthworks Design Solution	HA549342-AMAR-HGT-G303-DR-CE-000001.
Gantry 304 Earthworks Design Solution	HA549342-AMAR-HGT-G304-DR-CE-000001.
Gantry 305 Earthworks Design Solution	HA549342-AMAR-HGT-G305-DR-CE-000001.
Gantry 307 Earthworks Design Solution	HA549342-AMAR-HGT-G307-DR-CE-000001.
Gantry 308 Earthworks Design Solution	HA549342-AMAR-HGT-G308-DR-CE-000001.
Gantry 309 Earthworks Design Solution	HA549342-AMAR-HGT-G309-DR-CE-000001.
Gantry 310 Earthworks Design Solution	HA549342-AMAR-HGT-G310-DR-CE-000001.
Gantry 311 NB Earthworks Design Solution	HA549342-AMAR-HGT-G311-DR-CE-000001.
Gantry 311 SB Earthworks Design Solution	HA549342-AMAR-HGT-G311-DR-CE-000002.
Gantry 312 Earthworks Design Solution	HA549342-AMAR-HGT-G312-DR-CE-000001.
Gantry 313 Earthworks Design Solution	HA549342-AMAR-HGT-G313-DR-CE-000001.
Gantry 314 Earthworks Design Solution	HA549342-AMAR-HGT-G314-DR-CE-000001.
Gantry 315 Earthworks Design Solution	HA549342-AMAR-HGT-G315-DR-CE-000001.
Gantry 316 Earthworks Design Solution	HA549342-AMAR-HGT-G316-DR-CE-000001.
Gantry 318 Earthworks Design Solution	HA549342-AMAR-HGT-G318-DR-CE-000001.
Gantry 319 Earthworks Design Solution	HA549342-AMAR-HGT-G319-DR-CE-000001.
Gantry 320 Earthworks Design Solution	HA549342-AMAR-HGT-G320-DR-CE-000001.
Gantry 321 Earthworks Design Solution	HA549342-AMAR-HGT-G321-DR-CE-000001.
Gantry 322 Earthworks Design Solution	HA549342-AMAR-HGT-G322-DR-CE-000001.
Gantry 324 Earthworks Design Solution	HA549342-AMAR-HGT-G324-DR-CE-000001.
Gantry 326 Earthworks Design Solution	HA549342-AMAR-HGT-G326-DR-CE-000001.

C.1 - Mainline Drawings - As-Built

Title	Drawing Numbers
Earthworks - Legend / Notes	HA549342-AMAR-HGT-MLC-DR-CE-000001.
Earthworks Plan 1	HA549342-AMAR-HGT-MLC-DR-CE-000002.
Earthworks Plan 2	HA549342-AMAR-HGT-MLC-DR-CE-000003.
Earthworks Plan 3	HA549342-AMAR-HGT-MLC-DR-CE-000004.
Earthworks Plan 4	HA549342-AMAR-HGT-MLC-DR-CE-000005.
Earthworks Plan 5	HA549342-AMAR-HGT-MLC-DR-CE-000006.
Earthworks Plan 6	HA549342-AMAR-HGT-MLC-DR-CE-000007.
Earthworks Plan 7	HA549342-AMAR-HGT-MLC-DR-CE-000008.
Earthworks Plan 8	HA549342-AMAR-HGT-MLC-DR-CE-000009.
Earthworks Plan 9	HA549342-AMAR-HGT-MLC-DR-CE-000010.
Earthworks Plan 10	HA549342-AMAR-HGT-MLC-DR-CE-000011.
Earthworks Plan 11	HA549342-AMAR-HGT-MLC-DR-CE-000012.
Earthworks Plan 12	HA549342-AMAR-HGT-MLC-DR-CE-000013.

C.2 - List of Series 600 Drawings - As-Built

Title	Drawing Numbers
Typical Earthworks Solutions	HA549342-AMAR-HGT-SWI-DR-CE-000601.
Typical Retaining Solutions - Gabion Wall	HA549342-AMAR-HGT-SWI-DR-CE-000602.
Gabion Wall 193200-193321 & 193350 - 193475	HA549342-AMAR-HGT-SWI-DR-CE-000611.
Gabion Wall 193200-193321 & 193350 - 193475	HA549342-AMAR-HGT-SWI-DR-CE-000612.
Gabion Wall 193200-193311 & 193357 - 193475	HA549342-AMAR-HGT-SWI-DR-CE-000613.
Gabion Wall 193320 - 193497 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-000614.
Gabion Wall 193320 - 193497 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-000615.
Gabion Wall 193320 - 193497 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-000616.
Benching required at regrade	HA549342-AMAR-HGT-SWI-DR-CE-000617.
Earthworks Solution Plan and Elevation ch 183800 - 183854 SB Sheet 1 of 2	HA549342-AMAR-HGT-SWI-DR-CE-000618.
Earthworks Solution Plan and Elevation ch 183800 - 183854 SB Sheet 2 of 2	HA549342-AMAR-HGT-SWI-DR-CE-000619.

C.3 - List of Series 1600 Drawings - As-Built

Title	Drawing Numbers
Retaining Solutions - Sheet pile	HA549342-AMAR-HGT-SWI-DR-CE-001601.
Typical Retaining Solutions - Low Height Walls	HA549342-AMAR-HGT-SWI-DR-CE-001602.
King Sheet Pile 185139-185321 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001613.
King Sheet Pile 185139-185321 Earthworks Design Solution - Cross section	HA549342-AMAR-HGT-SWI-DR-CE-001614.
King Sheet Pile 185139-185321 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001615.
King Sheet Pile 185893-186360 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001616.
King Sheet Pile 185893-186360 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001617.
King Sheet Pile 185893-186360 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001618.
King Sheet Pile 185893-186360 Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001619.
King Sheet Pile 186489-186535 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001622.
King Sheet Pile 186489-186535 Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001623.
King Sheet Pile 188721 - 188893 Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-001626.
King Sheet Pile 188721 - 188893 Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-001628.
King Sheet Pile Wall 193320-193350 Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001634.
King Sheet Pile Wall 193320-193350 Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001637.
KSP Sheet Pile 183798- 183950 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-001638.
KSP Sheet Pile 183798 - 183950 SB Earthworks Design Solution	HA549342-AMAR-HGT-SWI-DR-CE-001639.
King Sheet Pile 187800 - 187835 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001640.
King Sheet Pile 187800 - 187835 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001641.
King Sheet Pile 187910 - 187931 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001642.
King Sheet Pile 187910 - 187931 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001643.
King Sheet Pile 188100 - 188129 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001644.
King Sheet Pile 188100 - 188129 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001645.
King Sheet Pile 188408 - 188546 SB Earthworks Design Solution -Plan	HA549342-AMAR-HGT-SWI-DR-CE-001646.
King Sheet Pile 188408 - 188546 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001648.
King Sheet Pile 188746 - 188769 SB Earthworks Design Solution- Plan	HA549342-AMAR-HGT-SWI-DR-CE-001649.
King Sheet Pile 188746 - 188769 SB Earthworks Design Solution- Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001650.
King Sheet Pile 188934 - 188956 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001651.
King Sheet Pile 188934 - 188956 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001652.
King Sheet Pile 189167 - 189183 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001653.
King Sheet Pile 189167 - 189183 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001654.
King Sheet Pile 189280 - 189305 SB Earthworks Design Solution- Plan	HA549342-AMAR-HGT-SWI-DR-CE-001655.
King Sheet Pile 189280 - 189305 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001656.
King Sheet Pile 189750 - 189791 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001657.
King Sheet Pile 189750 - 189791 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001658.
King Sheet Pile 192085 - 192523 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001659.
King Sheet Pile 192085 - 192523 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001660.
King Sheet Pile 192085 - 192523 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001661.
King Sheet Pile 192085 - 192523 SB Earthworks Design Solution - Cross Section	HA549342-AMAR-HGT-SWI-DR-CE-001662.
King Sheet Pile 192709 - 192832 SB Earthworks Design Solution- Plan	HA549342-AMAR-HGT-SWI-DR-CE-001663.
King Sheet Pile 192709- 192832 SB Earthworks Design Solution - Cross section	HA549342-AMAR-HGT-SWI-DR-CE-001664.
King sheet Pile 193301 - 193320 SB Earthworks Design Solution - Plan	HA549342-AMAR-HGT-SWI-DR-CE-001665.
King Sheet Pile 193301 - 193320 SB Earthworks Design Solution - Cross section	HA549342-AMAR-HGT-SWI-DR-CE-001669.
Kingsheet pile Solution plan Ch191762 - ch191830 NB Sheet 1 of 2	HA549342-AMAR-HGT-SWI-DR-CE-001675.
Kingsheet pile Solution cross section Ch191762 - ch191830 NB Sheet 2 of 2	HA549342-AMAR-HGT-SWI-DR-CE-001676.

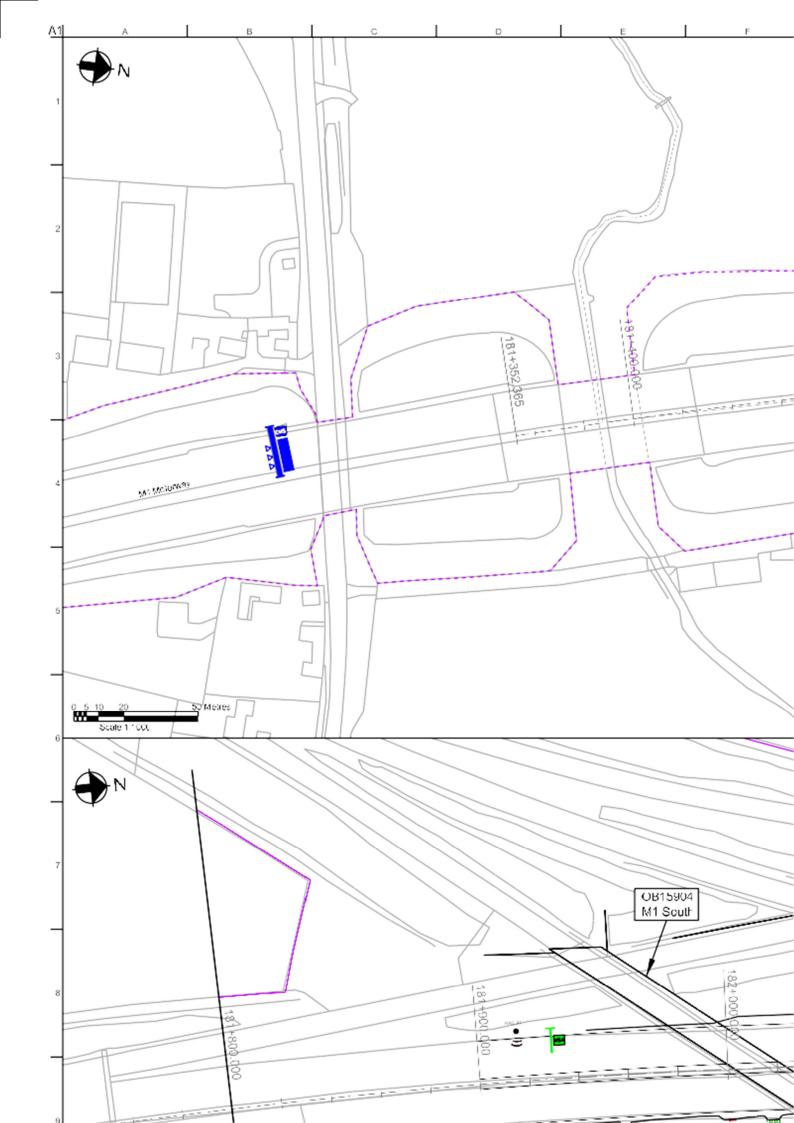
C.4 - ERA and Gantries Drawings - As-Built

Title	Drawing Numbers
Gantry 112 Earthworks Design Solution	HA549342-AMAR-HGT-G112-DR-CE-000001.
Gantry 202 NB Earthworks Design Solution	HA549342-AMAR-HGT-G202-DR-CE-000001.
Gantry 202 SB Earthworks Design Solution	HA549342-AMAR-HGT-G202-DR-CE-000002.
Gantry 203 Earthworks Design Solution	HA549342-AMAR-HGT-G203-DR-CE-000001.
Gantry 204 Earthworks Design Solution	HA549342-AMAR-HGT-G204-DR-CE-000001.
Gantry 301 NB Earthworks Design Solution	HA549342-AMAR-HGT-G301-DR-CE-000001.
Gantry 301 SB Earthworks Design Solution	HA549342-AMAR-HGT-G301-DR-CE-000002.
Gantry 302 Earthworks Design Solution	HA549342-AMAR-HGT-G302-DR-CE-000001.
Gantry 303 Earthworks Design Solution	HA549342-AMAR-HGT-G303-DR-CE-000001.
Gantry 304 Earthworks Design Solution	HA549342-AMAR-HGT-G304-DR-CE-000001.
Gantry 305 Earthworks Design Solution	HA549342-AMAR-HGT-G305-DR-CE-000001.
Gantry 307 Earthworks Design Solution	HA549342-AMAR-HGT-G307-DR-CE-000001.
Gantry 308 Earthworks Design Solution	HA549342-AMAR-HGT-G308-DR-CE-000001.
Gantry 309 Earthworks Design Solution	HA549342-AMAR-HGT-G309-DR-CE-000001.
Gantry 310 Earthworks Design Solution	HA549342-AMAR-HGT-G310-DR-CE-000001.
Gantry 311 NB Earthworks Design Solution	HA549342-AMAR-HGT-G311-DR-CE-000001.
Gantry 311 SB Earthworks Design Solution	HA549342-AMAR-HGT-G311-DR-CE-000002.
Gantry 312 Earthworks Design Solution	HA549342-AMAR-HGT-G312-DR-CE-000001.
Gantry 313 Earthworks Design Solution	HA549342-AMAR-HGT-G313-DR-CE-000001.
Gantry 314 Earthworks Design Solution	HA549342-AMAR-HGT-G314-DR-CE-000001.
Gantry 315 Earthworks Design Solution	HA549342-AMAR-HGT-G315-DR-CE-000001.
Gantry 316 Earthworks Design Solution	HA549342-AMAR-HGT-G316-DR-CE-000001.
Gantry 318 Earthworks Design Solution	HA549342-AMAR-HGT-G318-DR-CE-000001.
Gantry 319 Earthworks Design Solution	HA549342-AMAR-HGT-G319-DR-CE-000001.
Gantry 320 Earthworks Design Solution	HA549342-AMAR-HGT-G320-DR-CE-000001.
Gantry 321 Earthworks Design Solution	HA549342-AMAR-HGT-G321-DR-CE-000001.
Gantry 322 Earthworks Design Solution	HA549342-AMAR-HGT-G322-DR-CE-000001.
Gantry 324 Earthworks Design Solution	HA549342-AMAR-HGT-G324-DR-CE-000001.
Gantry 326 Earthworks Design Solution	HA549342-AMAR-HGT-G326-DR-CE-000001.

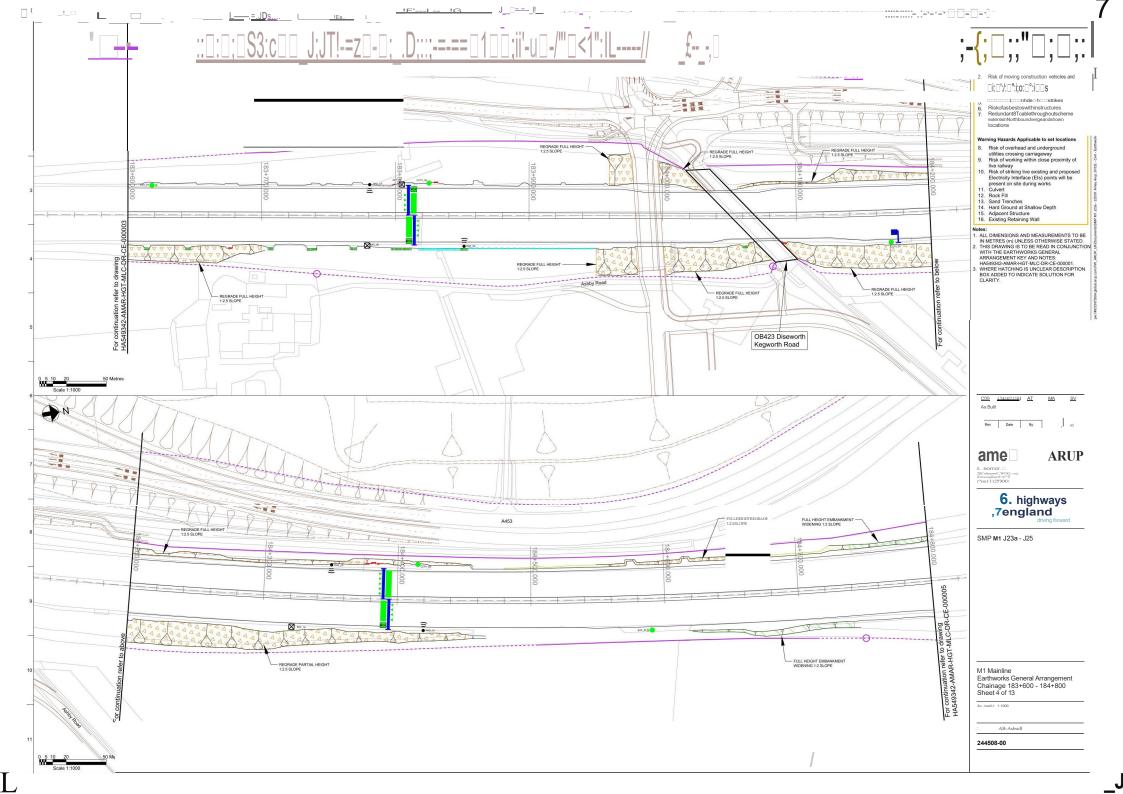
EMBANKMENT AND CUTTING SLOPES ARE STABLE IN THEIR CURRENT CONDITION.

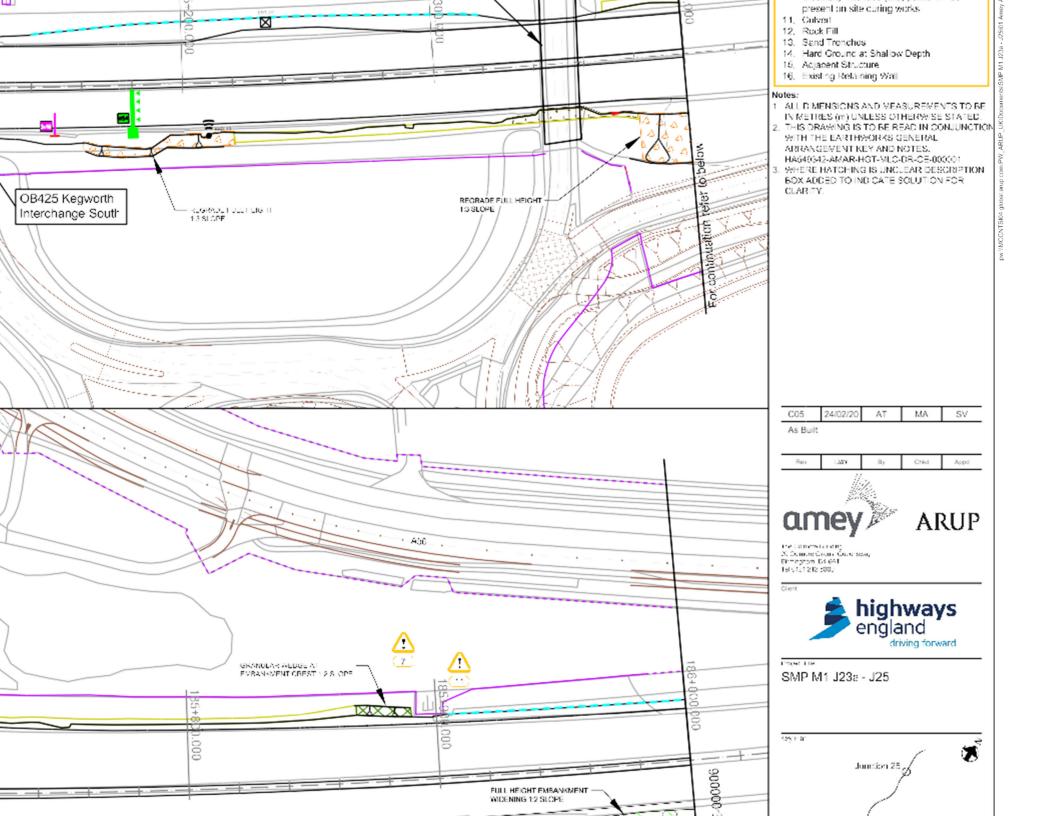
C04 28/04/20 DR MA SV
As Built

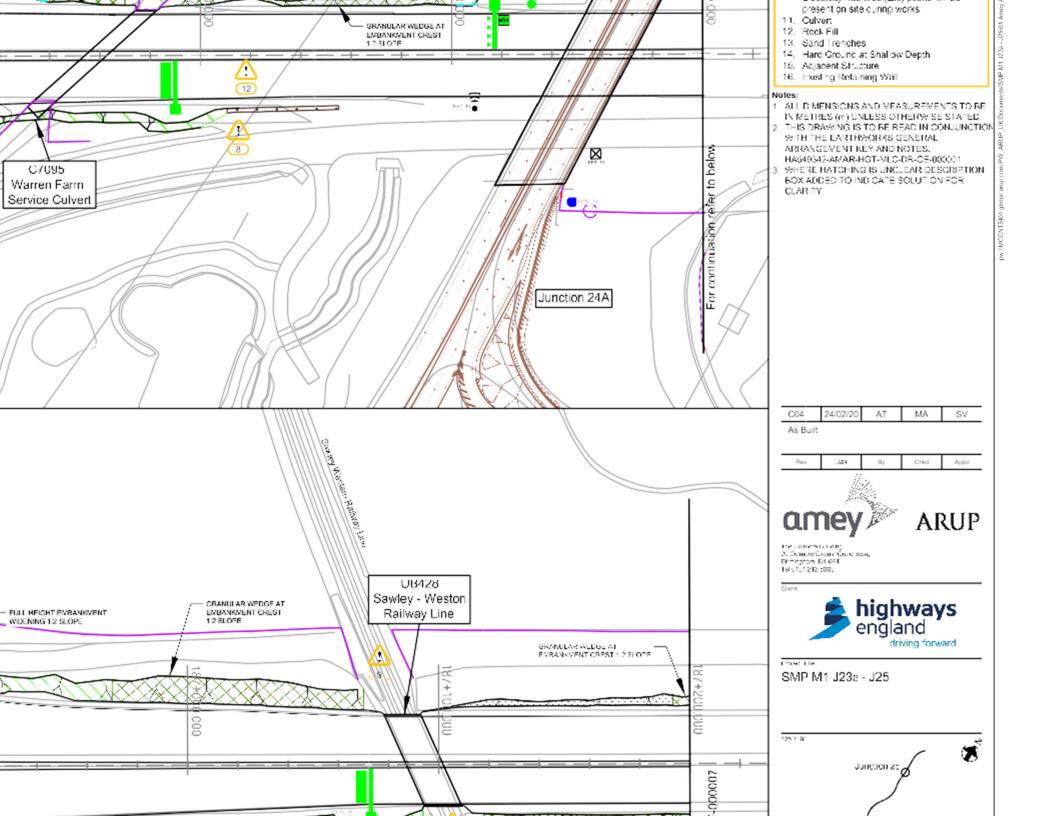
Rev Date By Chkd Appd

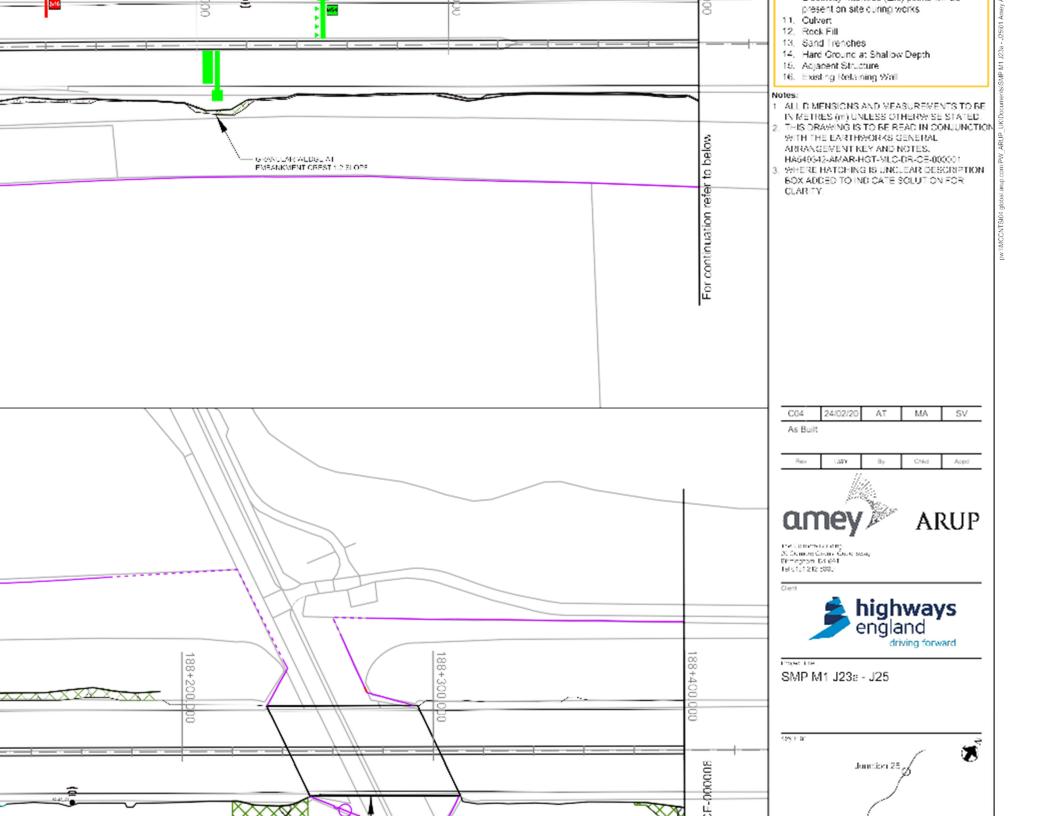


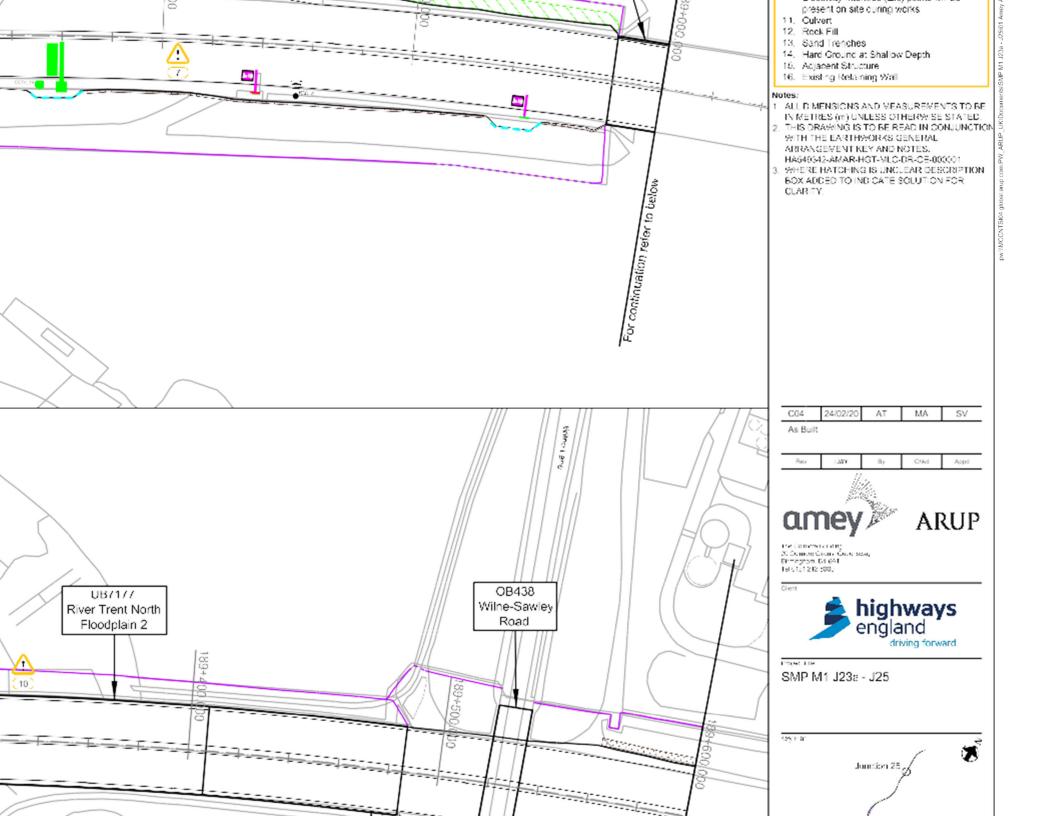
ARUP

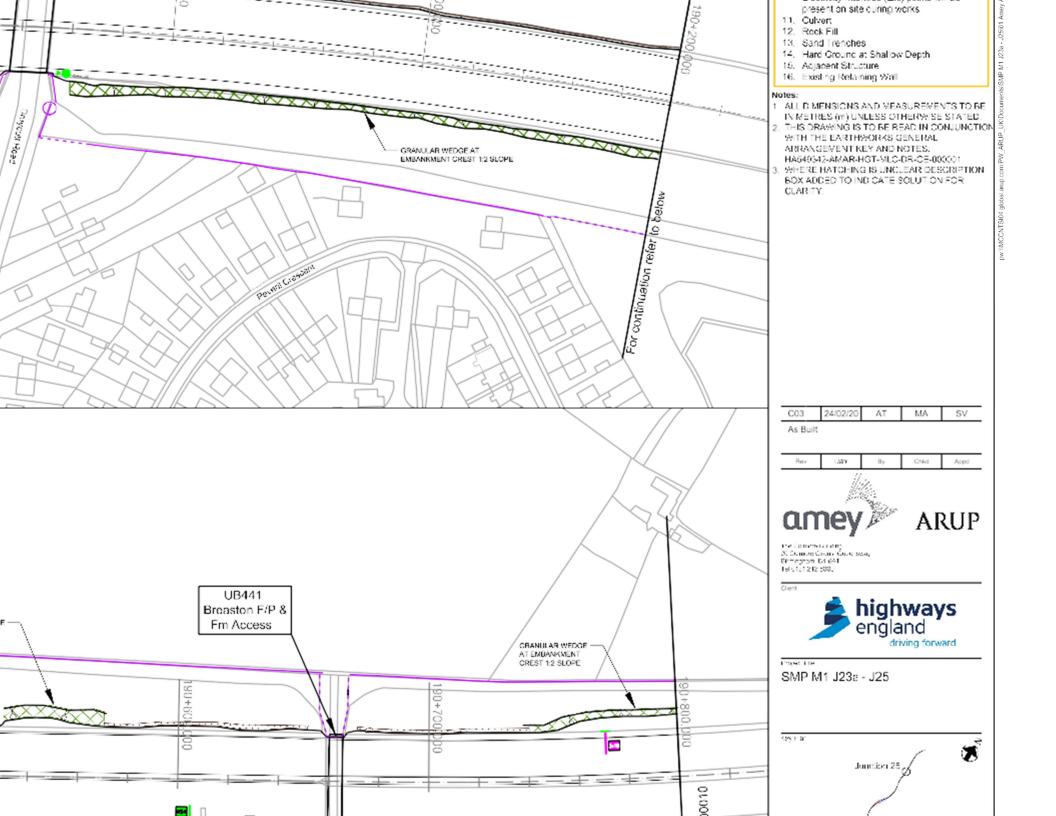

The Colmore Building 20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000

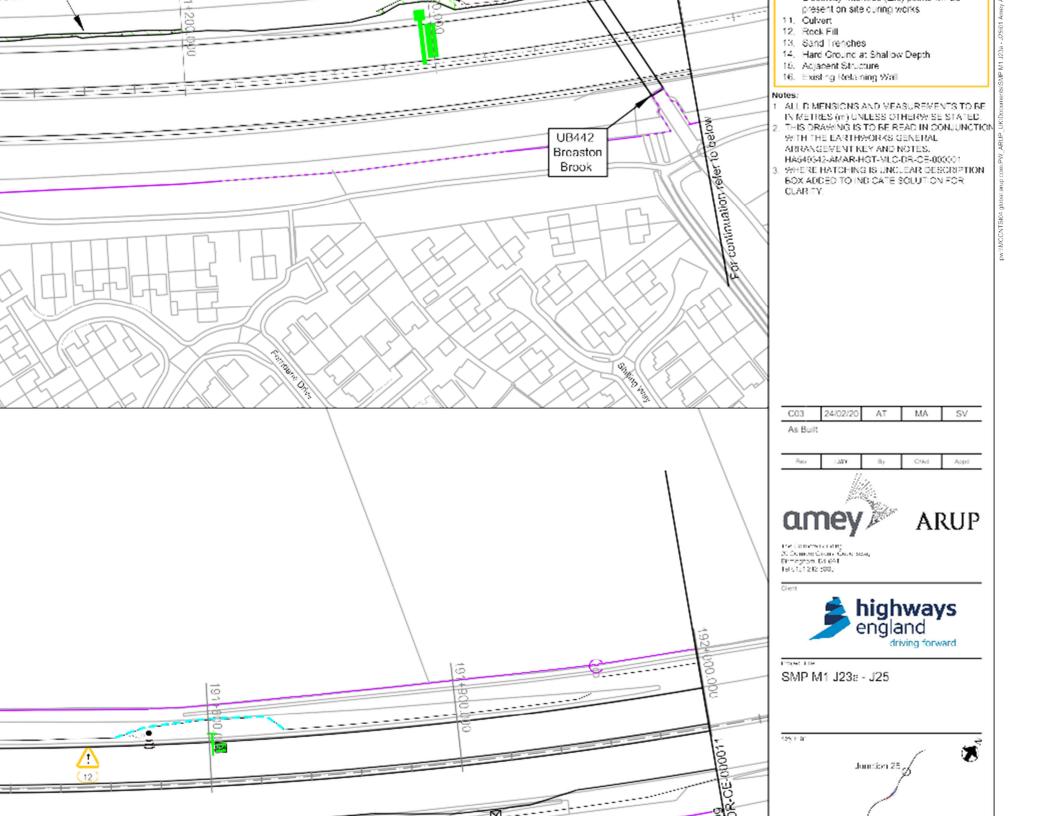

Client

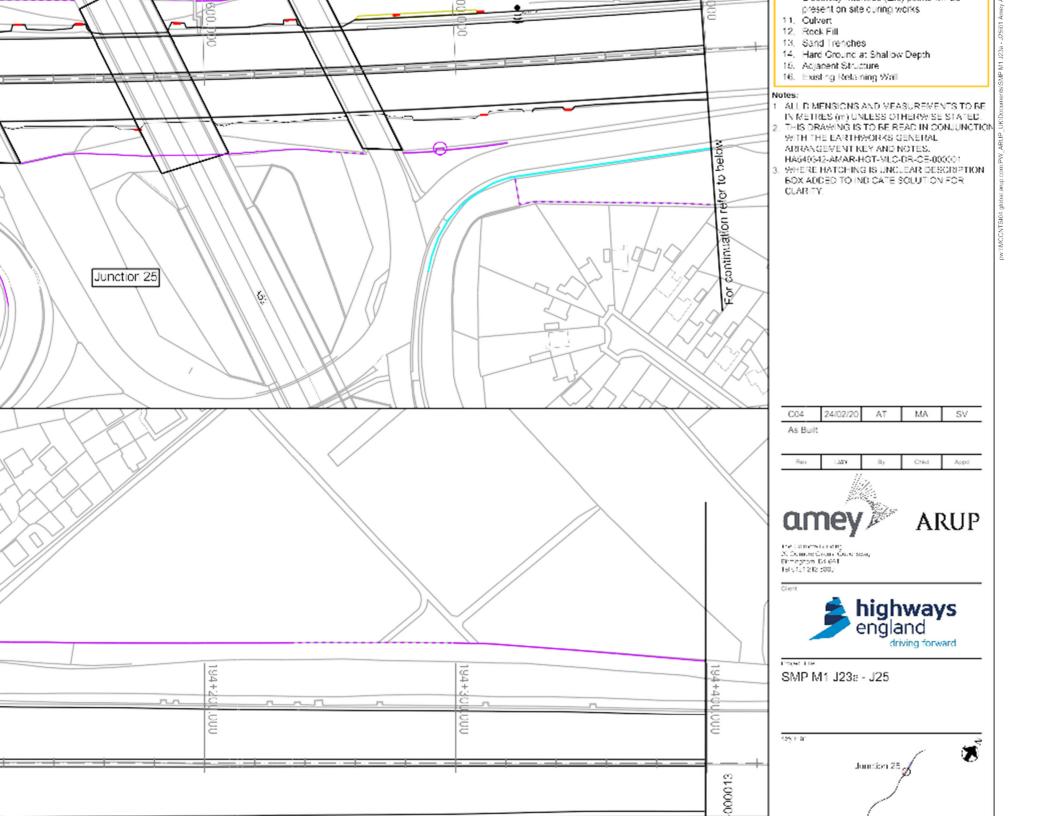





CNTS104 global arup com:PW_ARUP_UK:Documents/SMP_M1_J23a - J25/01 Ami







FULL HEIGHT EMBANKMENT WIDENING

Scale 1:100 @A3

BE EXCAVATED ED BACK TO PROVIDE ROUND PROFILE [1:2.5 OR 1:3 GRADIENT, HEDULE REFERENCE NO. AR-HGT-SWI-SP-000002]

- DRAWINGS.
- 7. ALL NEW SLOPE SURFACES TO BE TOPSOILED IN ACCORDANCE WITH THE PROJECT LANDSCAPING SPECIFICATION, BUT NO THICKER THAN 150MM FOR SLOPES OF 1(V):2(H) OR STEEPER, OR 300MM FOR SHALLOWER GRADIENTS.
- 8. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- FOR DETAILS OF BENCHING AT INDIVIDUAL LOCATIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-000617.
- 10. FOR TYPICAL DETAILS OF GABION WALL SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-000602.
- 11. FOR TYPICAL DETAILS OF SHEET PILE RETAINING SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-001601.
- 12. FOR TYPICAL DETAILS OF LOW HEIGHT RETAINING SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-001602
- 13. REFER TO TYPICAL VERGE DETAILS (HA549342-AMAR-HGN-SWI-DR-CH-000018 TO 23) FOR TYPICAL DETAILS OF ASSETS IN VERGE

LEGEND

- --- PROPOSED GROUND PROFILE
- EXISTING GROUND PROFILE (LIDAR SURVEY)

EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY)

--- INDICATIVE EXCAVATION PROFILE

GEOTEXTILE SEPARATOR LAYER

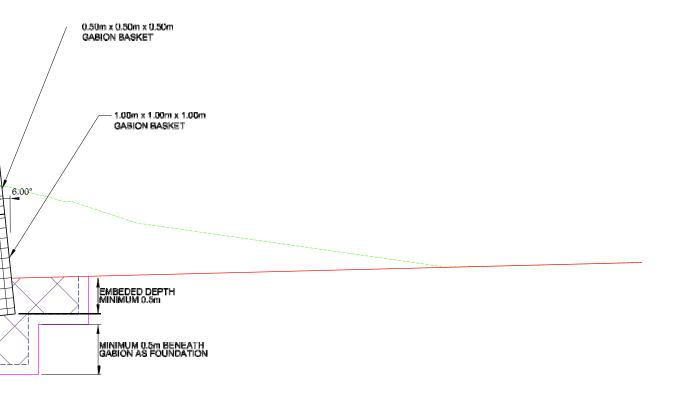
TOPSOIL

A A GRANULAR FILL [REFER TO SERIES 600 SPEC]

CO2 28/04/20 DR MA SV

As Built

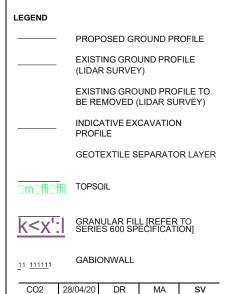
v Date By Chkd Appd



ARUP

The Colmore Building 20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000

Client



ETAINED HEIGHT)

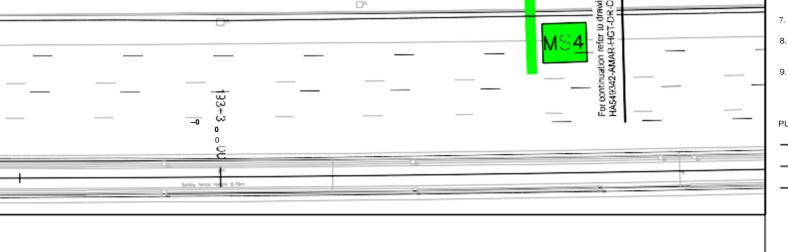
REFER TO SERIES 700 SPECIFICATION DRAWINGS.

- 7. ALL NEW SLOPE SURFACES TO BE TOPSOILED IN ACCORDANCE WITH THE PROJECT LANDSCAPING SPECIFICATION, BUT NO THICKER THAN 150mm FOR SLOPES OF 1(V):2(H) OR STEEPER, OR 300mm FOR SHALLOWER GRADIENTS.
- 8. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 9. EXCAVATION PROFILES WILL VARY DEPENDING ON TOPOGRAPHY.
- 10. FOR TYPICAL DETAILS OF SHEET PILE RETAINING SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-001601.
- 11. FOR TYPICAL DETAILS OF LOW HEIGHT RETAINING SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-001602.
- 12. REFER TO TYPICAL VERGE DETAILS (HA549342-AMAR-HGN-SWI-DR-CH-000018 TO 23) FOR TYPICAL DETAILS OF ASSETS IN **VERGE**

Date

ARUP

Appd


Chkd

The Colmore Building 20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000

As Built

Rev

		GABION WA	II DETAILS
ACK OF BATTER [c]		GABION WA	LL DLIAILS
NORTHING	LEVEL (mAOD)	TOTAL RETAINED HEIGHT (m)	EMBEDMENT DEPTH (m)
335286.28	47.90	0.95	0.50
335296.26	47.80	0.95	0.50
335306.24	48.20	0.95	0.50
335316.23	48.50	0.95	0.50
335326.21	48.90	0.95	0.50
335336.22	49.15	0.95	0.50
335346.26	49.20	0.95	0.50
335355.26	49.30	0.95	0.50

ELEVATION LEGEND

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

TOP OF CUTTING

TOE OF SHEET PILE

SHEET PILES

GABIONWALL GRANULAR FILL [SERIES 600 SPECIFICATION]

For exell-unition refer to drawing HAS48342-AWAR-HGT-DR-CE-000612

FOR SHEET PILE WALL SETTING OUT DETAILS -REFER TO DRAWING.

HA549342-AMAR-HGT-SWI-DR-CE-001834

OF CUTTING

06

07

Junction 25 0

BACK OF BATTER [c]		GABION WALL DETAILS	
NORTHING	LEVEL (mAOD)	TOTAL RETAINED HEIGHT (m)	EMBEDMENT DEPTH (m)
335384.63	49.90	0.95	0.50
335391.79	49.90	0.95	0.50
335401.49	49.90	1.40	0.50
335421.52	50.10	1.40	0.50
335431.81	50.20	1.40	0.50
335442.11	50.30	1.40	0.50
335452.39	50.40	1.40	0.50
335462.79	50.90	1.40	0.50
335471.23	51.00	1.40	0.50
335492.16	51.30	1.40	0.50
335500.60	51.40	1.40	0.50
335509.81	51.50	1.40	0.50
	•	•	

ELEVATION LEGEND			
	TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)		
	BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)		
	TOP OF CUTTING		
	TOE OF SHEET PILE		
[TI	SHEET PILES		
	GABION WALL		
	GRANULAR FILL [SERIES 600 SPECIFICATION]		

300mm FOR SHALLOWER GRADIENTS.

- 7. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- EXCAVATION PROFILES WILL VARY, WORST CASE SCENARIOS INDICATED ON SECTIONS.
- ALL SHEET PILE SECTIONS SHALL BE Z SECTIONS. REFER TO SERIES 1600 FOR FURTHER DETAILS.

PLAN LEGEND

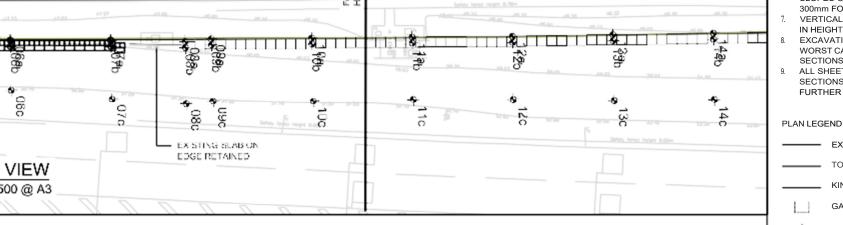
 EXISTING HIGHWAY FENCELINE TOPO SURVEY (BEFORE SMP) KING SHEET PILE LOCATION GABIONWALL SECTION LINE SETTING OUT POINT

C03	28/04/20	DR	MA	sv	
As Built					

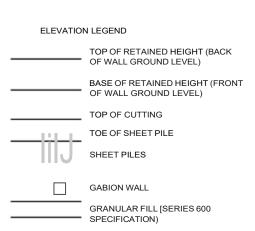
Appd

ARUP

The Galmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000


SMP M1 J23a - J25

ti


Junction 25 0

7. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT. ИUM 0.5m SECTION LEGEND BEDDED PROPOSED GROUND PROFILE MUM 0.5m BENEATH ON AS FOUNDATION EXISTING GROUND PROFILE (LIDAR SURVEY) EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY) INDICATIVE EXCAVATION PROFILE GEOTEXTILE SEPARATOR LAYER fu | |T| TOPSOIL GRANULAR FILL [REFER TO SERIES 600 SPECIFICATION] GABION BASKET SETTING OUT POINT CO2 28104/20 sv As Built Chkd Rev Appd **ARUP** 20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000 **highways** england driving forward SMP M1 J23a - J25 MINIMUM 0.5m **EMBEDDED** MINIMUM 0.5m BENEATH Junction 25 Ø GABION AS FOUNDATION

300MM FOR SHALLOWER GRADIENTS.

		GARION WA	ALL DETAILS
K OF BATTER [c]		0,121011177	
NORTHING	LEVEL (mAOD)	TOTAL RETAINED HEIGHT (m)	EMBEDMENT DEPTH (m)
335358.00	50.00	0.95	0.50
335367.70	50.00	0.95	0.50
335377.70	50.10	0.95	0.50
335387.70	50.40	0.95	0.50
335397.69	50.80	0.95	0.50
335407.74	51.20	0.95	0.50
335415.40	51.60	1.40	0.50
335417.73	51.60	1.40	0.50
335427.73	51.80	1.40	0.50
335437.72	51.80	1.40	0.50
335447.72	52.10	1.40	0.50
335457.72	52.20	1.40	0.50
335467.71	52.30	1.40	0.50

KING SHEET PILE LOCATION **GABION WALL** SECTION LINE SETTING OUT POINT C03 28/04/20 DR As Built Chkd Re, ARUP 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000 **highways** england driving forward SMP M1 J23a - J25

Junction 25 0

300mm FOR SHALLOWER GRADIENTS. VERTICAL BENCHING NOTTO EXCEED 0.5m

EXCAVATION PROFILES WILL VARY, WORST CASE SCENARIOS INDICATED ON

ALL SHEET PILE SECTIONS SHALL BEZ SECTIONS. REFER TO SERIES 1600 FOR

EXISTING HIGHWAY FENCELINE

TOPO SURVEY (BEFORE SMP)

IN HEIGHT.

SECTIONS.

FURTHER DETAILS.

EXISTING SLAB ON EDGE RETAINED

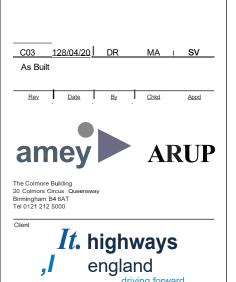
For continuation refer to drawing HA549342-AMAR-HGT-SWI-DR-CE-000615

ti

SV

Appd

			GABION WA	LL DETAILS
	BACK OF BATTER [c]			
EASTING	NORTHING	LEVEL (mAOD)	TOTAL RETAINED HEIGHT (m)	EMBEDMENT DEPTH (m)
447221 6	335487.8	52.10	1.40	0.50
447221.71	335497.8	52.10	1.40	0.50
447221.82	335507.8	52.10	1.40	0.50
447221.85	335517.8	52.10	1.40	0.50
447221.85	335527.85	52.20	1.40	0.50
447220.4	335530.75	52.30	1.40	0.50


BUT NO THICKER THAN 150MM FOR SLOPES OF 1(V):2(H) OR STEEPER, OR 300mm FOR SHALLOWER GRADIENTS. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT. WORST CASE SCENARIOS INDICATED IN SECTION A-A. PLAN LEGEND EXISTING HIGHWAY FENCELINE TOPO SURVEY (BEFORE SMP) **GABIONWALL** +χ SETTING OUT POINT SECTION LINE **ELEVATION LEGEND** TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL) BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL) TOP OF CUTTING **GABION WALL** GRANULAR FILL [REFER SERIES 600 SPECIFICATION] 28/04/20 CO2 DR MA SV As Built Chkd Appd ARUP 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000 **highways** england driving forward SMP M1 J23a - J25 Key Plan ti Junction 25 0

pw:\\MCCNTS\04.clobal.arup.com:PW_ARUP_UK\Documents\SMP_M1.J23a - J25\01.4mev.A

3.0	26.5
5.0	24.4
4.5	32.0
4.5	32.0
4.2	26.5
4.5	26.5
8.2	26.5
3.4	26.5
3.4	26.5
6.0	26.5

ching Details

	Benching Details				
	Base width (m)	Batter Angle (⁰)			
	7.3	26.5			
	4.5	26.5			
	2.1	26.5			
	2.0	26.5			
	4.5	26.5			
t	4.5	26.5			
t	4.5	26.5			
	4.5	26.5			
	10.4	26.5			
	10.4	26.5			
	9.0	26.5			
	6.6	26.5			
	9.0	26.5			
	6.1	26.5			
	6.5	26.5			
	4.0	26.5			
	6.5	26.5			
	6.5	26.5			
	4.0	26.5			
	6.2	26.5			
	4.0	26.5			
	4.5	26.5			
	4.5	26.5			
	3.5	26.5			
	3.9	26.5			
	3.8	26.5			
	3.0	26.5			

PEDESTRIAN RESTRAINT SYSTEM

SECTION LINE

Surfect to the first to the f	300mm FOR SHALLOWER GRADIENTS. 7. VERTICAL BENCHING NOTTO EXCEED 0.5m IN HEIGHT. 8. EXCAVATION PROFILES WILL VARY, WORST CASE SCENARIOS INDICATED ON SECTIONS. 9. ALL SHEET PILE SECTIONS SHALL BEZ SECTIONS. REFER TO SERIES 1600 FOR
05-06c 07c 323 323 323 323 323 323 323 323 323 32	FURTHER DETAILS. PLAN LEGEND EXISTING HIGHWAY FENCELINE
B NO 120 120 120 120 120 120 120 120 120 120	TOPO SURVEY (BEFORE SMP) KING SHEET PILE LOCATION GABION WALL
	SECTION LINE

		GABION WA	LLDETAILS	
BACK OF BATTER [c]		CABION WA	LE DE IAILO	
EASTING	NORTHING	LEVEL (mAOD)	TOTAL RETAINED HEIGHT (m)	EMBEDMENT DEPTH (m)
447345.57	326192.02	74.84	1.40	0.50
447349.82	326209.79	74.60	1.40	0.50
447351.43	326214.99	74.91	1.90	0.50
447355.26	326227.41	74.93	1.90	0.50
447360.17	326243.28	74.28	1.90	0.50
447360.17	326243.28	74.28	1.40	0.50
447362.35	326250.34	74.05	1.40	0.50

As Built Re, ARUP The Galmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000 **highways** england driving forward SMP M1 J23a - J25 Key Plan Junction 25 0

28/04/20

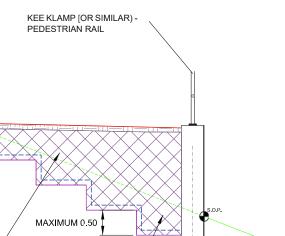
C03

DR

MA

SV

Appd


FOR SHEET PILE WALL SETTING OUT. $E \triangleright$ DETAILS REFER TO DRAWING: HA549342-AMAR-HGT-SWI-DR-CE-001638 **ELEVATION LEGEND** TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL) BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

TYPICAL SHEET PILE SECTION (VARIES, REFER TO SERIES 1600 SPECIFICATION AND SCHEDULE)

SHEET PILE PLAN DETAIL

Scale 1:20 @ A3

- REFER TO SERIES 700 SPECIFICATION DRAWINGS.
- 7. ALL NEW SLOPE SURFACES TO BE TOPSOILED IN ACCORDANCE WITH THE PROJECT LANDSCAPING SPECIFICATION, BUT NO THICKER THAN 150MM FOR SLOPES OF 1(V):2(H) OR STEEPER, OR 300MM FOR SHALLOWER GRADIENTS.
- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- EXCAVATION PROFILES WILL VARY, DEPENDING ON GEOMETRY.
- FOR TYPICAL DETAILS OF EARTHWORKS SOLUTION REFER TO HA549342-AMAR-HGT-SWI-DR-CE-000601.
- FOR TYPICAL DETAILS OF GABION WALL SOLUTIONS REFER TO HA5493432-AMAR-HGT-SWI-DR-CE-000602.
- 12. FOR TYPICAL DETAILS OF LOW HEIGHT RETAINING SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-0001602.

LEGEND

PROPOSED GROUND PROFILE

— EXISTING GROUND PROFILE (LIDAR SURVEY)

EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY)

INDICATIVE EXCAVATION PROFILE

GEOTEXTILE SEPARATOR LAYER

TOPSOIL

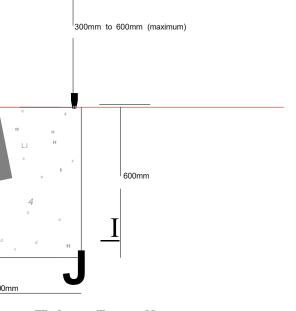
[7°"/CJ GRANULAR FILL [REFER TO SERIES 0".i....0L...0.J~ 600 SPECIFICATION]

□sos SETTING OUT POINT

C03 15/05/20 DR MA SV

As Built

Rev Date By Chkd Appd



ARUP

The Colmore Building 20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000

Client

<u>on Edge Detail</u>

- Details as above

0

REFER TO SERIES 700 SPECIFICATION DRAWINGS.

- 7. ALL NEW SLOPE SURFACES TO BE TOPSOILED IN ACCORDANCE WITH THE PROJECT LANDSCAPING SPECIFICATION, BUT NO THICKER THAN 150mm FOR SLOPES OF 1(V):2(H) OR STEEPER, OR 300mm FOR SHALLOWER GRADIENTS.
- 8. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 9. EXCAVATION PROFILES WILL VARY DEPENDING ON TOPOGRAPHY.
- 10. FOR TYPICAL DETAILS OF EARTHWORKS SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-000601.

LEGEND

PROPOSED GROUND PROFILE

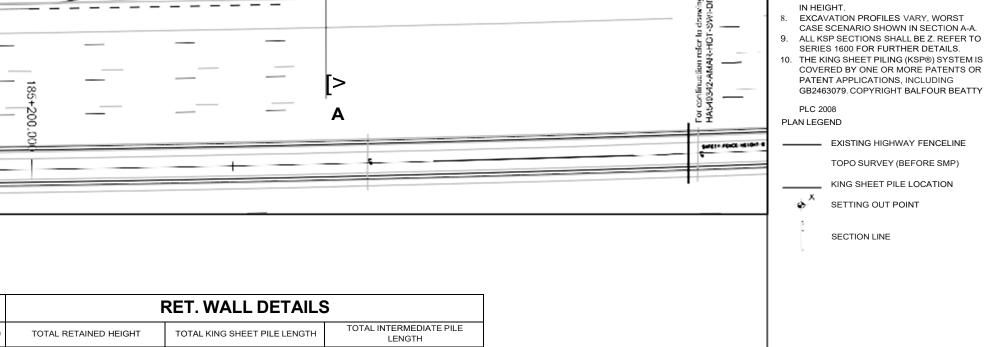
EXISTING GROUND PROFILE (LIDAR SURVEY)

EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY)

C35/45 CONCRETE FILL

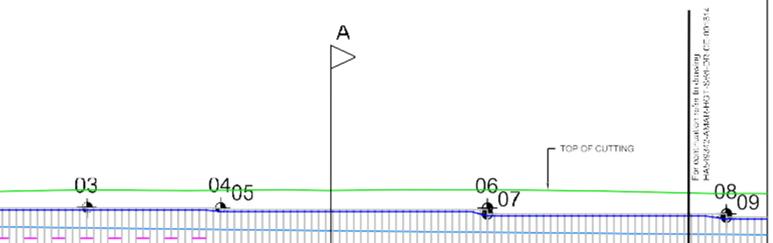
CO2 15/05/20 DR MA SV
As Built

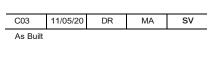
Rev Date By Chkd Appd



ARUP

The Colmore Building 20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000


Clien


RET. WALL DETAILS					
TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE PILE LENGTH			
0.85	8.00	3.00			
1.45	8.00	3.00			
1.75	8.00	3.00			
1.90	8.00	3.00			
1.75	10.00	3.50			
1.90	10.00	3.50			
1.50	10.00	3.50			
1.90	10.00	3.50			
1.55	8.00	3.00			

ELEVATION LEGEND TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL) BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL) TOP OF CUTTING TOE OF SHEET PILE SHEET PILES

- EXCAVATION PROFILES VARY, WORST
- ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
 - COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY

EXISTING HIGHWAY FENCELINE

Apµd

ARUP

:w Galmore Circus Queensway Birmingham 84 BAT Tel 01212125000

SMP M1 J23a - J25

ri Junction 25 0/

SECTION LINE

	 - -	- -
c .		6 (HOLD) 30/03 413/MS

		RET. WALL DETAIL	S
OTTOM OF RETAINED HEIGHT (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE PILE LENGTH
34.60	1.65	10.00	3.00
34.40	1.85	10.00	3.00
34.40	1.50	10.00	3.00
34.30	1.60	10.00	3.00

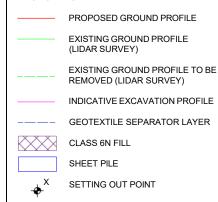
ELEVATION LEGEND

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

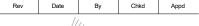
11/05/20 DR sv C03 MA As Built Ву Appd **ARUP** The Galmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000 **highways** england driving forward SMP M1 J23a - J25 Key Plan ti Junction 25 0

13


ALLED

CING

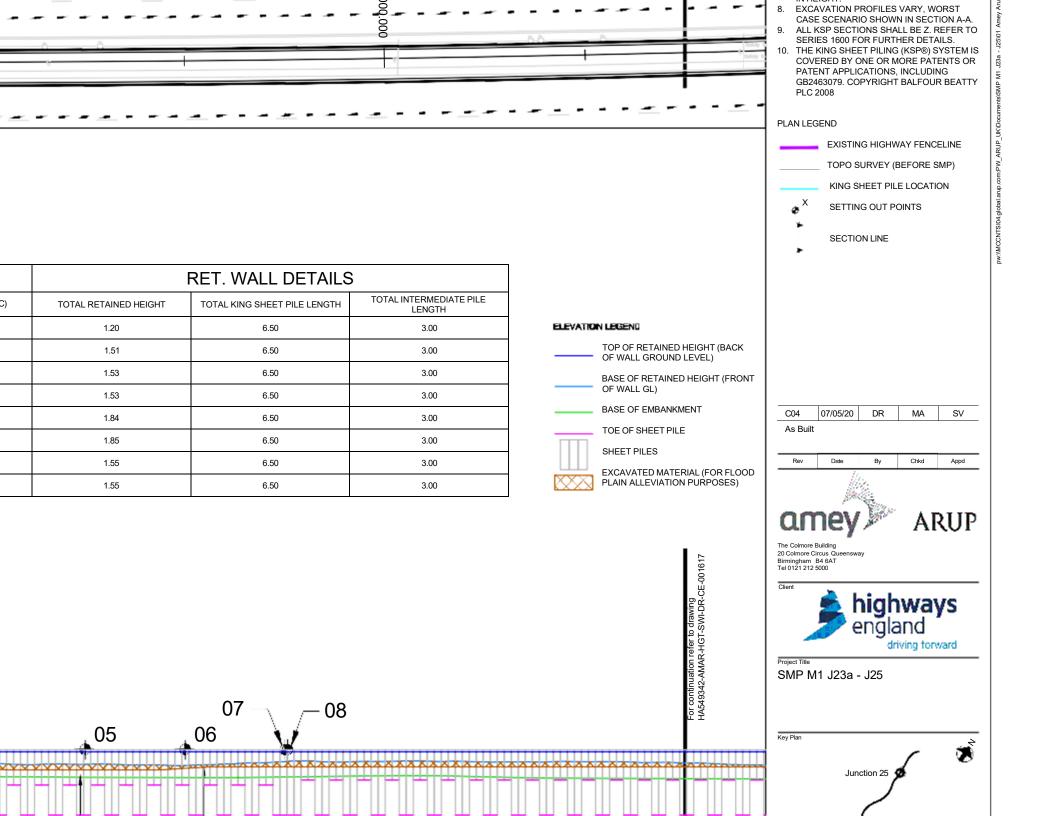
LS REFER TO SERIES


- 300mm FOR SHALLOWER GRADIENTS.
- 7. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 8. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- 9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MÔRE PÁTENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

C03	07/05/20	DR	MA	SV
As Built				

EXCAVATED MATERIAL REINSTATED



The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

SMP M1 J23a - J25

Key Plan Junction 25 🍎

	RET. WALL DETAILS		
ASE OF EXCAVATION (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE PILE LENGTH
31.70	1.55	6.50	3.00
31.40	1.86	6.50	3.00
31.40	1.86	7.50	3.00
31.10	2.16	7.50	3.00
31.40	1.86	7.50	3.00
31.40	1.87	7.50	3.00
31.40	1.87	6.50	3.00

ELEVATION LEGEND

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

EXCAVATED MATERIAL (FOR FLOOD PLAIN ALLEVIATION PURPOSES)

- EXCAVATION PROFILES VARY, WORST CASE SCENARIO SHOWN IN SECTION A-A.
- 9. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

PLAN LEGEND

EXISTING HIGHWAY FENCELINE
TOPO SURVEY (BEFORE SMP)
KING SHEET PILE LOCATION
SETTING OUT POINTS
SECTION LINE

C04	07/05/20	DR	MA	SV
As Built				

Rev Date By Chkd Appd

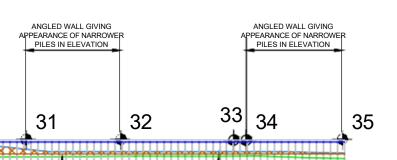
ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client

Project Title

SMP M1 J23a - J25


Key Plan

For continuation refer to drawing HA549342-AMAR-HGT-SWI-DR-CE-001618

		veices solves come Asses		V		\$4
--	--	--------------------------	--	---	--	-----

RET. WALL DETAILS			
	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE PILE LENGTH
	1.92	6.50	3.00
	1.92	6.50	3.00
	1.62	6.50	3.00
	1.92	6.50	3.00
	1.92	7.50	3.50
	2.23	7.50	3.50
	2.23	7.50	3.50
	2.23	7.50	3.50
	1.93	7.50	3.50
	1.93	7.50	3.50
	1.74	7.50	3.50
	1.64	7.50	3.50
	1.64	7.50	3.50
	1.64	6.50	3.00
	1.35	6.50	3.00
	1.36	6.50	3.00
	1.36	6.50	3.00
	1.21	6.50	3.00
	1.21	6.50	3.00
	1.26	6.50	3.00

ELEVATION LEGEND

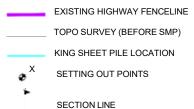
TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES


EXCAVATED MATERIAL (FOR FLOOD PLAIN ALLEVIATION PURPOSES)

8. EXCAVATION PROFILES VARY, WORST CASE SCENARIO SHOWN IN SECTION A-A.

ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.

10. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

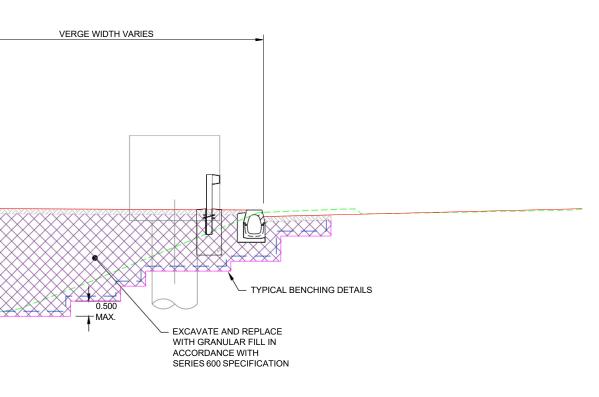
PLAN LEGEND

C04 07/05/20 DR MA SV

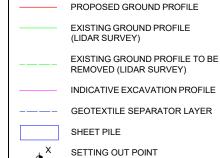
As Built

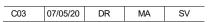
Rev Date Ву Chkd

ARUP


Appd

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000


SMP M1 J23a - J25


Key Plan Junction 25

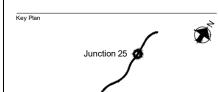
- 300mm FOR SHALLOWER GRADIENTS.7. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 8. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

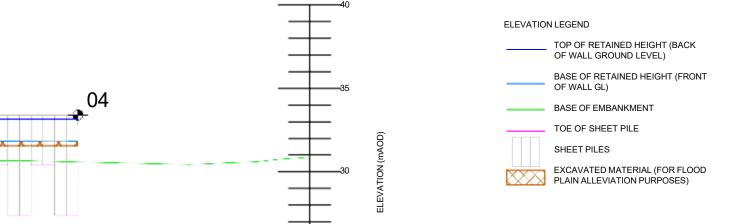
As Built

Rev Date By Chkd Appd

ARUP


The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client



Project Tit

SMP M1 J23a - J25

	RET. WALL DETAILS			
(C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE PILE LENGTH	
	1.34	6.00	3.00	
	1.27	6.00	3.00	
	1.55	6.00	3.00	
	1.52	6.00	3.00	

- EXCAVATION PROFILES VARY, WORST CASE SCENARIO SHOWN IN SECTION A-A.
- 9. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

PLAN LEGEND

EXISTING HIGHWAY FENCELINE
TOPO SURVEY (BEFORE SMP)
KING SHEET PILE LOCATION
SETTING OUT POINTS

SECTION LINE

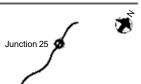
C04	07/05/20	DR	MA	SV

As Built

Rev Date By Chkd Appd

ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000


Client

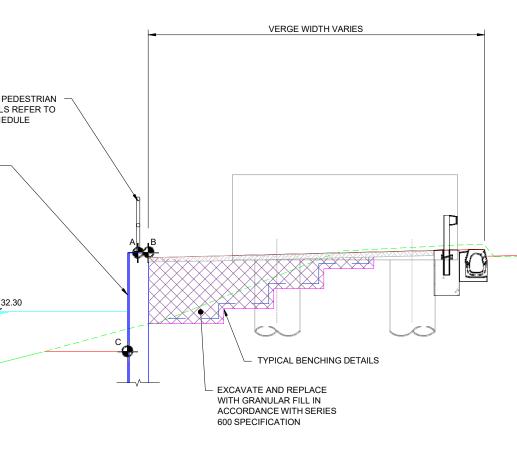
Project Title

SMP M1 J23a - J25

Key Plan

highways england

Junction 25 🐔


driving forward

Birmingham B4 6AT Tel 0121 212 5000

SMP M1 J23a - J25

300mm FOR SHALLOWER GRADIENTS.VERTICAL BENCHING NOT TO EXCEED 0.5m

IN HEIGHT.

RET. WALL DETAILS		
TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH
2.01	9.00	4.50
2.63	9.00	4.50
2.69	9.00	4.50
2.69	9.00	4.50
2.94	9.00	4.50
2.93	9.00	4.50
1.65	9.00	4.50
	2.01 2.63 2.69 2.69 2.94 2.93	TOTAL RETAINED HEIGHT 2.01 9.00 2.63 9.00 2.69 9.00 2.69 9.00 2.94 9.00 2.94 9.00

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

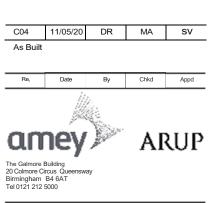
ELEVATION LEGEND

35 **1**

IN HEIGHT.
. EXCAVATION PROFILES VARY, WORST

PLC 2008

- PLAN LEGEND


 EXISTING HIGHWAY FENCELINE
 - TOPO SURVEY (BEFORE SMP)

CASE SCENARIO SHOWN IN SECTION A-A.

9. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.

10. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS. INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY

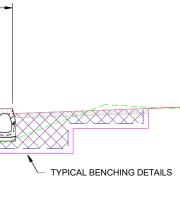
- KING SHEET PILE LOCATION
 SETTING OUT POINT
- SECTION LINE

Client

Junction 25 0

Project Title

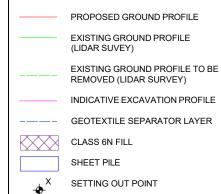
SMP M1 J23a - J25


Key Pla

ti

[> 05 06

Α


07

ATE AND REPLACE GRANULAR FILL IN RDANCE WITH S 600 SPECIFICATION

- 300mm FOR SHALLOWER GRADIENTS.
- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 8. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

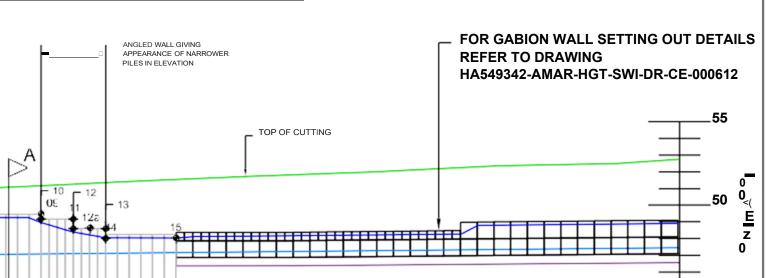
SECTION LEGEND

C03	07/05/20	DR	MA	SV
As Built				

Rev Date By Chkd Appd

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client


Project Title

SMP M1 J23a - J25

Key Plan

Junction 25

ET. WALL DETAILS	5
TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH
8.50	3.50
10.00	3.50
8.50	3.50
8.50	3.50
10.00	3.50
1000	350
10.00	3.50
10.00	3.50
10.00	3.50
10.00	3.50
10.00	3.50
10.00	3.50
10.00	3.50
8.50	3.50
8.50	3.50
8.50	3.50
10.00	3.50

ELEVATION LEGEND TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL) BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL) TOP OF CUTTING TOE OF SHEET PILE SHEET PILES GABION WALL GRANULAR FILL [SERIES 600 SPECIFICATION]

EXISTING HIGHWAY FENCELINE TOPO SURVEY (BEFORE SMP) KING SHEET PILE LOCATION GABIONWALL SECTION LINE SETTING OUT POINT 15/05/20 CD4 DR MA sv As Built Chkd Appd **ARUP** The Galmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000 **highways** england driving forward SMP M1 J23a - J25 Key Plan ti

Junction 25 Q

45

300mm FOR SHALLOWER GRADIENTS. VERTICAL BENCHING NOT TO EXCEED 0.5m

EXCAVATION PROFILES WILL VARY, WORST CASE SCENARIOS INDICATED ON

ALL SHEET PILE SECTIONS SHALL BE Z SECTIONS. REFER TO SERIES 1600 FOR

IN HEIGHT.

SECTIONS.

PLAN LEGEND

FURTHER DETAILS.

- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 8. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

PROPOSED GROUND PROFILE

EXISTING GROUND PROFILE (LIDAR SURVEY)

EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY)

INDICATIVE EXCAVATION PROFILE

GEOTEXTILE SEPARATOR LAYER

SETTING OUT POINT

SHEET PILE

C03 15/05/20 DR MA SV

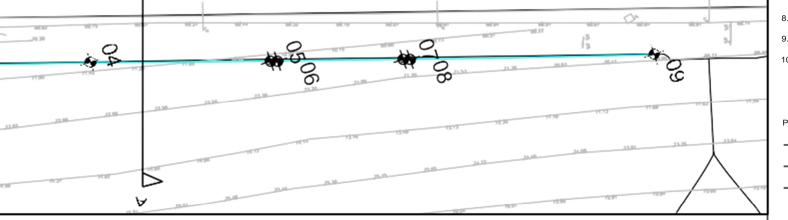
As Built

Rev Date By Chkd Appd

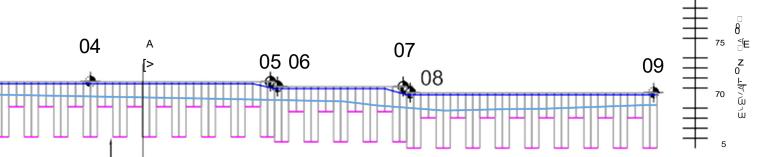
ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client



Project Title


SMP M1 J23a - J25

	RET. WALL DETAILS		
BOTTOM OF RETAINED HEIGHT (C)	TOTAL RETAINED HIEGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE PILE LENGTH
71.05	1.03	5.50	2.50
70.60	1.00	5.50	2.50
70.61	0.98	5.50	2.50
70.20	1.10	5.50	2.50
69.83	1.17	5.50	2.50
69.82	1.18	5.50	2.50
69.11	1.19	5.50	2.50
69.10	1.13	5.50	2.50
69.30	0.60	5.50	2.50

IN HEIGHT.

- 8. EXCAVATION PROFILES VARY, WORST CASE SCENARIO SHOWN IN SECTION A-A.
- . ALL KSP SECTIONS SHALL BEZ. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

PLAN LEGEND

4x

EXISTING HIGHWAY FENCELINE

TOPO SURVEY (BEFORE SMP)

SETTING OUT POINT

KING SHEET PILE LOCATION

- SECTION LINE

ELEVATION LEGEND

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

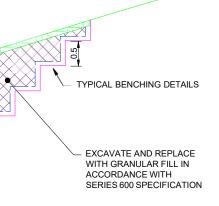
C03 15/05/20 DR **MA** SV

As Built

Rev Date By Chkd Appd

ARUP

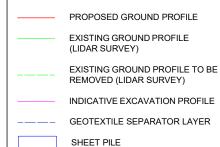
The Galmore Building 20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000


Client

SMP M1 J23a - J25

Junction 25 0

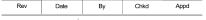
- KEE KLAMP (OR SIMILAR APPROVED) PEDESTRIAN RAIL (WHERE REQUIRED) FOR DETAILS REFER TO SERIES 400 SPECIFICATION AND SCHEDULE



- 7. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.

300MM FOR SHALLOWER GRADIENTS.

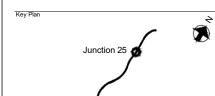
9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

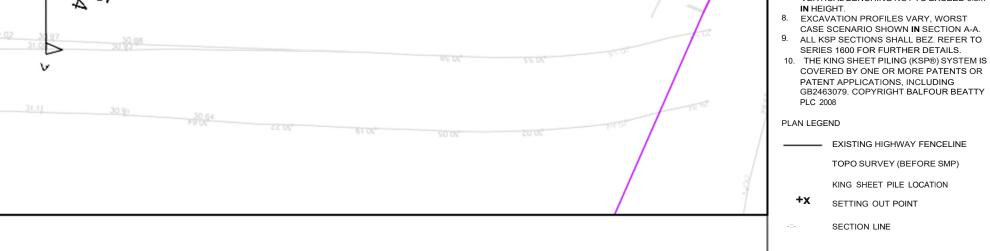

SECTION LEGEND

SETTING OUT POINT

C02	15/05/20	DR	MA	SV	

As Built


ARUP The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT


Tel 0121 212 5000

Project Title

SMP M1 J23a - J25

RET. WALL DETAILS						
I (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH			
	1.30	6.50	3.30			
	2.06	6.50	3.30			
	2.06	6.50	3.30			
	2.72	6.50	3.30			
	2.72	6.50	3.30			
	0.97	6.50	3.30			

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

C04 15/05/20 DR MA As Built Chkd ARUP

SV

Appd

 EXISTING HIGHWAY FENCELINE TOPO SURVEY (BEFORE SMP) KING SHEET PILE LOCATION SETTING OUT POINT SECTION LINE

20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000

SMP M1 J23a - J25

Junction 25 0

ANGLED WALL GIVING APPEARANCE OF NARROWER PILES IN ELEVATION +06

CNTS104.global.arup.com:PW_ARUP_UK\Documents\SMP M1 J23a - J25\01 Amey A

KEE KLAMP (OR SIMILAR APPROVED) PEDESTRIAN RAIL (WHERE REQUIRED) FOR DETAILS REFER TO SERIES 400 SPECIFICATION AND SCHEDULE

> SHEET PILE WALL - FOR LEVELS AND DETAILS REFER TO SERIES 1600 SPECIFICATION AND SCHEDULE

> > FLOODPLAIN LEVEL 30.95

 ∇

- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 3. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

PROPOSED GROUND PROFILE

EXISTING GROUND PROFILE (LIDAR SUVEY)

EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY)

INDICATIVE EXCAVATION PROFILE

GEOTEXTILE SEPARATOR LAYER

CLASS 6N FILL
SHEET PILE

SETTING OUT POINT

C03 15/05/20 DR MA SV

As Built

ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client

Project Title

SMP M1 J23a - J25

RET. WALL DETAILS						
TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH				
1.51	8.00	2.00				
1.72	8.00	2.00				
1.44	8.00	2.00				
1.08	8.00	2.00				

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

ANGLED WALL GIVING APPEARANCE OF NARROWER PILES IN ELEVATION

1 "" oe """"

ELEVATION LEGEND

As Built

DR

MA

EXISTING HIGHWAY FENCELINE TOPO SURVEY (BEFORE SMP)

KING SHEET PILE LOCATION

SETTING OUT POINT SECTION LINE

15/05/20

ARUP

sv

iii

g

The Galmore Building 20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000

C03

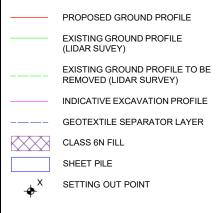
SMP M1 J23a - J25

Junction 25 0

KEE KLAMP (OR SIMILAR APPROVED) PEDESTRIAN RAIL (WHERE REQUIRED) FOR DETAILS REFER TO SERIES 400 SPECIFICATION AND SCHEDULE

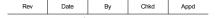
SHEET PILE WALL - FOR LEVELS AND DETAILS REFER TO SERIES 1600 SPECIFICATION AND SCHEDULE

FLOODPLAIN LEVEL


30.963

7. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT. ALL KSP SECTIONS SHALL BE Z. REFER TO

300mm FOR SHALLOWER GRADIENTS.

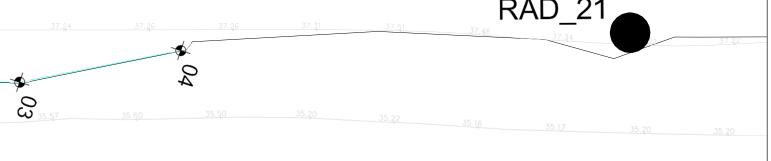

- SERIES 1600 FOR FURTHER DETAILS.
- 9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

C03	15/05/20	DR	MA	SV
A a Duilt				

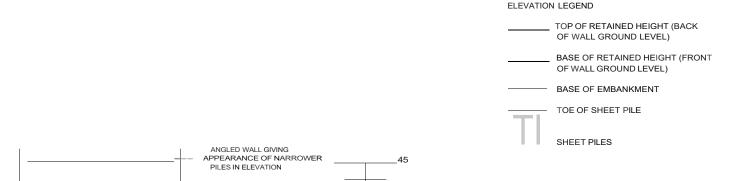
As Built

ARUP


The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Project Title

SMP M1 J23a - J25



RET. WALL DETAILS					
TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH			
1.14	7.00	2.40			
1.47	7.00	2.40			
1.44	7.00	2.40			
1 01	7.00	240			

404

403

- 8. EXCAVATION PROFILES VARY, WORST CASE SCENARIO SHOWN IN SECTION A-A.
- ALL KSP SECTIONS SHALL BEZ. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- 10. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

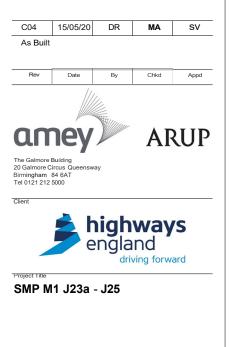
**

§

• 9

2

PLAN LEGEND


EXISTING HIGHWAY FENCELINE

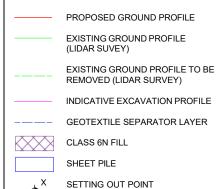
TOPO SURVEY (BEFORE SMP)

KING SHEET PILE LOCATION

SETTING OUT POINT

SECTION LINE

Junction 25


MILAR APPROVED) PEDESTRIAN UIRED) FOR DETAILS REFER TO ICATION AND SCHEDULE

WALL - FOR LEVELS S REFER TO SERIES ICATION AND

> FLOODPLAIN LEVEL 30.991

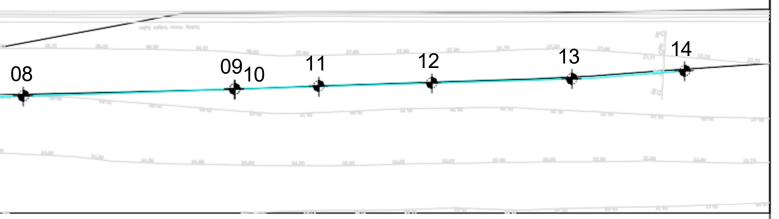
- 300mm FOR SHALLOWER GRADIENTS. 7. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 8. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- 9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

C03	15/05/20	DR	MA	SV
As Built				

ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000



Project Title

SMP M1 J23a - J25

	RET. WALL DETAILS	3			
TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH			
2.23	11.00	4.00			
1.99	11.00	4.00			
1.97	11.00	4.00			
2.38	11.00	4.00			
2.62	11.00	4.00			
3.09	11.00	4.00			
3.25	11.00	4.00			
2.97	11.00	4.00			
2.11	11.00	4.00			
2.11	8.00	3.00			
2.13	8.00	3.00			
2.11	8.00	3.00			
2.14	8.00	3.00			
1.60	8.00	3.00			

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

EXCAVATION PROFILES VARY, WORST CASE SCENARIO SHOWN IN SECTION A-A.

ALL KSP SECTIONS SHALL BE Z. REFER TO

SERIES 1600 FOR FURTHER DETAILS.

THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MÔRE PÁTENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

PLAN LEGEND

IIN I ILIGITI.

EXISTING HIGHWAY FENCELINE

TOPO SURVEY (BEFORE SMP)

KING SHEET PILE LOCATION

SETTING OUT POINT

SECTION LINE

C03 15/05/20 DR MA SV

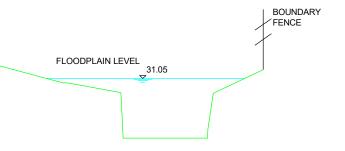
As Built

Rev Chkd Appd

ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Project Title


SMP M1 J23a - J25

Key Plan Junction 25

0910 <u>,</u> 11

13

80

- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 3. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- 9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

PROPOSED GROUND PROFILE

EXISTING GROUND PROFILE (LIDAR SUVEY)

EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY)

INDICATIVE EXCAVATION PROFILE

GEOTEXTILE SEPARATOR LAYER

CLASS 6N FILL

SHEET PILE

X SETTING OUT POINT

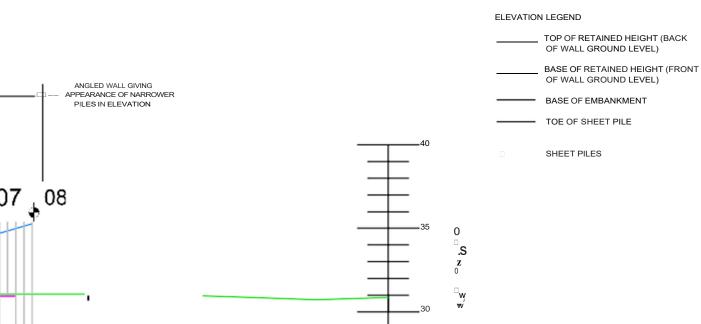
C03	15/05/20	DR	MA	SV
As Built				
Rev	Date	Bv	Chkd	Annd

ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client

Project Title


SMP M1 J23a - J25

Key Plan

Junction 25

	RET. WALL DETAILS			
BASE OF EXCAVATION (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH	
34.65	1.24	7.50	5.00	
34.29	1.58	7.50	5.00	
33.93	1.92	7.50	5.00	
33.57	2.26	7.50	5.00	
33.30	2.33	7.50	5.00	
33.76	1.87	7.50	5.00	
34.21	1.43	7.50	5.00	
34.67	0.97	7.50	5.00	

20.12, MO.12,

8. EXCAVATION PROFILES VARY. WORST CASE SCENARIO SHOWN IN SECTION A-A.

ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.

10. THE KING SHEET PILING (KSP®) SYSTEM IS . I

COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

PLAN LEGEND

IIN I ILIGITI.

EXISTING HIGHWAY FENCELINE

TOPO SURVEY (BEFORE SMP)

KING SHEET PILE LOCATION

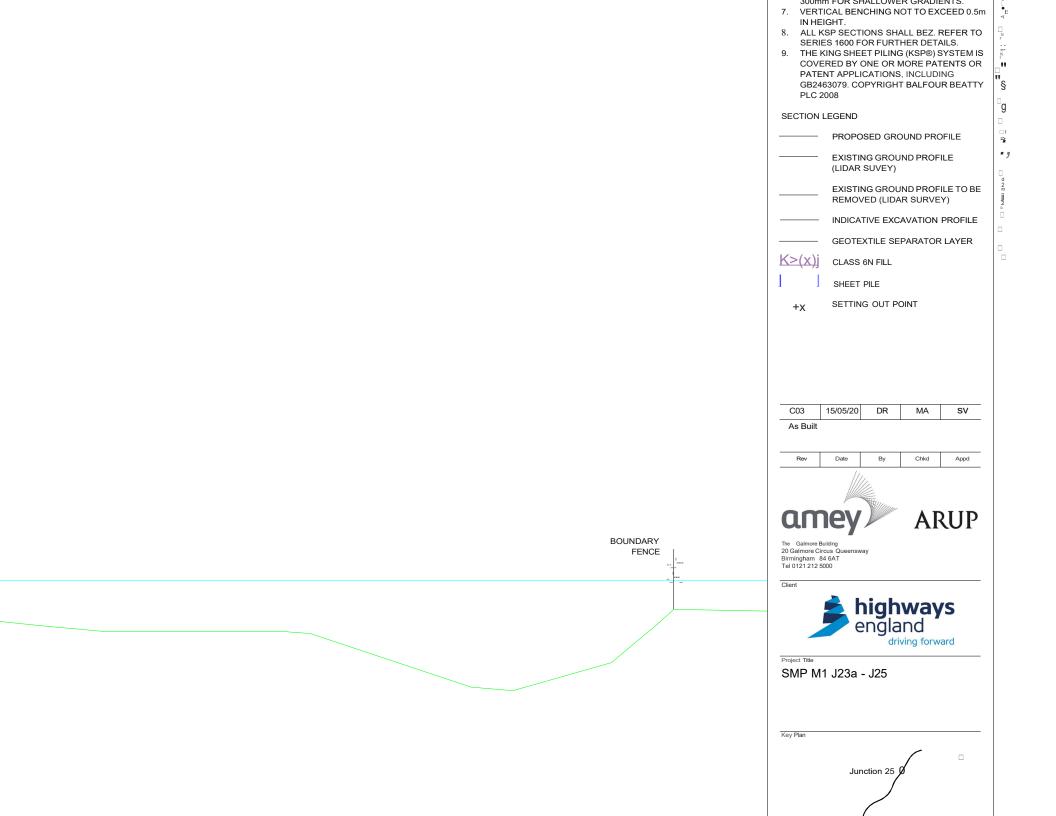
SETTING OUT POINT

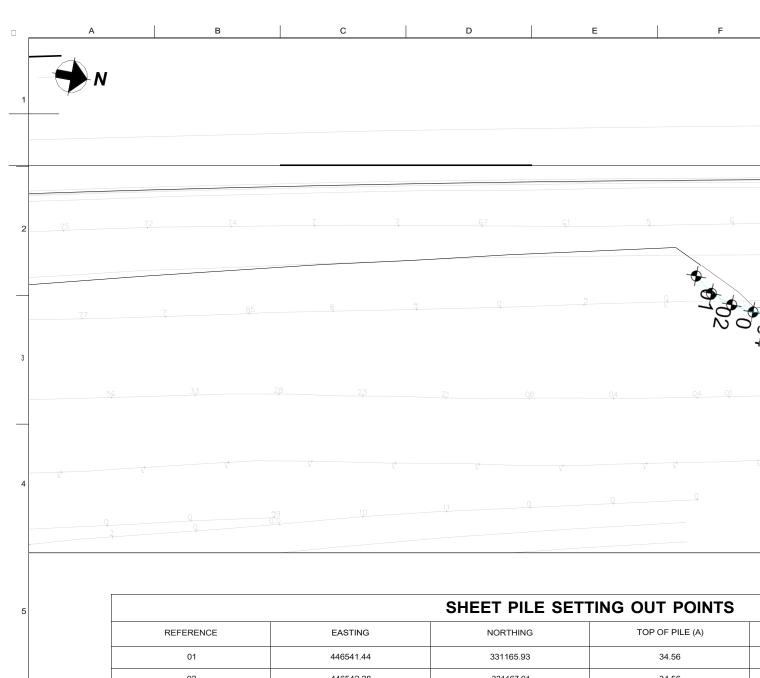
SECTION LINE

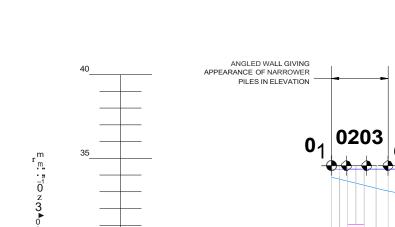
C03	15/05120	DR	MA	SV

As Built

Re,	Date	Ву	Chkd	Appd


ARUP


The Galmore Building 20 Galmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000


SMP M1 J23a - J25

		SHEET PILE SETT	TING OUT POINTS
REFERENCE	EASTING	NORTHING	TOP OF PILE (A)
01	446541.44	331165.93	34.56
02	446542.28	331167.01	34.56
03	446542.72	331168.32	34.56
04	446542.93	331169.72	34.56
05	446540.23	331183.40	34.56
06	446534.36	331187.26	34.56

(OR SIMILAR APPROVED) PEDESTRIAN REQUIRED) FOR DETAILS REFER TO SPECIFICATION AND SCHEDULE

PILE WALL - FOR DETAILS REFER TO SERIES ECIFICATION AND SCHEDULE

> FLOODPLAIN LEVEL 32.20

- 7. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 8. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.

300mm FOR SHALLOWER GRADIENTS.

9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

PROPOSED GROUND PROFILE EXISTING GROUND PROFILE (LIDAR SUVEY) EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY) INDICATIVE EXCAVATION PROFILE GEOTEXTILE SEPARATOR LAYER **CLASS 6N FILL** SHEET PILE SETTING OUT POINT

C03	15/05/20	DR	MA	SV

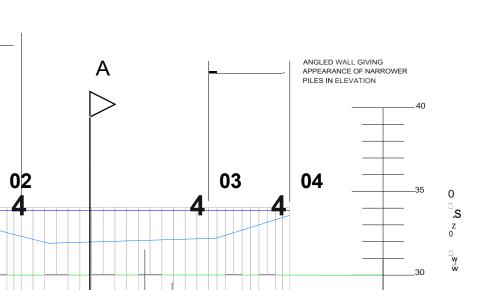
As Built

ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Project Title

SMP M1 J23a - J25



PLC 2008

SECTION LINE

PLAN LEGEND

	RET. WALL DETAILS			
ON (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH	
	0.63	8.00	4.00	
	2.16	8.00	4.00	
	2.41	8.00	4.00	
	0.65	8.00	4.00	

ELEVATION LEGEND

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

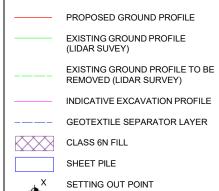
BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

15/05120 DR C04 SV As Built Re, Ву Appd **ARUP** The Galmore Building 20 Galmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000 **highways** england driving forward Project Title SMP M1 J23a - J25

MA


E WALL - FOR LEVELS ILS REFER TO SERIES 1600 ATION AND SCHEDULE

FLOODPLAIN LEVEL

32.20


- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 8. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- 9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

C04	15/05/20	DR	MA	SV	

As Built

ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client

diffiling to

Project Title

SMP M1 J23a - J25

TOPO SURVEY (BEFORE SMP)
KING SHEET PILE LOCATION

SETTING OUT POINT
 SECTION LINE

IN TILIGITI.

C03	15/05120	DR	MA	SV
As Built				
Re,	Date	Ву	Chkd	Appd
Q			Αſ	RUP
	irana Onaanan			

The Galmore Building 20 Galmore Circus Queenswa Birmingham B4 6AT Tel 0121 212 5000

Client

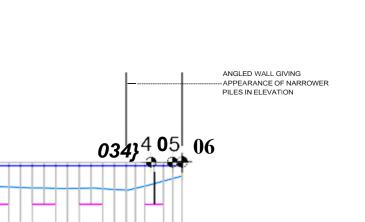
Project Title

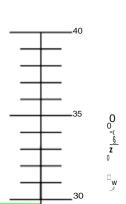
SMP M1 J23a - J25

Key Plan		
		ri
	Junction 25 0	

	RET. WALL DETAILS				
ON (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH		
	1.04	6.50	2.50		
	1.64	6.50	2.50		
	1.76	6.50	2.50		
	1.48	6.50	2.50		
	1.24	6.50	2.50		
	0.96	6.50	2.50		

ELEVATION LEGEND

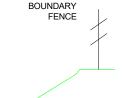

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)


BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

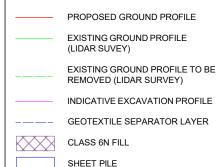
BASE OF EMBANKMENT

TOE OF SHEET PILE

un SHEET PILES



KEE KLAMP (OR SIMILAR APPROVED) PEDESTRIAN RAIL (WHERE REQUIRED) FOR DETAILS REFER TO SERIES 400 SPECIFICATION AND SCHEDULE


- SHEET PILE WALL - FOR LEVELS AND DETAILS REFER TO SERIES 1600 SPECIFICATION AND SCHEDULE

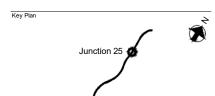
- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- . ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

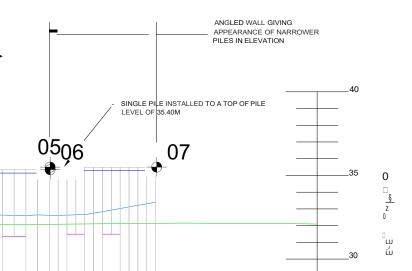
SETTING OUT POINT

C03	15/05/20	DR	MA	SV
As Built				<u>.</u>

ARUP


The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client



Project Title

SMP M1 J23a - J25

	RET. WALL DETAILS			
DN (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH	
	1.66	9.00	4.00	
	1.43	9.00	4.00	
	2.34	9.00	4.00	
	2.50	9.00	4.00	
	2.96	9.00	4.00	
	3.11	9.00	4.00	
	2.34	9.00	4.00	

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

15/05120 C03 DR SV

As Built

IN HEIGHT.

PLC 2008 PLAN LEGEND

PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY

> SETTING OUT POINT SECTION LINE

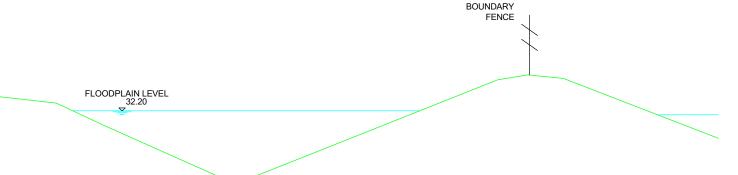
EXISTING HIGHWAY FENCELINE TOPO SURVEY (BEFORE SMP) KING SHEET PILE LOCATION

Re, Chkd Date Ву Appd

ARUP

The Galmore Building 20 Galmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Junction 25 (


Project Title

SMP M1 J23a - J25

MILAR APPROVED) PEDESTRIAN JIRED) FOR DETAILS REFER TO ICATION AND SCHEDULE

PILE WALL - FOR DETAILS REFER TO SERIES ECIFICATION AND SCHEDULE

- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 8. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- 9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

PROPOSED GROUND PROFILE

EXISTING GROUND PROFILE
(LIDAR SUVEY)

EXISTING GROUND PROFILE TO BE
REMOVED (LIDAR SURVEY)

INDICATIVE EXCAVATION PROFILE

GEOTEXTILE SEPARATOR LAYER

CLASS 6N FILL

SHEET PILE

SETTING OUT POINT

C03 15/05/20 DR MA SV	
-----------------------	--

As Built

Rev Date By Chkd Appd

ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client

Project Title

SMP M1 J23a - J25

6,	87			
	RET. WALL DETAILS	<u> </u>		
TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE PILE LENGTH	-	
1.80	8.00	3.00		- 1
1.82	8.00	3.00		- 1
1.82	8.00	3.00		
1.77	8.00	3.00		•
1.77	8.00	3.00	-	
1.90	8.00	3.00	-	
1.90	8.00	3.00	-	
1.74	8.00	3.00	ELEVATION LEGEND	
1.74	8.00	3.00	TOP OF RET	AINED H
1.73	8.00	3.00	OF WALL GF	
1.73	8.00	3.00	BASE OF RETO	
1.74	8.00	3.00	BASE OF EM	IBANKM
1.69	13.00		TOE OF SHE	ET PILE
2.10	13.00		- SHEET PILES	S
2.10	13.00		_	
3.49	13.00		-	
3.49	13.00			
3.98	13.00			
3.98	13.00		-	
2.52	13.00		-	
2.52	11.00	4.50	-	
2.29	11.00	4.50	-	
2.29	11.00	4.50		
2.10	11.00	4.50		
2.10	11.00	4.50		, in
			_	to drawing

ANGLED WALL GIVING

APPEARANCE OF NARROWER PILES IN ELEVATION

192300-192360 - CONTINUOUS SHEET PILE WALL

SECTION LINE 15/05120 DR C05 As Built Ву The Galmore Building 20 Galmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

SETTING OUT POINT

PLC 2008

PLAN LEGEND

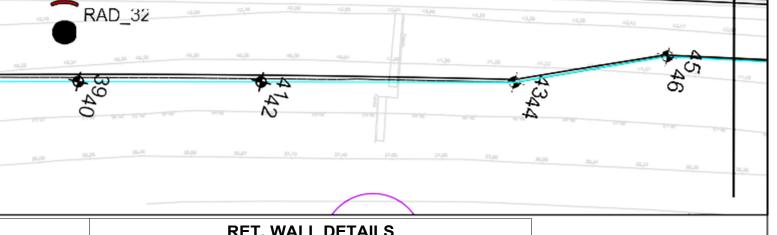
Key Plan

Project Title

SMP M1 J23a - J25

Junction 25 0

SV


Appd

ARUP

MA

highways england

driving forward

	REI. WALL DETAILS					
(CAVATION (C)	TOTAL RETAINED HEIGHT	TOTAL SHEET PILE LENGTH	TOTAL INTERMEDIATE PILE LENGTH			
88.86	2.49	11.00	4.50			
38.86	2.49	8.00	4.50			
39.25	2.29	8.00	4.50			
39.25	2.29	8.00	4.50			
39.63	2.39	8.00	4.50			
9.63	2.39	11.00	4.50			
39.82	2.00	11.00	4.50			
9.90	205	11.00	4.50			
9.90	2.05	11.00	4.50			
9.03	3.12	11.00	4.50			
39.03	3.12	11.00	4.50			
10.31	2.17	11.00	4.50			
0.31	2.17	13.00				
9.32	3.46	13.00	-			
9.32	3.46	13.00	-			
9.01	4.04	13.00	-			
9.01	4.04	13.00	-			
9.89	3.46	13.00	-			
9.89	3.46	13.00	-			
0.67	2.85	13.00	-			
0.67	2.85	11.00	4.50			

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

C04

IN HEIGHT. **EXCAVATION PROFILES VARY, WORST**

CASE SCENARIO SHOWN IN SECTION A-A. ALL KSP SECTIONS SHALL BE Z. REFER TO

SERIES 1600 FOR FURTHER DETAILS.

THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

PLAN LEGEND

EXISTING HIGHWAY FENCELINE

TOPO SURVEY (BEFORE SMP)

KING SHEET PILE LOCATION

SETTING OUT POINT

SECTION LINE

15/05120

As Built		1		
Re,	Date	Ву	Chkd	Appd
an	ney		ΑĪ	RUP

DR

The Galmore Building 20 Galmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

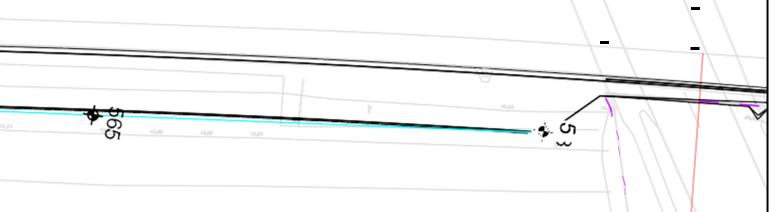
highways england

driving forward

ri

For pontruation refer to drawing HAMGA22-AMAR-HOT-SWI-DR-DE-001155

SMP M1 J23a - J25


Junction 25 0

4142 3940

192200-192380 - CONTINUOUS SPEET PILE WHEE

4344

4546

	RET. WALL DETAILS				
ON (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE PILE LENGTH		
	2	12.00	3.50		
	2	12.00	3.50		
	1.69	12.00	3.50		
	1.69	12.00	3.50		
	1.89	12.00	3.50		
	2.42	12.00	3.50		
	2.42	12.00	3.50		
	2.07	12.00	3.50		
	2.07	12.00	3.50		
	2 01	12.00	3.50		
	2.01	12.00	3.50		
	2.42	12.00	3.50		

_____ TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

- EXCAVATION PROFILES VARY, WORST CASE SCENARIO SHOWN IN SECTION A-A.
- 9. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- 10. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

PLAN LEGEND

EXISTING HIGHWAY FENCELINE

TOPO SURVEY (BEFORE SMP)

KING SHEET PILE LOCATION

SETTING OUT POINT

SECTION LINE

C04	15/05120	DR	MA	SV

As Built

amey

ARUP

Appd

The Galmore Building 20 Galmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client

roject Title

SMP M1 J23a - J25

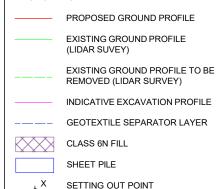
Key Plan

Junction 25 0

ri

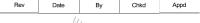
56₅7

58


#

 KEE KLAMP (OR SIMILAR APPROVED) PEDESTRIAN RAIL (WHERE REQUIRED) FOR DETAILS REFER TO SERIES 400 SPECIFICATION AND SCHEDULE

> - SHEET PILE WALL - FOR LEVELS AND DETAILS REFER TO SERIES 1600 SPECIFICATION AND SCHEDULE


- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 8. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

C04	15/05/20	DR	MA	SV
As Built				

, 10 Danie

ARUP

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client

.....

Project Tit

SMP M1 J23a - J25

	RET. WALL DETAILS		
ASE OF EXCAVATION (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH
43.17	2.39	12.50	4.40
42.40	3.05	12.50	4.40
42.40	305	12.50	4.40
43.29	2.02	12.50	4.40
43.43	1.81	12.50	4.40
43.43	1.81	8.50	3.50
44.38	0.64	8.50	3.50

_____ TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GROUND LEVEL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

0 0 45 E z PLAN LEGEND

PLC 2008

EXISTING HIGHWAY FENCELINE

EXCAVATION PROFILES VARY. WORST CASE SCENARIO SHOWN IN SECTION A-A. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING 6B2463079 COPYRIGHT BALFOUR BEATTY

TOPO SURVEY (BEFORE SMP)

KING SHEET PILE LOCATION

SETTING OUT POINT

C05	15/05120	DR	MA	SV

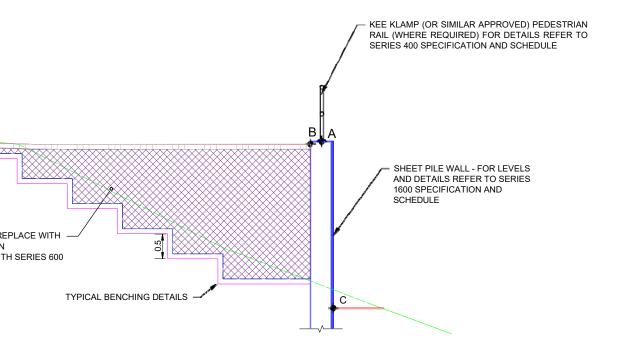
As Built

Re,	Date	Ву	Chkd	Appd

ARUP

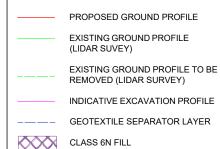
The Galmore Building 20 Galmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client


Project Title

SMP M1 J23a - J25

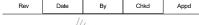
Key Plan



rī

- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- L ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- 9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND



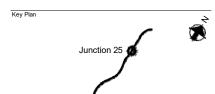
SHEET PILE

SETTING OUT POINT

CU3	15/05/20	DΡ	MA	C)/	_

As Built

ARUP


The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client

Project Title

SMP M1 J23a - J25

KING SHEET PILE LOCATION

GABIONWALL

SECTION LINE

SETTING OUT POINT

DR

Ву

MA

SV

Appd

's:"

ARUP

IN HEIGHT.

SECTIONS.

PLAN LEGEND

Γ
7

RET. WALL DETAILS				
ETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	TOTAL INTERMEDIATE SHEET PILE LENGTH		
0.75	5.00	2.00		
0.77	5.00	2.00		
0.77	5.00	2.00		
1.09	5.00	2.00		

OF WALL GROUND LEVEL) TOP OF CUTTING TOE OF SHEET PILE SHEET PILES FOR GABION WALL SETTING OUT DETAILS. REFER TO DRAWINGS GABION WALL HA549342-AMAR-HOT-SWI-DR-CE-000614 & GRANULAR FILL [SERIES 600] HA549342-AMAR-HGT-SWI-DR-CE-000615 SPECIFICATION]

ELEVATION LEGEND

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT

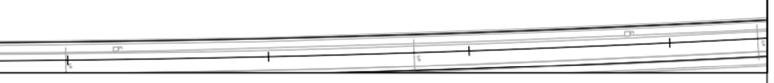
C04

As Built

Re,

15/05120

Date



Key Plan

Junction 25 0

The Galmore Building 20 Galmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000 SMP M1 J23a - J25

<u>A1</u> 8

		RET. WALL DETAILS		
(B)	BASE OF EXCAVATION (C)	TOTAL RETAINED HEIGHT	TOTAL KING SHEET PILE LENGTH	
	33.51	0.35	6.00	
	33.54	0.40	6.00	
	33.54	0.40	6.00	
	33.58	0.64	6.00	
	33.58	0.64	6.00	
	33.62	0.80	6.00	
	33.62	0.80	6.00	
	33.66	0.97	6.00	
	33.66	0.97	6.00	
	33.69	1 08	6.00	
	33.69	1.08	6.00	
	33.73	1.17	6.00	
	33.73	1.17	6.00	
	33.77	1.25	6.00	
	33.77	1.25	6.00	
	33.81	1.25	6.00	
	33.87	1.57	6.00	
	33.88	1.67	6.00	
	33.89	1.45	6.00	
	33.89	1.45	6.00	
	33.89	1.23	6.00	
	33.89	1.23	6.00	
	3389	098	600	
	33.90	0.97	6.00	
	33.90	0.71	6.00	
	33.90	0.71	6.00	
	33.90	0.50	6.00	
	33.90	0.50	6.00	
	33.91	0.27	6.00	
	33.91	0.27	6.00	
	33.91	0.06	6.00	

TOP OF RETAINED HEIGHT (BACK OF WALL GROUND LEVEL)

BASE OF RETAINED HEIGHT (FRONT OF WALL GL)

BASE OF EMBANKMENT

TOE OF SHEET PILE

SHEET PILES

- EXCAVATION PROFILES VARY, WORST CASE SCENARIO SHOWN IN SECTION A-A.
- 9. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

PLAN LEGEND

EXISTING HIGHWAY FENCELINE
TOPO SURVEY (BEFORE SMP)
KING SHEET PILE LOCATION
SETTING OUT POINTS
SECTION LINE

02	15/05/20	DR	MA	sv
s Built				

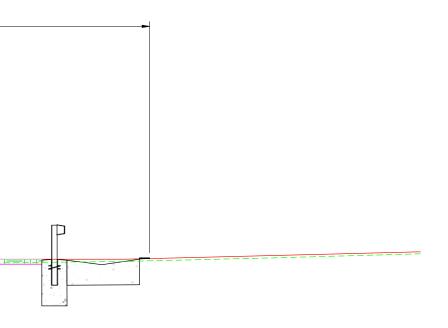
Re, Date By Chkd Appd

ARUP

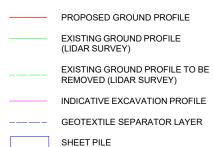
The Galmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Client

Project Title


SMP M1 J23a - J25

Key Plan


ti

ANGLED WALL GIVING APPEARANCE OF NARROWER PILES IN ELEVATION

- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- 3. ALL KSP SECTIONS SHALL BE Z. REFER TO SERIES 1600 FOR FURTHER DETAILS.
- 9. THE KING SHEET PILING (KSP®) SYSTEM IS COVERED BY ONE OR MORE PATENTS OR PATENT APPLICATIONS, INCLUDING GB2463079. COPYRIGHT BALFOUR BEATTY PLC 2008

SECTION LEGEND

SETTING OUT POINT

C02 15/05/20	DR	MA	SV
--------------	----	----	----

As Built

The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

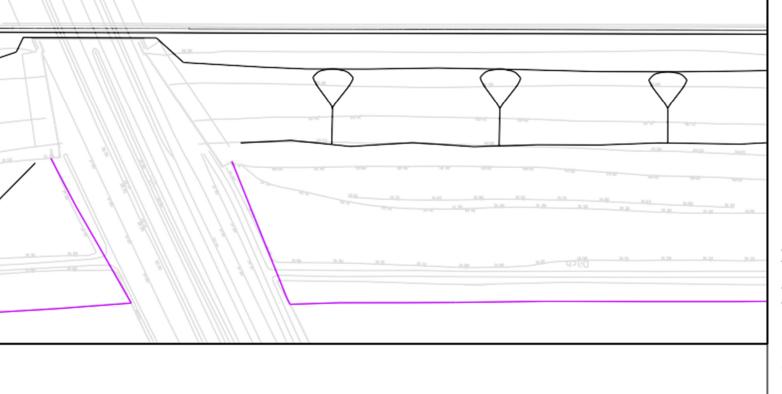
Client

Project Title

SMP M1 J23a - J25

Key Plan

Junction 25



ARUP

IN DEIGHT.

EXCAVATION PROFILES WILL VARY, WORST

VERTICAL BENCHING NOT TO EXCEED 0.5m

- VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT.
- EXCAVATION PROFILES WILL VARY. WORST
 CASE SCENARIOS INDICATED IN SECTION
 A-A
- FOR TYPICAL DETAILS OF EARTHWORK SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-000601.

PLAN LEGEND

SECTION LINE

HIGHWAYS ENGLAND BOUNDARY

TOPO SURVEY (BEFORE SMP)

% . 2i [ii

SECTION LEGEND

PROPOSED GROUND PROFILE EXISTING GROUND PROFILE (LIDAR SURVEY)

EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY) INDICATIVE EXCAVATION PROFILE

GEOTEXTILE SEPARATOR LAYER

fu-1||ii| TOPSOIL

GRANULAR FILL [REFER TO SERIES 600 SPECIFICATION]

CO2 21/05/20 DR MA SV

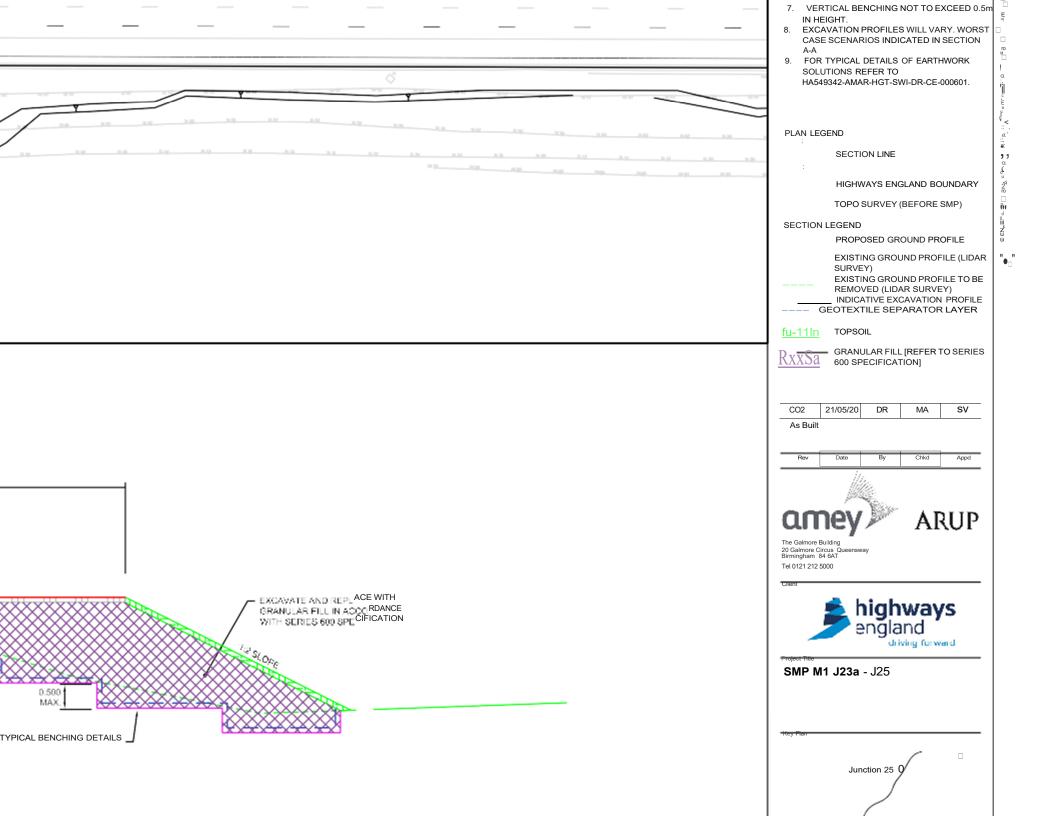
As Built

Rev Date By Chkd Appd

ARUP

The Galmore Building 20 Galmore Circus Queensway Birmingham 84 6AT Tel 0121 212 5000

Client


Project Title

SMP M1 J23a - J25

Key Plan

Junction 25


EXCAVATE AND REPLACE WITH TAY
GRANULAR FILL IN ACCORDANCE
WITH SERIES 600 SPECIFICATION

!\\MCCNTSI04.global.arup.com:PW_ARUP_UK\Documents\SMP M1 J23a - J25\01 Amey Ar

IN DEIGHT.

SHALLOWER GRADIEN 15.

- EXCAVATION PROFILES WILL VARY, WORST CASE SCENARIOS INDICATED IN SECTION
- FOR TYPICAL DETAILS OF SHEET PILE RETAINING SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-001601.

PLAN LEGEND

IN DEIGHT.

SECTION LINE HIGHWAYS ENGLAND BOUNDARY SHEET PILE TOPO SURVEY (BEFORE SMP)

SECTION LEGEND

PROPOSED GROUND PROFILE EXISTING GROUND PROFILE (LIDAR SURVEY) EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY) INDICATIVE EXCAVATION PROFILE GEOTEXTILE SEPARATOR LAYER

GRANULAR FILL [REFER TO SERIES 600 SPECIFICATION

SHEET PILE

C02 21/05/20 DR MA SV

As Built

Rev Chkd Appd

ARUP

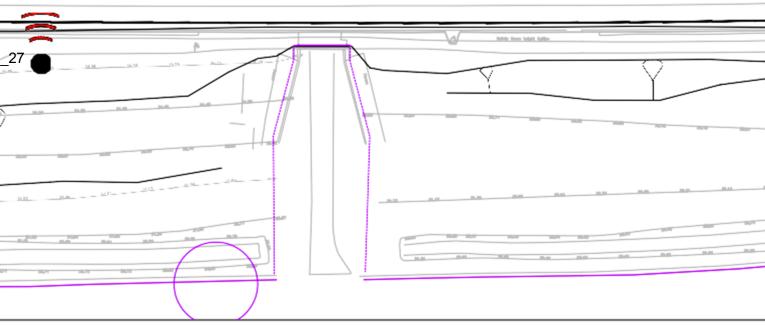
The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000

Project Title

SMP M1 J23a - J25

Key Plan

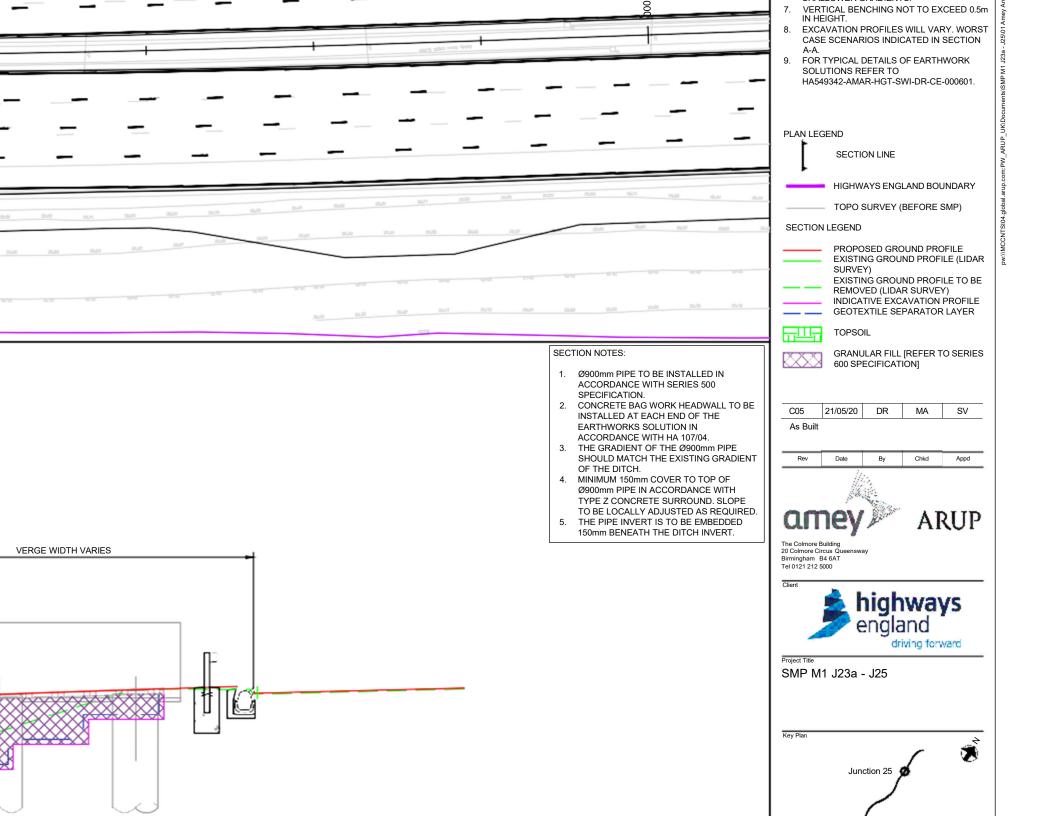
BOUNDARY FENCE



IN DEIGHT.

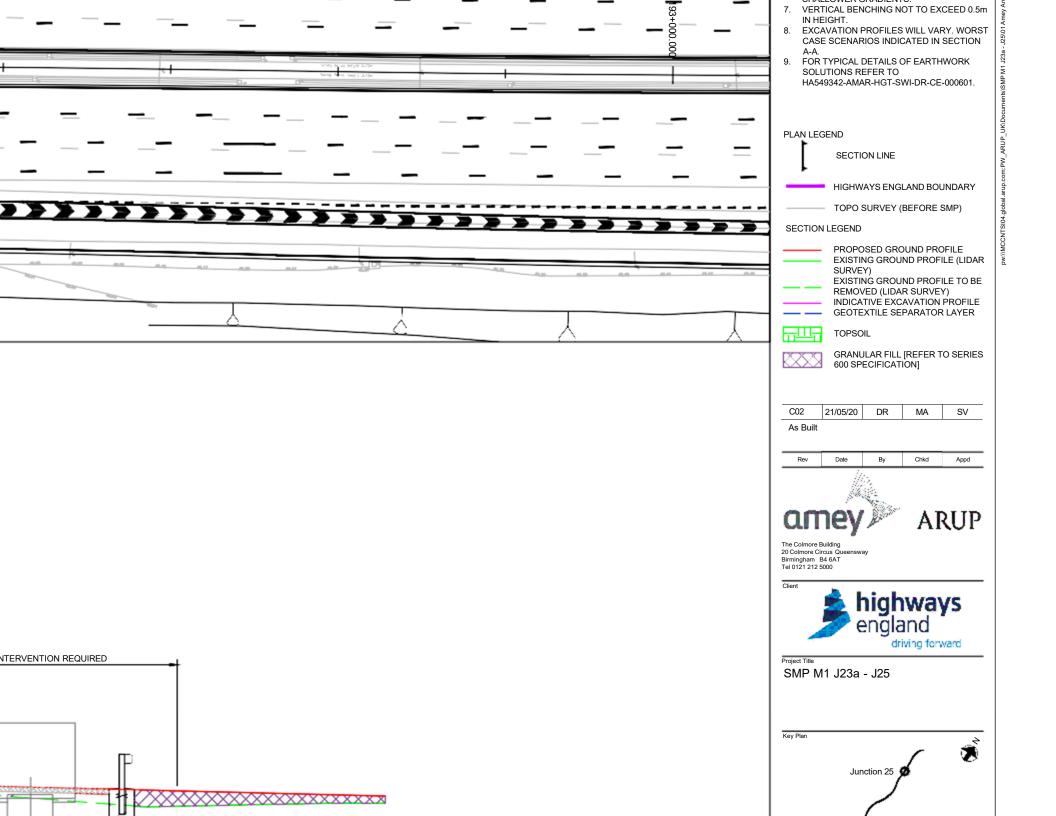
SHEET PILE WALL - FOR LEVELS AND DETAILS REFER TO SERIES 1600 SPECIFICATION AND SCHEDULE

FLOODPLAIN LEVEL


[8]

TE AND REPLACE RANULAR FILL IN CE WITH SERIES SPECIFICATION

7. VERTICAL BENCHING NOT TO EXCEED 0.5m IN HEIGHT. **EXCAVATION PROFILES WILL VARY. WORST** CASE SCENARIOS INDICATED IN SECTION FOR TYPICAL DETAILS OF EARTHWORK SOLUTIONS REFER TO HA549342-AMAR-HGT-SWI-DR-CE-000601. PLAN LEGEND SECTION LINE HIGHWAYS ENGLAND BOUNDARY TOPO SURVEY (BEFORE SMP) SECTION LEGEND PROPOSED GROUND PROFILE EXISTING GROUND PROFILE (LIDAR SURVEY) EXISTING GROUND PROFILE TO BE REMOVED (LIDAR SURVEY) INDICATIVE EXCAVATION PROFILE GEOTEXTILE SEPARATOR LAYER TOPSOIL GRANULAR FILL [REFER TO SERIES 600 SPECIFICATION] 21/05/20 C02 DR SV As Built Rev Chkd Appd ARUP The Colmore Building 20 Colmore Circus Queensway Birmingham B4 6AT Tel 0121 212 5000 **highways** england driving forward Project Title SMP M1 J23a - J25 Key Plan Junction 25


IN DEIGHT.

FENCE

IN DEIGHT.

bai.arup.com: PW_ARUP_URIDocuments\SMIP M1 J23a - J25\01 Amey Aru

IN DEIGHT.

Appendix D Imported Material Test Results and Acceptance Certificates

- D.1 6N Testing Results
- D.2 Topsoil Tests
- D.3 Sheet Piling Mill Certifies
- D.4 Gabion Wall Material
- D.5 Concrete Mix Design for Bored Piles
- **D.6 Pre-cast Concrete Blocks**
- D.7 Deckdrain

D.2 - Summary of Topsoil - Imported Material

Laboratory Reference No	Contract Sample No	Date Sampled	Material Description	Material Source	Location - Grid Ref	Location - Link Ref	Location - Layer
CIV/41963	C4135/899	43049	Topoil	Ex Site	NB, CH190930	Link 4B	6N Emtankment
CIV/29096	C4135/4	42853	Topsoil	M1 Southtound	SOUTH 184336		
CIV/29100	C4135/8	42853	Topsoil	Not Stated	SOUTH 182400		
CIV/29102	C4135/10	42853	Topsoil	Not Stated	SOUTH 183406		
CIV/32996	C4135/181	42935	Topsoil	Ex Site	SB	Link 2	Stockpile
CIV/32997	C4135/182	42935	Topsoil	Ex Site	NB, CH183180	Link 2	
CIV/33385	C4135/196	42944	TOPsoil	Ex Site	SB, CH183380	Link 2	
CIV/33390	C4135/201	42944	Topsoil	Ex Site	NB CH183320	Link 2	
CIV/33891	C4135/224	42951	Topsoil	Ex Site	SB, CH184350	Link 2	Re-Graded Emtankment
CIV/33892	C4135/225	42951	Topsoil	Ex Site	SB, CH183400	Link 2	
CIV/34205	C4135/240	42958	Topsoil	Ex Site	NB CH184250	Link 2	Re-Graded Emtankment
CIV/34206	C4135/241	42958	Topsoil	Ex Site	NB CH184250	Link 2	Re-Graded Emtankment
CIV/34391	C4135/249	42963	Topsoil	Ex-Site	NB, CH187150	Link 4A	Stockpile (Site Arisings
CIV/34396	C4135/254	42963	Topsoil	Ex-Site	NB, CH187570	Link 4A	Stockpile (Site Arisings
CIV/34575	C4135/264	42965	Topsoil	Ex-Site	SB, CH184070	Link 2	Re-Graded Emtankment
CIV/34576	C4135/265	42965	Topsoil	Ex-Site	SB, CH184130	Link 2	Re-Graded Emtankment
CIV/34581	C4135/270	42965	Topsoil	Ex-Site	SB, CH187060	Link 4 A	Stockpile (Site Arisings
CIV/34981	C4135/314	42972	Topsoil	Ex-Site	SB, CH186370	Link 3	Emtankment
CIV/34982	C4135/315	42972	Topsoil	Ex-Site	NB, CH184450	Link 3	Regraded Emtankment
CIV/35329	C4135/350	42979	Topsoil	Ex Site	SB, CH185950	Link 3	6N Emtankment
CIV/35903	C4135/388	42986	Topsoil	Ex Site	NB, CH187820	Link 4A	6N Emtankment
CIV/35904	C4135/389	42986	Topsoil	Ex Site	SB, CH186100	Link 3	6N Emtankment
CIV/36305	C4135/427	42992	Topsoil	Ex Site	NB, CH186680	Link 3	6N Emtankment
CIV/36306	C4135/428	42992	Topsoil	Ex Site	SB, CH182600	Link 2	Emtankment Regrade
CIV/36903	C4135/476	43000	Topsoil	Ex Site	SB, CH182350	Link 2	Ematankment Regrade
CIV/36904	C4135/477	43000	Topsoil	Ex Site	NB, CH187550	Link 4A	6N Emtankment
CIV/38283	C4135/560	43014	Topsoil	Ex Site	SB, CH187240	Link 4A	6N Emtankment
CIV/39000	C4135/567	43014	Topsoil	Ex Site	NB, CH187700	Link 4A	6N Emtankment
CIV/39435	C4135/593	43020	Topsoil	Ex Site	NB, CH187370	Link 4A	6N Emtankment
CIV/39460	C4135/618	43020	Topsoil	Ex Site	SB, CH186130	Link 3	6N Emtankment
CIV/39720	C4135/638	43026	Topsoil	Ex Site	NB, CH191200	Link 4B	
CIV/39967	C4135/649	43028	Topsoil	Ex Site	NB, CH188050	Link 4A	6N Emtankment
CIV/39977	C4135/659	43028	Topsoil	Ex Site	SB, CH187500	Link 4A	6N Emtankment
CIV/40264	C4135/665	43032	Topsoil	Ex Site	SB, CH191450	Link 4B	Stockpile
CIV/40463	C4135/715	43034	Topsoil	Ex-Site	NB, CH185880	Link 3	6N Emtankment
CIV/40464	C4135/716	43034	Topsoil	Ex-Site	SB, CH185550	Link 3	Emtankment Regrade
CIV/41453	C4135/827	43042	Topsoil	Not Stated	Not Stated	Not Stated	Not Stated
CIV/41454	C4135/828	43042	Topsoil	Not Stated	Not Stated	Not Stated	Not Stated
CIV/43008	C4135/967	43055	Topsoil	Ex Site	NB, CH190500	Link 4B	6N Emtankment
CIV/43009	C4135/968	43055	Topsoil	Ex Site	SB, CH183000	Link 2	6N Emtankment
CIV/43242	C4135/1000	43062	Topsoil	Ex Site	NB, CH192300	Link 4B	6N Emtankment
CIV/43251	C4135/1009	43062	Topsoil	Ex Site	SB, CH191050	Link 4B	6N Emtankment
CIV/43591	C4135/1020	43067	Topsoil	Ex Site	NB, CH192100	Link 4B	6N Emtankment
CIV/43604	C4135/1033	43067	Topsoil	Ex Site	SB, CH190920	Link 4B	6N Emtankment
CIV/44720	C4135/1071	43084	Topsoil	Ex Site	NB, CH191580	Link 4B	Emtankment Regrade
CIV/44721	C4135/1072	43084	Topsoil	Ex Site	SB, CH191580	Link 4B	Emtankment Regrade
CIV/37097	C4135/488	43006	Topsoil	Ex Site	NB, CH182950	Link 2	Ematankment Regrade
CIV/37098	C4135/489	43006	Topsoil	Ex Site	SB, CH182600	Link 2	Ematankment Regrade
CIV/41892	C4135/913	43049	Topsoil	Ex Site	SB, CH18350	Link 3	6N Emtankment
CIV/29105	C4135/13	42853	Topsoil + Root Material	Not Stated	NB 184303		
CIV/29108	C4135/16	42853	Topsoil + Root Material	Not Stated	183703		
CIV/29107	C4135/15	42853	Topsoil + Root material + Occ Clay	Not Stated	183152		
CIV/29110	C4135/18	42853	Topsoil Occ Stones Root Material Occ Clay	Not Stated	183987		
CIV/29106	C4135/14	42853	Topsoil Stones + Root Material	Not Stated	NB 182813		

NO.555, ZIZHU ROAD, TENGAO TOWN

Sales Agent

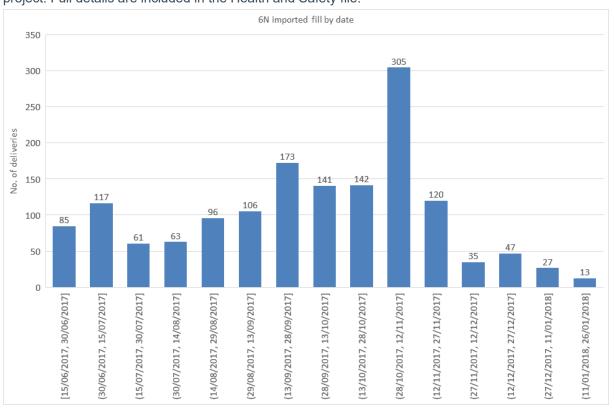
TEL:+86-412-8311011

FAX:+86-412-8311011

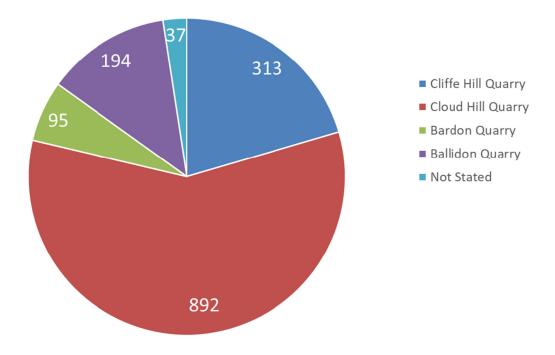
FAX: +00-412-031101

Quality Certificate of Product

Consignee	SHEET PILING (UK) LTD	Conrnodity	HOT ROLLED STEEL SHEET PILE	Q.T.No.	ASZZ-SPUK- 16001/1	ANSHAN ZIZHU INTERNATIONAL TRADING CO., LTD
Dimension Standard	EN10248-2	Chem. & Mech. Standard	EN10248-1	Weight method	Theoretical	Production Date 2016.9.20

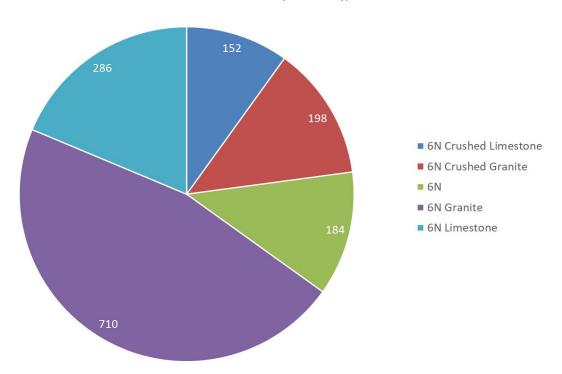

		Inspection co	ertifica	te 3.1	accordin	g to EN 10	204:2004				(Chemi	cal	Comp	osit	ion	(%)					echanica roperties	_		Impact	Test (J)
	Size	Heat No.	Steel Grade	Length (m)	Quantity (Pcs)	Weight (MT)	Surfcce Oual ity	Surface Dimension	G	Si x10-2	Mn m	p	S	Cu	Cr x10-	Ni 3	Мо	V	11	Ceq /CEV	Rel (Mpa)	Rm (Mpa)	A (%)		estTemp (" menfion (1	/	- - Average
2	ZZ18-700	16112054579	S355G	P 8	154	94.494	ok	ok	24	22	125	17	9	15	79	21	14	7	0.42	-	375	580	26	-	-	-	-
2	ZZ18-700	16112054577	S355G	P 8	151	92.654	ok	ok	25	27	131	20	3	21	83	24	18	3	0.4i	-	382	594	26.5	-	-	-	-
2	ZZ18-700	16112054346	S355G	P 8	135	82.836	ok	ok	24	25	129	16	13	13	60	18	21	5	0.3	-	379	588	26.5	-	-	-	-
2	ZZ18-700	16112054603	S355G	P 9	130	89.739	ok	ok	24	22	125	17	9	15	79	21	14	7	0.40	-	374	573	24.5	-	-	-	-
2	ZZ18-700	16112054614	S355G	P 9	122	84.217	ok	ok	25	27	131	20	3	21	83	24	18	3	0 . 4i	-	381	575	25.5	-	-	-	-
2	ZZ18-700	16112054607	S355G	P 9	125	86.288	ok	ok	24	25	129	16	13	13	70	18	21	5	0.3□	-	386	575	25	-	-	-	-
2	ZZ18-700	16112054601	S355G	P 9	143	98.713	ok	ok	23	21	137	23	7	22	74	17	19	4	0.3E	-	377	581	25	-	-	-	-
7	ZZ18-700 ZZ18-700	16112054591 16112054594	\$355GI \$355GI	10	122 133	93.574 102.011	ok ok	ok ok	23 24	29 21	131 127	22 19	11	15 21	79 83	22 24	14 18	11 3	8:41	-	377 382	588 579	2 ²⁶ .5	Ξ	Ξ	_	=
2	ZZ18-700	16112054597	S355GP	10	124	95.108	ok	ok	24	25	121	16	13	13	82	19	21	6	0.30	-	379	586	25.5	-	-	-	-
2	ZZ18-700	16112054596	S355GP	10	131	100.477	ok	ok	24	23	126	21	7	22	74	17	22	4	0.4□	- 🔳	375	592	25	-	-	-	-
		TOTAL			1470	1020.110			•												<i>l:</i> ;]		·				
	(TOTAL 1470 1020.110 Quality Manager Mr.Gao Yu] 1;-				Y □,	,,					

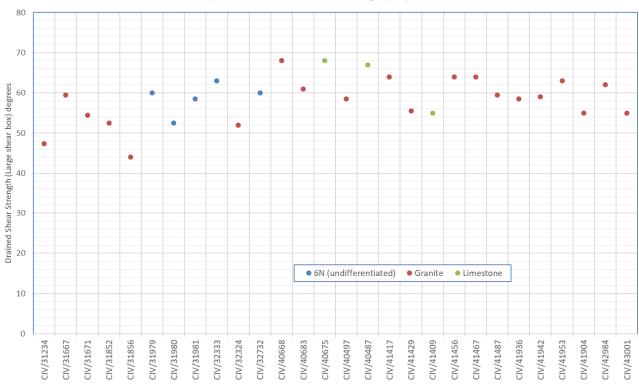
WE HEREBY CERTIFY THAT THE MATERIAL DESCRIBED HEREIN HAS BEEN MANUFACTUREED AND TESTED WITH SATISF TRVTr&IMAOAtiYE WITH THE REQUIRMENTS OF THE



D1 Imported Fill Class 6N

The following charts summarise the delivery consignments of 6N from local quarries during the project. Full details are included in the Health and Safety file.


Deliveries of 6N material by source



Deliveries of 6N material by material type

Imported 6N material shear strength properties

Quality Certificate of Product

NO.555, ZIZHU ROAD, TENGAO TOWN

TEL:+86-412-8311011 FAX:+86-412-8311011

Sales Agent

Consignee	NEWCO 5148 LIMITED	Coomodity	HOT rolled steel sheet pile	Q.T. No.	ASZZ-SPUK- 16001/1	ANSHAN ZIZHU INTERNAT	TIONAL TRADING CO., LTD
Dimension Standard	EN10248-2	Chem. & Mech. Standard	EN10248-1	Weight method	Theoretical	Production Date	2016.9.20

	Inspection c	ertifica	ate 3.1	according	g to EN 10	204:2004					Chemi	.cal	Com	posit	ion	(%)					echanical coperties			Impact	Test (J	1)
Size	Heat No.	Steel		Quantity	Weight	Surfcce	Surface	С	l Si	I Mn	p	S	l Cu	I Cr	l Ni	I мо	ΙV	N I	Ceq /CEV	Rel	Rm	А		estTemp (' nenf ion (r	,	
3223	riode rio.	Grade	(m)	(Pcs)	(MT)	Qual ity	Dimension		x10-2	2			_	x10-	3		•	X.	10-2	(Mpa)	(Mpa)	(응)	1	2	: 3	Average
2218-700 l	16112054579 l	S355GP	8	154	94.494	ok	ok	24	22	125 l	11 l	9 l	15 l	79 l	21 l	14 l	7 1	0. 421	-	375	580	012	ô•-			
2218-700 l	16112054577 l	S355GP	8	151	92.654	ok	ok	25	27 l	131	20	3 l	21 l	83 l	24 l	18 l	3 10	. 47 <i>′</i>	-	382	594	26. 5,	-			
2218-700 l	16112054346 l	S355GP	8	135	82.836	ok	ok	24	25 l	129 l	16 l	13	13 l	60 l	18 l	21 l	5 10	. 39 ⁻	-	379	588	l 26.5,	ı			
2218-700 l	16112054603 l	S355GP	9	130	89. 739	ok	ok	24	22	125	17	9 l	15 l	79 l	21 l	14 l	7 10	. 42 ²	-	374	573	24. 5,	-			
2218-700 l	16112054614 l	S355GP	9	122	84.217	ok	ok	25	27	131	20	3 l	21 l	83 l	24 l	18 l	3 l c	. 47 ²	-	381	575	25. 5,	-			
2218-700 l	16112054607 l	S355GP	9	125	86.288	ok	ok	24	25 l	129	16 l	13	l 13 l	10 l	18 l	21 l	5 10	3. 39	-	386	575	25				
2218-700 l	16112054601 l	S355GP	9	143	98. 713	ok	ok	23	21	137	23	7	22 l	74 l	11 l	19 l	4 10	38´	-	377	581	25				
2218-700 l	16112054591 l	S355GP	10	122	93.574	ok	ok	23	29 l	131 l	22 l	11 l	15 l	79 l	22 l	14 l	11 10	0. 41 ²	-	377	588	26				
2218-700 l	16112054594 l	S355GP	10	133	102. 011	ok	ok	24	21	1211	19 l	3 l	21 l	83 I	24 l	18 l	3 IC). 47 <i>′</i>	-	382	579	[25. 5,	1			
2218-700 l	16112054597 l	S355GP	10	124	95. 108	ok	ok	24	25 l	121 l	16 l	13 l	13 l	82 l	19 l	21 l	6 1	0. 391	-	379	586	25. 5,	1			
2218- 700	16112054596	S355GP	10	131	100.477	ok	ok	24	23	126	l 21	7	22	74	17	22	4	10. 42	1 -	375	592	25				
	TOTAL	-		1470	1020. 110				-					-				-								
	Ouality Ma	TOTAL 1470 1020.110 ity Manager Mr.Gao Yu																								

Quality manager Mr.Gao Y

WE HEREBY CERTIFY THAT THE MATERIAL DESCRIBED HEREIN HAS BEEN MANUFACTUREED AND TESTED WITH SATISFACTRY ABOVE MATERIAL SPECIFICATION. QUAlifySTAIIP

THE REQUIRMENTS OF THE

Quality Certificate of Product

NO.555, ZIZHU ROAD, TENGAO TOWN TEL:+88-412-8311011

FAX:+86-412-8311011

Sales Agent

Consignee	NEWCO 5148 LIMITED	Con1110dity	HOT ROLLED STEEL SHEET PILE	Q.T. No.	ASZZ-SPUK- 16001/1	ANSHAN ZIZHU INTERNAT	IONAL TRADING CO., LTD
Dimension Standard	EN10248-2	Chem. & Mech. Standard	EN10248-1	Weight method	Theoretical	Production Date	2016.9.20

Ins	pection ce	rtificat	e 3.1	accordin	g to EN 10	204:2004				C	hemi	cal	Comp	ositi	ion	(%)					echanical coperties			Impact	Test (J)	
Size F	Heat No.	Steel :	Length (m)	Quantity (Pcs)	Weight (MT)	Surfcce Qual ity		G	Si	Mn	p	S		Cr	Ni	Мо	٧	N	Ceq /CEV	Rel	Rm	Α		estTemp(menfion()		-	
		Grade	(111)	(103)	(1111)	guar rey	DIMENSION		x10-2					x10-3				X	10-2	(Mpa)	(Mpa)	(%)	1	2	3	Averag	ŧ
ZZ18-700 161	112054579	S355GP	8	154	94.494	ok	ok	24	22	125	17	9	15	79	21	14	7	0.4:1	-	375	580	26	-	-	-	-	
ZZ18-700 161	112054577	S355GP	8	151	92.654	ok	ok	25	27	131	20	3	21	83	24	18	3	0.4:	-	382	594	26.5	-	-	-	-	
ZZ18-700 161	112054346	S355GP	8	135	82.836	ok	ok	24	25	129	16	13	13	60	18	21	5	0.39	-	379	588	26.5	-	-	-	-	
ZZ18-700 161	112054603	S355GP	9	130	89.739	ok	ok	24	22	125	17	9	15	79	21	14	7	0.4:1	-	374	573	24.5	-	-	-	-	
ZZ18-700 161	112054614	S355GP	9	122	84.217	ok	ok	25	27	131	20	3	21	83	24	18	3	0.4:	-	381	575	25.5	-	-	-	-	
ZZ18-700 161	112054607	S355GP	9	125	86.288	ok	ok	24	25	129	16	13	13	70	18	21	5	0.39	-	386	575	25	-	-	-	-	
ZZ18-700 161	112054601	S355GP	9	143	98.713	ok	ok	23	21	137	23	7	22	74	17	19	4	0.38	-	377	581	25	-	-	-	-	
ZZ18-700 163	112054591	S355GP	10	122	93.574	ok	ok	23	29	131	22	11	15	79	22	14	11	0.41	-	377	588	26	-	-	-	-	
ZZ18-700 16	112054594	S355GP	10	133	102.011	ok	ok	24	21	127	19	3	21	83	24	18	3	0.4:	-	382	579	25.5	-	-	-	-	
ZZ18-700 16	112054597	S355GP	10	124	95.108	ok	ok	24	25	121	16	13	13	82	19	21	6	.39	-	379	586	25.5	-	-	-	-	
ZZ18 700 161	112054596	S355GP	10	131	100.477	ok	ok	24	23	126	21	7	22	74	17	22		0.4:		λ-	592	25	-	-	-	-	
	TOTAL			1470	1020.110															1, :1 ₋	10						
Qua	ality Ma	nager		Mr.	Gao Yu												<u> </u>		- 🗆	11sm P		_					
																	1		-	'_	_	aul					
																		<u> </u>	·IVIt!.	<u>wm</u> 🗌 • <i>I</i>	MIP	.J					

MUIIICTIIUMff,M

Qyality Certificate of Product

NO.555, ZIZHU ROAD, TENGAO TOWN

TEL:+86-412-8311011 FAX:+86-412-8311011

Sales Agent

Consignee	NEWCO 5148 LIMITED	Co111110dity	HOT ROLLED STEEL SHEET PILE	Q.T.No.	ASZZ-SPUK- 16001/1	ANSHAN ZIZIIJ INTERNA	TIONALT.RADINGCO. LTD
Dilllension Standard	EN10248-2	Chern. & Mech. Standard	EN10248-1	Weight •thod	Theoretical	Product ion Date	2016.9.20

-	lnepeotion o	ertific•	te 3.1	acoordlni	1 to EN 10	204:2004					Chemi	cal	Comp	osit	ion	(%))				echanical operties	L		Irnpact	Test (J)
Siie	Heit No.	StHI Grede	Len1th (m)	Quantity (Pcs)	Weicht (MT)	Surfoce Oual ity	Surface Dimension	(i	Si x10-	lln	p	s	Cu	Cr X10-	Ni	llo	V	N X	Ceq /CEV 10- ²	Rel (Mpa)	Rm (Mpa)	A (%)		TestTemp (menfion (2	,	- - Average
ZZ18-700	16112054579	S355GP	8	154	94.494	ok	ok	24	ı	125	17	9		79		14	7	0.42	_	375	580	26	_	-	_	-
	16112054577		l	151	92.654	ok	ok	25		131	20		21		24		3	0.47	-	382	594	26.5	-	-	-	-
ZZ1B-700	16112054346			135	82.836	ok	ok	24		129	16	13	13	60	18	21	5	0.39	-	379	588	26.5	-	-	-	-
ZZ1B-700	16112054603	S355GP	9	130	89.739	ok	ok	24	22	125	17	9	15	79	21	14	7	0.42	-	374	573	24.5	-	-	-	-
ZZ18-700	16112054814	S355GP	9	122	84.217	ok	ok	25	27	131	20	3	21	83	24	18	3	0.47	-	381	575	25.5	-	-	-	-
ZZ1B-700	16112054607	S355GP	9	125	86.288	ok	ok	24	25	129	16	13	13	70	18	21	5	0.39	-	386	575	25	-	-	-	-
ZZ18-700	16112054601	S355GP	9	143	98.713	ok	ok	23	21	137	23	7	22	74	17	19	4	0.38	-	377	581	25	-	-	-	-
ZZ18-700	16112054591	S355GP	10	122	93.574	ok	ok	23	29	131	22	11	15	79	22	14	11	0.41	-	377	588	26	-	-	-	-
ZZ18-700	16112054594	S355GP	10	133	102.011	ok	ok	24	21	127	19	3	21	83	24	18	3	0.47	-	382	579	25.5	-	-	-	-
ZZ18-700	18112054597	S355GP	10	124	95.108	ok	ok	24	25	121	16	13	13	82	19	21	6).3□	-	379	586	25.5	-	-	-	-
ZZ19-700	18112054598 TOTAL	S355GP	10	131	100.477	ok	ok	24	23	126	21	7	22	74	17	22			•		592	25	-	-	_	-
		nager	•	1470 Mr.G	1020.110 ao Yu		•		•	•	•	• '	•	'	'	•	6	7		: 11	- 1 7" fill: — U.Ip		•		•	

NO.555, 212HU ROAD, TENGAO TOWN

TEL:+88-412-8311011 FAX:+88-412-8311011

Quality Certificate of Product

Sales Agent

Consignee	SHEET PILING (UK) LTD	Cham & Mash	HOT ROLLED STEEL SHEET PILE	Q.T.No.	ASZZ-SPUK- 16001/2	ANSHAN ZIZHU INTERNATI	ONAL TRADING CO., LTD
Dimension Standard	EN10248-2	Chem. & Mech. Standard	EN10248-1	Weight method	Theoretical	Production Date	2016.9.20

	Inspection c	ertifica	te 3.1	according	g to EN 10	204:2004					Chemi	cal	Comp	osit	ion	(")					echanical operties			Impact	Test (J)	
Size	Heat No.	Steel	Length	Quantity	Wei,:ht	Surfcce	Surface	С	Si	Mn	p	S	Cu	Cr	Ni	Мо	٧	N	Ceq /CEV	Rel	Rm	A		estT[](,	-
		Grade	(m)	(Pcs)	(MT)	Oual ity	Dimension		x10-2	!				x10-	3			X	10-2	(Mpa)	(Mpa)	(%)	1	2	3	Average
2218-700	16112054595	S355GP	11	103	86.901	ok	ok	24	30	131	17	9	22	79	35	14	9	0.39	-	372	586	26	-	-	-	-
2218-700	16112054587	S355GP	11	96	80.995	ok	ok	24	27	127	19	3	21	83	19	25	12	0.4	-	377	579	25	-	-	-	-
2218-700	16112054632	S355GP	11	101	85.214	ok	ok	23	25	129	15	10	13	82	21	21	6	0.40	-	384	581	26	-	-	-	-
2218-700	16112054613	S355GI	12	103	94.801	ok	ok	23	29	130	21	11	22	79	15	14	13	0.41	-	380	578	26	-	-	-	-
2218-700	16112054615	S355GI	12	99	91.120	ok	ok	24	27	135	19	3	25	83	19	25	12	0.4	-	375	578	25.5	-	-	-	-
2218-700	16112054616	S355GI	12	98	90.199	ok	ok	25	25	129	23	10	13	82	21	21	6	0.40	-	377	583	25.5	-	-	-	-
2226-700	16112054344	S355GI	14	76	109.592	ok	ok	24	29	125	17	9	15	79	21	14	7	0.40	-	378	579	26	-	-	-	-
2226-700	16112054352	S355GI	14	74	106.708	ok	ok	23	31	132	15	2	4	81	19	7	4 (0.40	-	379	582	26	-	-	-	-
2226-700	16112054350	S355GI	16	47	77. 456	ok	ok	24	25	137	18	2	8	100	20	9	4 (0.40	-	374	579	26	-	-	-	-
2226-700	16112054351	S355GI	16	50	82.400	ok	ok	25	27	126	15	2	4	81	19	7	4	0.4		•	580	26.5	-	-	-	-
2226-700	16112054346	S355GI	16	53	87.344	ok	ok	25	30	130	14	12	12	120	21	14			! ·	□:□:		26	-	-	-	-
	TOTAL		1	900	992.730		'		•	'	1	•	•				B		l	''']rz1Ŀ <u>-;</u> r·□		•	'	ı	•
	QuaI ity Mar	nager											١.	f	Ilt	tm										

Quality Certificate of Product

NO.555, 21ZHU ROAD, TENGAO TOWN
TEL:+86-412-8311011
FAX:+86-412-8311011

Sales Agent

Consignee	SHEET PILING (UK) LTD	Conmodity	HOT ROLLED STEEL SHEET PILE	Q.T.No.	ASZZ-SPUK- 16001/1	ANSHAN ZIZHU INTERNAT	IONAL TRADING CO., LTD
Dimension Standard	EN10248-2	Chem. & Mech. Standard	EN10248-1	Weight method	Theoretical	Production Date	2016.9.20

Inspection certificate 3.1 according to EN 10204:2004									Chemical Composition (%)												Mechanical Properties			Impact Test (J)			
Size	Heat No.	Steel Grade	Length (m)	Quantity (Pcs)	Weight (MT)	Surfcce Oual ity	Surface Dimension	G	Si	Mn	р	s	Cu	Cr	Ni	Мо	٧	N	Ceq /CEV	Rel	Rm	A		estTemp (menfion(:		-	
								X 10- ²				x10- ³			3	•		x10- ²		(Mpa)	(Mpa)	(%)	1	2	3	Average	
2218-700	16112054579	S355GP	8	154	94.494	ok	ok	24	22	125	17	9	15	79	21	14	7	0.4	1	375	580	26	-	-	-	-	
2218-700	16112054577	S355GP	8	151	92.654	ok	ok	25	27	131	20	3	21	83	24	18	3	0.41	•	382	594	26.5	-	-	-	-	
2218-700	16112054346	S355GP	8	135	82.836	ok	ok	24	25	129	16	13	13	60	18	21	5	0.3S	-	379	588	26.5	-	-	-	-	
2218-700	16112054603	S355GP	9	130	89.739	ok	ok	24	22	125	17	9	15	79	21	14	7	0.4	-	374	573	24.5	-		-	-	
2218-700	16112054614	S355GP	9	122	84.217	ok	ok	25	27	131	20	3	21	83	24	18	3	0.4"J	-	381	575	25.5	-	ı	-	-	
2218-700	16112054607	S355GP	9	125	86.288	ok	ok	24	25	129	16	13	13	70	18	21	5	0.39	-	386	575	25	ı	ı	-	-	
2218-700	16112054601	S355GP	9	143	98.713	ok	ok	23	21	137	23	7	22	74	17	19	4	0.38	-	377	581	25	-	-	-	-	
2218-700	16112054591	S355GP	10	122	93.574	ok	ok	23	29	131	22	11	15	79	22	14	11	0.41	1	377	588	26	1	ı	-	-	
2218-700	16112054594	S355GP	10	133	102.011	ok	ok	24	21	127	19	3	21	83	24						_	25.5	ı	-	-	-	
2218-700	16112054597	S355GP	10	124	95.108	ok	ok	24	25	121	16	13	13	82	19	21			1'\:B.	:E.	5.79	25.5					
2218-700	16112054596	S355GP	10	131	100.477	ok	ok	24	23	126	21	7	22	74	17	22				375.	, ' <o< b="">ttl',</o<>	25	-	-	-	-	
TOTAL 1470 1020.					1020.110		+al!"t"es1,.:□																				
Quality Manager				Mr.0		UCfQUALITY STAMP																					

WE HEREBY CERTIFY THAT THE MATERIAL DESCRIBED HEREIN HAS BEEN MANUFACTUREED AND TESTED WITH SATISFACTRY RESULTS IN ACCORDANCE WITH THE REQUIRMENTS OF THE ABOVE MATERIAL SPECIFICATION.

DATE	PROCU MATERIAL APPR		MAR REF. NUMBER			
9/10/17					0148	
CONTRACT:			M1 Jct 23a to J	lct 25		
SUBCONTRACTOR	/ SUPPLIER		CGT			
SPECIFIED PRODU	Gabion stone					
PROPOSED PRODUMANUFACTURER	JCT OR SYSTEM AND	Aggregate Indu Bardon Hill Coalville Leicestershire LE67 1TL	ustries			
CONTRACT SPECIF	SHW 600 serie	es				
DEVIATION FROM (CURRENT SPECIFICATION, IF A	non				
DRAWING REFERE	NCE					
WHERE TO BE USE	D					
OFFSITE OR PRE-D	ELIVERY INSPECTION REQUIR	ED	YES N	IO 🖂 (If Ye	s, see page 2)	
ON-SITE MOCK UP	REQUIRED		YES N	IO 🖂 (If Ye	s, see page 2)	
SAMPLE REQUIRED)		YES N	IO 🖂 (If Ye	s, see page 2)	
TECHNICAL LITERA	ATURE/CATALOGUE REQUIRED)	YES 🛛 N	IO 🗌 (If Ye	s, see page 2)	
TEST CERTIFICATE	REQUIRED		YES N	IO 🛛 (if Ye	s, see page 2)	
COSHH ASSESSME	NTS REQUIRED		YES N	IO 🛛 (if Ye	s, see page 2)	
PLANNED DATE FO WORKS:	OR INCORPORATION INTO THE					
	SUPPLIER COMMENTS:					
Signe	Name:	Ga	reth Worral	Date:	9/10/17	

SITE TEAM COMMEN	ITS:				
Signed:		Name:	A.F.D'Rozario	Date:	9thOct 17
DESIGNER/ SPECIFII	ER COMMENTS:				
✓ MATERIAL/ SY	STEM ACCEPTED		MATERIAL/ SYSTE	M NOT AC	CCEPTED
Signed for designer		ne:	G Summerfield	Date:	17 th Oct 17
			, INCLUDING RECO ND OFF SITE INSPE		
ITEM		TITLE		No. OF PAGES	NOTES
1	Grading & LA			1	6G (1).pdf
2	Grading & LA			1	6G.doc
3	Data sheet			2	Bardon Summary - Bardon Hill Quarry -
				<u></u>	

Aggregate Industries Bardon Hill Coalville Leicestershire LE67 1TL

BARDON HILL QUARRY

Bardon Hill Coalville Leicestershire **LE67 1TL**

Telephone: 01530 510066

Unit:

Address:

celtest

independent materials testing

— diamond core drilling & sawing

Celtest Limited Trefelin Llandegai Bangor Gwynedd LL57 4LH

Tel: 01248 355269 e-mail: postmaster@celtest.com

Web: www.celtest.com Fax: 01248 351563

Date Issued : 6th August 2014

Aggregate Type:-	Crushed granite
Aggregate Colour:-	Grey

AGGREGATE PROPERTIES SUMMARY DATA SHEET

Test Description	1	Specification Reference	Type 1	STR No.	Date	Dust	STR No.	Date	6mm	STR No.	Date
	Apparent		2.78			2.78			2.77		
Particle Density (Mg/m³)	S.S.D		2.73	1		2.77	1		2.73	1	
· artisis 2 strong (mg/m /	Oven Dry	EN 1097-6 : 2000	2.71	370685	Jun-14	2.77	370964	Jun-14	2.71	371320	Jun-14
Water Absorption (%)	. ,		0.5	1		0.2	1		0.8	1	
Chemical Analysis* -	SiO2					63.0					
	TiO2					0.7	1				
	Al2O3					16.0	1				
	Fe2O3					7.9	1				
	MnO					0.3	1				
	MgO					3.2	1				
	CaO	X-Ray Fluorescent Techniques				4.3	370695	Jun-14			
Na2O K2O P2O BaO SO3 Loss on Ignition						2.1	1				
						2.4	1				
						0.2	1				
						0]				
						0.1	1				
						0					
Water Soluble Chloride Ion (Content	BS EN 1744-1				0.001	370696	Jun-14			
Water Soluble Sulfate Conte	nt SO3	BS EN 1744-1	<0.01	370686	Jun-14	<0.01	370697	Jun-14			
Acid Soluble Sulfate Content	: SO3	BS EN 1744-1	<0.1	370687	Jun-14	<0.1	370698	Jun-14			
Total Sulfur Content		BS EN 1744-1				<0.1	370699	Jun-14			
Frost Heave		BS 812 : Part 124 : 1989	8.8	370688	Jun-14						
Drying Shrinkage											
Petrographical Examination*											
Magnesium Sulphate Soundness Value		BS EN 1367-2				16	370700	Jun-14			
Methylene Blue (MB) Value		BS EN 933-9				0.8	370701	Jun-14			
Bulk Density Loose (Mg/m3) EN 1097-3 : 1998		EN 1097-3 : 1998	1.51	370967	Jun-14	1.49	370702	Jun-14	1.34	370706	Jun-14
Bulk Density Compacted (Mo	g/m3)	EN 1097-3 : 1998 Annex D.1	1.85	370907	Juli-14	1.8	3/0/02	5uii-14	1.56	370700	Juli-14
Plastic Limit (%)		BS 1377 : Part 2 : 1990	N-P	364940	Jun-14						
pH Value		BS 1377 : Part 3 : 1990				8.9	370703	Jun-14			
Organic Content		BS 1377 : Part 3 : 1990									
Calcium Carbonate Equivale	nt (%)	EN 196-21 : 1992				1.86	370704	Jun-14			
<u>-</u>		DT 01 114 01 000	500	370693	Jun-14						
Redox Potential*		DTp SHW Clause 638	500	370033	Juli-14						

Comments:

* Full report available upon request

E.R.Goulden - Technical Director

Material: Class 6G Table 6/1 & 6/5 EN13285

(Selected Granular Fill)

Aggregate Petrographic Group: Granite

Supply Plant: Bardon Hill

GRADING

SIEVE SIZE	TYPICAL GRADING	SPECIFICATION
180mm	100	
125mm	27	
90mm	0	
63mm	0	
45mm	0	
31,5mm	0	
22,4mm	0	
10mm	0	
2mm	0	
0,125mm	0	
0.063mm	0	

MATERIAL PROPERTIES

PROPERTY	REPORTED VALUE	SPECIFICATION LIMITS
Los Angeles	12	Max 50

Issued by: Richard Williams Date: 16/05/16

Aggregate Industries Bardon Hill Coalville Leicestershire

BARDON HILL QUARRY

Bardon Hill Coalville Leicestershire **LE67 1TL** Telephone: 01530 510066

LE67 1TL

Unit:

Address:

independent materials testing

diamond core drilling & sawing

Celtest Limited Trefelin Llandegai Bangor Gwynedd LL57 4LH

Tel: 01248 355269

e-mail: postmaster@celtest.com

Fax: 01248 351563 Web: www.celtest.com

Date Issued :

6th August 2014

Aggregate Type:-	Crushed granite
Aggregate Colour:-	Grey

AGGREGATE PROPERTIES SUMMARY DATA SHEET

Test Description		Specification Reference	10mm	STR No.	Date	14mm	STR No.	Date	20mm	STR No.	Date
	Apparent		2.77			2.76			2.80		
Particle Density (Mg/m³)	S.S.D	EN 1097-6 : 2000	2.74	370707 Jun-14	2.73	370710	Jun-14 2.70	2.70	370724	Jun-14	
	Oven Dry	EN 1097-0 : 2000	2.73	3/0/0/	Juli-14	2.72	3/0/10	Juli-14	2.78	3/0/24	Juli-14
Water Absorption (%)			0.6			0.4			0.3]	
Aggregate Impact Value (D	Dry)	BS 812 Pt 112				20	370711	Jun-14			
Aggregate Impact Value (Soaked)		BS 812 Pt 112				19	370712	Jun-14			
Aggregate Crushing Value		BS 812 Pt 110				16	370714	Jun-14			
Aggregate Abrasion Value		BS EN 1097-8				3.1	370715	Jun-14			
10% Fines Value (Dry)		BS 812 Pt 111				180	370717	Jun-14			
10% Fines Value (Soaked)		BS 812 Pt 111				240	370716	Jun-14			
Water Soluble Chloride Ion Content		BS EN 1744-1				<0.001	370718	Jun-14			
Polished Stone Value		BS EN 1097-8	61	37078	May-14						
Micro Deval Coefficient		BS EN 1097-1				20	370720	Jun-14			
Los Angeles Coefficient		BS EN 1097-2				18	370721	Jun-14			
Petrographical Examination	า*					Non	370722	Jun-14			
Bulk Density Loose (Mg/m3	3)	EN 1097-3 : 1998	1.40	370709	Jun-14	1.33	370723	Jun-14	1.40	370725	Jun-14
Bulk Density Compacted (Mg/m3)		EN 1097-3 : 1998 Annex D.1	1.58	3/0/09	Jui1-14	1.54	3/0/23	Jun-14	1.60	3/0/25	Juii-14
All tooto corried out o	"	waditad walaaa atbamuiaa da	ما اممه مرد	*							

All tests carried out are UKAS accredited unless otherwise denoted by *

Comments:

Full report available upon request

Test Description	on	Specification Reference	32mm	STR No.	Date	Ballast	STR No.	Date		
	Apparent		2.76							
Particle Density (Mg/m³)	S.S.D	EN 1097-6 : 2000	2.78	370726	Jun-14					
	Oven Dry	EN 1097-6 : 2000	2.77	3/0/26	Jun-14					
Water Absorption (%)			0.3	1						
Bulk Density Loose (Mg/m3)		EN 1097-3 : 1998	1.39	370727	070707					
Bulk Density Compacted (Mg/m3) EN 1097		EN 1097-3 : 1998 Annex D.1	1.60	3/0/2/	Jun-14					
						6	365795	1/5/14		

All tests carried out are UKAS accredited unless otherwise denoted by *

Comments:

Full report available upon request

E.R.Goulden - Technical Director

Issue Ref.: 1 Issue Date :02/08/2012 Page 2 of 2

AGGREGATE CERTIFICATION DATA SHW 600 GABION STONE 6G

PRODUCTION UNIT: BARDON HILL QUARRY

MATERIAL DESCRIPTION: Selected Granular Material - 100 - 150mm

Gabion Filling Table 6/1 Cl 6G

TYPICAL PROPERTIES: Individual Test Certificates can be supplied on

request-UKAS Certificates unless stated otherwise.

PARTICLE SIZE DISTRIBUTION

Obtained by measurement using calibrated vernier gauge.

A Uniformly graded Aggregate to meet sizes of 100 mm - 150 mm range as per Cl 626

GAUGED		% PASS	
175.0	mm	100	
170.0	mm	100	
160.0	mm	74	
150.0	mm	45	
140.0	mm	25	
125.0	mm	17	
115.0	mm	6	
100.0	mm	1	
Saturate Apparei	Deval density ed and Su	- Oven Dried orface Dried	10 13 2.81 2.82 2.84 0.3%
D. 1 1337	_		

Richard Williams

AREA TECHNICAL MANAGER

Issue 6

DATE 5 th July 18	MATER	REMENT ROVAL	. REQUEST		MAR REF. NUMBER 0300			
CONTRACT:				M1 Jct 23a to J	ct 25			
SUBCONTRACTOR	/ SUPPLIER			CGT/GRS	<u> </u>			
30B00NTRACTOR	7 JOH I EIEIX			COTTORS				
SPECIFIED PRODU	CT OR SYSTEM			Gabion stone				
			Tarmac Unnamed Rd, <i>I</i>	Ashbourn	e DE6 1QX,			
CONTRACT SPECIFICATION				SHW 600 serie	es			
DEVIATION FROM CURRENT SPECIFICATION, IF ANY				non				
DRAWING REFERE	NCE							
WHERE TO BE USED								
OFFSITE OR PRE-D	ELIVERY INSPECT	ION REQUIRI	ED	YES N	O 🖂 (If Ye	s, see page 2)		
ON-SITE MOCK UP	REQUIRED			YES N	O 🖂 (If Ye	s, see page 2)		
SAMPLE REQUIRED)			YES ☐ NO ☒ (If Yes, see page 2)				
TECHNICAL LITERATURE/CATALOGUE REQUIRED				YES ⊠ NO ☐ (If Yes, see page 2)				
TEST CERTIFICATE REQUIRED				YES ☐ NO ☒ (if Yes, see page 2)				
COSHH ASSESSMENTS REQUIRED			YES ☐ NO ☒ (if Yes, see page 2)					
PLANNED DATE FOR INCORPORATION INTO THE WORKS:			Only if granite runs out - use as back up					
SUBCONTRACTOR	/SUPPLIER COMM	ENTS: Only if	granite	runs out - use as I	oack up			
		Name:	N	Martin Cox	Date:	5 th July 18		

SITE TEAM COMME	NTS: Only if grani	te runs out - us	e as back up		
Signed:		Name:	A.F.D'Rozario	Date:	5 th July 18
DESIGNER/ SPECIFI	ER COMMENTS:	,			
X MATERIAL/SY	STEM ACCEPTED		MATERIAL/ SYS	TEM NOT A	CCEPTED
Signed for designer		Name:		Date:	9 th July 18
		*	NCLUDING REC D OFF SITE INSF		
ITEM		TITLE		No. OF PAGES	NOTES
1	Grading			1	BALLIDON QUARRY GABION - 100mm-15
2	LA			1	BALLIDON QUARRY GABION - 100mm-15

GRADATION ANALYSIS TEST REPORT

Product: 100/150MM GRADED AGGREGATE

Material Code: 110A4547

Supplied by: BALLIDON QUARRY

Customer:

Site Address:

Material type: No Specification / Limestone

60

Sampled to: LPM 3.2 Methods for sampling aggregates

Prepared to: LPM 3.3 Aggregate reduction to test portion from a bulk sample

Test method: BS EN 933-1: 2012

Sample number

Ticket No

Sampled by LAB

Date Sampled 06/11/2017 Sample location LP 17

Weather Conditions

Remarks

Sieve Size (mm)	Percent passing
200	
150	100
125	68
100	0
90	0
80	0
63	0
50	0
31.5	0
20	0
10	0
2	0
0.063	0.0
Moisture content (%)	0.2
Uniformity Coefficient	1

Specification	Complies (Spec)
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
	Yes

Size [mm]	
Control limits	Complies (Ctrl)

Sampled By: LAB Tested By: Date Tested: 06/11/2017

Test Houses Ltd Date: 09 January 2018 Wolverhampton Laboratory, Test Report Ref: STR 567175

Millfields Road,

ETTINGSHALL, Order No: NLT1/17/390

Wolverhampton,

WV4 6JP Page 1 of 1

Contract: W/17/093

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Fragmentation of Aggregate - Los Angeles

Test Method in accordance with BS EN 1097-2: 2010

SAMPLE DETAILS:

Certificate of sampling received: Yes
Laboratory Ref. No: \$69927

Client Ref. No: 17/1715 - Ballidon LA COEFFICIENT September 2017

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown

Unknown

Unknown

Name of So_rce: Ballidon Quarry

Method of Sampling:

Sampled By:

Material Description

Client

Aggregate

Target Specification: N/A

RESULTS

Size fraction from which the test portion was obtained: 14mm to 12.5mm

12.5mm to 10.0mm

Los Angeles Coefficient (LA) = 26

Comments:

No.._

Report checked and approved by

Aggregate Team Coordinator

DATE	MATER		MAR REF. NUMBER						
9/10/17	M1 let 23a to let 25								
CONTRACT:		M1 Jct 23a to Jct 25							
SUBCONTRACTOR	/ SUPPLIER			CGT					
SPECIFIED PRODUC	CT OR SYSTEM		Gabion ston	10					
PROPOSED PRODU MANUFACTURER	ICT OR SYSTEM AN	Aggregate Industries Bardon Hill Coalville Leicestershire LE67 1TL							
CONTRACT SPECIF		SHW 600 se	ries						
DEVIATION FROM C	CURRENT SPECIFIC	NY	non						
DRAWING REFERE	NCE								
WHERE TO BE USE	.D								
OFFSITE OR PRE-D	ELIVERY INSPECTI	ION REQUIRI	ED	YES ☐ NO ☒ (If Yes, see page					
ON-SITE MOCK UP	REQUIRED			YES	NO 🖂 (If Ye	s, see page 2)			
SAMPLE REQUIRED)			YES	NO ⊠ (If Ye	s, see page 2)			
TECHNICAL LITERA	ATURE/CATALOGU	E REQUIRED)	YES 🖂	NO [] (If Ye	s, see page 2)			
TEST CERTIFICATE	REQUIRED			YES ☐ NO ☒ (if Yes, see page 2)					
COSHH ASSESSME	NTS REQUIRED			YES ☐ NO ☒ (if Yes, see page 2)					
PLANNED DATE FO WORKS:	R INCORPORATIO	N INTO THE							
SUBCONTRACTOR	/SUPPLIER COMME	ENTS:							
Signe		Name:	Ga	areth Worral	Date:	9/10/17			

SITE TEAM COMMEN	NTS:										
Signed:		Name:	A.F.D'Rozario	Date:	9thOct 17						
DESIGNER/ SPECIFI	ER COMMENTS:										
✓ MATERIAL/ SYSTEM ACCEPTED MATERIAL/ SYSTEM NOT ACCEPTED											
Signed for designer ne: G Summerfield Date: 17 th Oct 17											
			, INCLUDING RECO								
ITEM		TITLE	=	No. OF PAGES	NOTES						
1	Grading & LA			1	6G (1).pdf						
2	Grading & LA			1	6G.doc						
3	Data sheet			2	Bardon Summary - Bardon Hill Quarry -						
				l							

Aggregate Industries Bardon Hill Coalville Leicestershire LE67 1TL

Unit:

celtest

independent materials testing

diamond core drilling & sawing

Celtest Limited Trefelin Llandegai Bangor Gwynedd LL57 4LH

Tel: 01248 355269 e-mail: postmaster@celtest.com

Web: www.celtest.com Fax: 01248 351563

Date Issued: 6th August 2014

BARDON HILL QUARRY Address: Bardon Hill

Coalville Leicestershire **LE67 1TL** Telephone: 01530 510066

Aggregate Type:-	Crushed granite					
Aggregate Colour:-	Grey					

AGGREGATE PROPERTIES SUMMARY DATA SHEET

Test Description	on	Specification Reference	Type 1	STR No.	Date	Dust	STR No.	Date	6mm	STR No.	Date
	Apparent		2.78			2.78			2.77		
Particle Density (Mg/m³)	S.S.D	EN 4007 C : 0000	2.73	270005	l 44	2.77	270004	l 44	2.73	274200	l 44
	Oven Dry	EN 1097-6 : 2000	2.71	370685	Jun-14	2.77	370964	Jun-14	2.71	371320	Jun-14
Water Absorption (%)	•		0.5	1		0.2	1 1		0.8	1	
Chemical Analysis* -	SiO2					63.0					
	TiO2					0.7	1				
	Al2O3					16.0					
	Fe2O3					7.9	1 1				
	MnO					0.3	1 1				
	MgO					3.2	1 1				
	CaO	X-Ray Fluorescent Techniques				4.3	370695	Jun-14			
	Na2O					2.1	1 1				
	K20					2.4					
	P20					0.2	1 1				
	BaO	_				0					
	SO3					0.1					
L	oss on Ignition					0					
Water Soluble Chloride Ion	Content	BS EN 1744-1				0.001	370696	Jun-14			
Water Soluble Sulfate Cont	tent SO3	BS EN 1744-1	<0.01	370686	Jun-14	<0.01	370697	Jun-14			
Acid Soluble Sulfate Conte	nt SO3	BS EN 1744-1	<0.1	370687	Jun-14	<0.1	370698	Jun-14			
Total Sulfur Content		BS EN 1744-1				<0.1	370699	Jun-14			
Frost Heave		BS 812 : Part 124 : 1989	8.8	370688	Jun-14						
Drying Shrinkage											
Petrographical Examination	*										
Magnesium Sulphate Soun	dness Value	BS EN 1367-2				16	370700	Jun-14			
Methylene Blue (MB) Value	;	BS EN 933-9				0.8	370701	Jun-14			
Bulk Density Loose (Mg/m3	3)	EN 1097-3 : 1998	1.51	370967	Jun-14	1.49	370702	Jun-14	1.34	370706	Jun-14
Bulk Density Compacted (N	/lg/m3)	EN 1097-3 : 1998 Annex D.1	1.85	370907	Juli-14	1.8	3/0/02	Juli-14	1.56	3/0/00	Juli-14
Plastic Limit (%)		BS 1377 : Part 2 : 1990	N-P	364940	Jun-14						
pH Value		BS 1377 : Part 3 : 1990				8.9	370703	Jun-14			
Organic Content		BS 1377 : Part 3 : 1990									
Calcium Carbonate Equival	lent (%)	EN 196-21 : 1992				1.86	370704	Jun-14			
Redox Potential*		DTp SHW Clause 638	500	370693	Jun-14						
Lightweight Contaminators		BS EN 1744-1				<0.1	370705	Jun-14			
All tests carried out ar	e UKAS acc	redited unless otherwise de	noted b	у *							

Comments:

* Full report available upon request

E.R.Goulden - Technical Director

Material: Class 6G Table 6/1 & 6/5 EN13285

(Selected Granular Fill)

Aggregate Petrographic Group: Granite

Supply Plant: Bardon Hill

GRADING

SIEVE SIZE	TYPICAL GRADING	SPECIFICATION
180mm	100	
125mm	27	
90mm	0	
63mm	0	
45mm	0	
31,5mm	0	
22,4mm	0	
10mm	0	
2mm	0	
0,125mm	0	
0.063mm	0	

MATERIAL PROPERTIES

PROPERTY	REPORTED VALUE	SPECIFICATION LIMITS
Los Angeles	12	Max 50

Issued by: Richard Williams Date: 16/05/16

Aggregate Industries Bardon Hill Coalville Leicestershire

BARDON HILL QUARRY

Bardon Hill Coalville Leicestershire **LE67 1TL** Telephone: 01530 510066

LE67 1TL

Unit:

Address:

independent materials testing

diamond core drilling & sawing

Celtest Limited Trefelin Llandegai Bangor Gwynedd LL57 4LH

Tel: 01248 355269

e-mail: postmaster@celtest.com

Fax: 01248 351563 Web: www.celtest.com

Date Issued: 6th August 2014

Aggregate Type:-	Crushed granite				
Aggregate Colour:-	Grey				

AGGREGATE PROPERTIES SUMMARY DATA SHEET

Test Description	Specification Reference	10mm	STR No.	Date	14mm	STR No.	Date	20mm	STR No.	Date
Apparent		2.77			2.76			2.80		
Particle Density (Mg/m³) S.S.D	EN 1097-6 : 2000	2.74	370707	Jun-14	2.73	370710	Jun-14	2.70	370724	Jun-14
Oven Dry	EN 1097-0 . 2000	2.73	3/0/0/	Juli-14	2.72	3/0/10	Juli-14	2.78	3/0/24	Juli-14
Water Absorption (%)	1	0.6			0.4			0.3]	
Aggregate Impact Value (Dry)	BS 812 Pt 112				20	370711	Jun-14			
Aggregate Impact Value (Soaked)	BS 812 Pt 112				19	370712	Jun-14			
Aggregate Crushing Value	BS 812 Pt 110				16	370714	Jun-14			
Aggregate Abrasion Value	BS EN 1097-8				3.1	370715	Jun-14			
10% Fines Value (Dry)	BS 812 Pt 111				180	370717	Jun-14			
10% Fines Value (Soaked)	BS 812 Pt 111				240	370716	Jun-14			
Water Soluble Chloride Ion Content	BS EN 1744-1				<0.001	370718	Jun-14			
Polished Stone Value	BS EN 1097-8	61	37078	May-14						
Micro Deval Coefficient	BS EN 1097-1				20	370720	Jun-14			
Los Angeles Coefficient	BS EN 1097-2				18	370721	Jun-14			
Petrographical Examination*					Non	370722	Jun-14			
Bulk Density Loose (Mg/m3)	EN 1097-3 : 1998	1.40	370709	lun 44	1.33	370723	lum 44	1.40	370725	lum 44
Bulk Density Compacted (Mg/m3)	EN 1097-3 : 1998 Annex D.1	1.58	3/0/09	Jun-14	1.54	3/0/23	Jun-14	1.60	3/0/25	Jun-14

All tests carried out are UKAS accredited unless otherwise denoted by *

Comments:

Full report available upon request

Test Description		Specification Reference	32mm	STR No.	Date	Ballast	STR No.	Date		
Apparent		2.76								
Particle Density (Mg/m³)	S.S.D	EN 1097-6 : 2000	2.78	370726	Jun-14					
	Oven Dry	EN 1097-6 : 2000	2.77	3/0/20	Juli-14					
Water Absorption (%)			0.3							
Bulk Density Loose (Mg/m3)		EN 1097-3 : 1998	1.39	370727	Jun-14					
Bulk Density Compacted (Mg/m3)		EN 1097-3 : 1998 Annex D.1	1.60	3/0/2/	Jun-14					
						6	365795	1/5/14		

All tests carried out are UKAS accredited unless otherwise denoted by *

Comments:

Full report available upon request

E.R.Goulden - Technical Director

Issue Ref.: 1 Issue Date :02/08/2012 Page 2 of 2

AGGREGATE CERTIFICATION DATA SHW 600 GABION STONE 6G

PRODUCTION UNIT: BARDON HILL QUARRY

MATERIAL DESCRIPTION: Selected Granular Material - 100 - 150mm

Gabion Filling Table 6/1 Cl 6G

TYPICAL PROPERTIES: Individual Test Certificates can be supplied on

request-UKAS Certificates unless stated otherwise.

PARTICLE SIZE DISTRIBUTION

Obtained by measurement using calibrated vernier gauge.

A Uniformly graded Aggregate to meet sizes of 100 mm - 150 mm range as per Cl 626

GAUGED		% PASS	
175.0	mm	100	
170.0	mm	100	
160.0	mm	74	
150.0	mm	45	
140.0	mm	25	
125.0	mm	17	
115.0	mm	6	
100.0	mm	1	
	- Oven Dried arface Dried	10 13 2.81 2.82 2.84 0.3%	
D. 1 1337	_		

Richard Williams

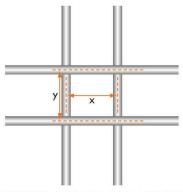
AREA TECHNICAL MANAGER

Issue 6

DATE	WATERIAL APPROVAL REQUEST					MAR REF. NUMBER 0226
5/02/18					,	0220
CONTRACT:				M1 Jct 23a to J	ct 25	
SUBCONTRACTOR	/ SUPPLIER			CGT		
SPECIFIED PRODU	CT OR SYSTEM			Bi-axial Welde Baskets	ed Mesh 1	or Gabion
PROPOSED PRODUMANUFACTURER	JCT OR SYSTEM AN	ND		Enviromesh G Park • Etruria Staffordshire	• Stoke-c	on-Trent •
CONTRACT SPECIF	FICATION			SHW 600 serie	es	
DEVIATION FROM	CURRENT SPECIFIC	CATION, IF A	NY	non		
DRAWING REFERE	NCE					
WHERE TO BE USE	:D					
OFFSITE OR PRE-D	ELIVERY INSPECT	ION REQUIRE	ΞD	YES N	O 🖂 (If Ye	es, see page 2)
ON-SITE MOCK UP	REQUIRED			YES ☐ NO ☒ (If Yes, see page 2)		
SAMPLE REQUIRED)			YES ☐ NO ☒ (If Yes, see page 2)		
TECHNICAL LITERA	ATURE/CATALOGU	E REQUIRED)	YES 🖂 N	O 🗌 (If Ye	es, see page 2)
TEST CERTIFICATE	REQUIRED			YES N	O 🖂 (if Ye	es, see page 2)
COSHH ASSESSME	NTS REQUIRED			YES N	O 🖂 (if Ye	es, see page 2)
PLANNED DATE FO	R INCORPORATIO	N INTO THE				
SUBCONTRACTOR	/SUPPLIER COMME	ENTS:				
		Name:	D	ave Mantle	Date:	5/2/18
SITE TEAM COMMENTS:						
Signed:		Name:	A.	F.D'Rozario	Date:	5 th Feb 18

DESIGNER/ SPECIFIER COMMENTS: Welded gabion baskets are acceptable assuming that the gabions are formed using welded steel mesh conforming to BS EN 10223-8 and have a 120-design life.									
✓	MATERIAL/	SYSTEM ACCEPTED		MATE	RIAL/ SYSTE	M NOT AC	CEPTED		
	gned for esigner		ne:	G Sum	merfield	Date:	5 th Feb 18		
LIS		PORTING DOCUME JPPLIED, MOCK-U	•						
	ITEM		TITLE			No. OF PAGES	NOTES		
1		Technical data				4	2.7-3.2mm PVC.PDF		

ENV-P27-BAW-03.15



Garner Street Business Park • Etruria • Stoke-on-Trent • Staffordshire ST4 7BH

Tel: +44 (0) 845 136 0101 · Fax: +44 (0)845 136 0202 · Online: www.enviromeshgabions.co.uk

Gabion Design Specification: Bi-Axial Welded Mesh

GABION ENV-P27 (Polymer Powder Coated Grey)

SPECIFIED MESH BI-AXIAL WELDED

Nominal dimensions (x) and (y): Gabions, 75mm Mattresses, 75mm

Gabions are to be manufactured and / or supplied by:

Enviromesh, Garner Street Business Park, Etruria, Stoke-on-Trent, Staffordshire, ST4 7BH.

Telephone +44 (0)845 136 0101 Fax +44 (0)845 136 0202 Email: enquiries@enviromeshgabions.co.uk Online: www.enviromeshgabions.co.uk

The certification, materials, manufacture, assembly and installation of the above-mentioned product shall comply with all of the following criteria:

Certification

- I. All gabion materials and accessories must be certified in accordance with **British Board of Agrément (BBA)** certificate no. 05/4215. This is for current General Building Regulations.
- 2. All gabion products are manufactured in accordance with the requirements of BS EN 10223-8:2013 where the gabions are considered to have a life expectancy of 120 years.
- 3. Evidence of current BBA certification and relevant certificates of conformity with respect to wire strength, weld strength and coating weights used in the manufacture of the mesh fabric and wire products are to be issued upon request.

Materials

The wire used in the manufacture of the gabions and installation accessories shall comply with the following:

Mesh Fabric

The mesh fabric shall be formed by electrically welding at each and every intersection, hard drawn steel line and cross wires into a dimensionally stable bi-axial square metric mesh of size **75mm x 75mm**.

ENV-P27-BAW-03.15

Garner Street Business Park • Etruria • Stoke-on-Trent • Staffordshire ST4 7BH

Tel: +44 (0) 845 136 0101 · Fax: +44 (0)845 136 0202 · Online: www.enviromeshgabions.co.uk

The weld strength shall be 75% of the minimum ultimate tensile strength of the wire.

The nominal wire diameter for the mesh fabric shall be **2.70mm** for the base, front, rear, end, diaphragm panels and lid, all within the tolerances specified in BS EN 10218-2:2012 and shall have a tensile strength that falls within a range of **540-770 N/mm²**.

Lacing Wire

The lacing wire used for site assembly shall be of a nominal **2.2mm** wire diameter in accordance with BS EN 10218-2:2012 and shall have a tensile strength that falls within a range of **350 to 550 N/mm²**.

Corrosion Resistance

All wire used in the mesh fabric or accessories shall be Zinc coated in accordance with BS EN 10244-2:2009 (Class A). An additional nominal thickness is applied of **0.25mm** organic polymer powder coating (grey) for the mesh fabric and a nominal **0.5mm** organic polymer powder coating (grey) for the lacing wire. This coating being in accordance with BS EN 10245-1:2011 and BS EN 10245-2:2011

Manufacture

Unit Formation

The gabion is to be formed from mesh panels such that the front, rear, ends and diaphragm panels are connected to the base panel with either **Stainless Steel CL35 clips** or **Stainless Steel CL50 'C' rings** at a maximum spacing of 225mm for all joints. This process must be undertaken in a factory-controlled environment. The lid may be supplied loose or fixed in the same manner to the rear or face panel. Diaphragm (partitioning panels) spacings should not exceed 1.050m on units oriented as stretchers and 1.65m oriented as headers.

Should units be required to be prefilled and lifted as opposed to filling in situ, additional clips, rings and mesh panels may be required. In such circumstances the manufacturer must be consulted prior to supply to ensure product is suitable for application.

Gabion Sizes

It should be noted that it is industry standard for gabions to be quoted as overall nominal sizes. The actual gabion sizing is dependant upon the physical mesh configuration.

Clarification should always be sought from the manufacturer in relation to gabion sizing.

Designation of sizes length x width x height

Gabion standard unit lengths: 975mm or 2025mm

Gabion standard unit widths: 450mm, 675mm, 975mm, 1350mm, 1500mm or 1650mm

Gabion standard unit heights: 300mm, 450mm or 975mm

ENV-P27-BAW-03.15

Garner Street Business Park • Etruria • Stoke-on-Trent • Staffordshire ST4 7BH

Tel: +44 (0) 845 136 0101 · Fax: +44 (0)845 136 0202 · Online: www.enviromeshgabions.co.uk

Non-standard sizes available in multiples of 75mm on request.

Assembly and Installation

Note Please also refer to manufacturer's installation instructions, which are available upon request in either electronic or hard copy format.

Jointing

Gabions are supplied with lacing wire as standard for horizontal and vertical jointing of adjacent units whilst empty. Lacing is to be continuous along all joints using alternate single and double loops at a maximum spacing of 100mm ensuring that it forms a tight joint. Start or termination of lacing is formed by three turns ensuring the free end is turned into the unit.

If CL50 'C' rings are to be used for final jointing as an alternative to lacing then these must be installed at every other mesh opening to achieve the required joint strength.

Internal Bracing

Internal bracing is formed by creating a continuous windlass tie between the face and rear of the exposed cells within the structure.

For Im high units, two internal windlass bracings are required at third widths and at each third height of the gabion.

In all cases the windlass tie is to span two or three mesh openings on the front and rear cells to spread the load. The exposed end gabions to the wall should also be braced in both directions to prevent end face deformation.

The same is required to the rear cell of each course (rear panel to side panels).

Geotextile Separators

Where a geotextile separator between the rear of the gabion and backfill is to be used, refer to the engineer's design proposal and specification.

Foundations

Reference to the engineer's design proposal must be made with respect to foundation requirement, wall inclination, face configuration (stepped, flush or combination thereof), drainage and backfilling requirements. Any soft areas in the sub grade should be excavated and replaced with a granular material to the engineer's requirements.

Filling

Units are to be filled with a hard, durable, non-frost susceptible rock, stone or clean crushed concrete as specified by design. The grading of the fill is to be 100 to 150mm or 100 to 200mm (6G). Where dual fills of the same grading are specified a separation panel is optional. Where the secondary fill grading is less than the mesh aperture size, it is necessary for the fills to be separated using pre-cut correx panels or geo-textile that is

ENV-P27-BAW-03.15

Garner Street Business Park • Etruria • Stoke-on-Trent • Staffordshire ST4 7BH

Tel: +44 (0) 845 136 0101 · Fax: +44 (0)845 136 0202 · Online: www.enviromeshgabions.co.uk

inserted into the gabion on site. If this is the case then this will require the fitting of an additional longitudinal diaphragm set back from the face. In such instances it is important to refer to the engineer's design proposal with respect to additional drainage that may be required. It is also important to note that cohesive fills are not to be used as a secondary fill within gabions.

The units shall be filled in layers not exceeding 340mm, if large voids are present then the stone must be re-orientated to minimise voids. Where specified the gabions are to have a hand placed front face.

The units shall be filled such that the mesh lid bears down onto the gabion filling material. It may be beneficial to blind the top of the filled unit with a 20 to 50mm aggregate.

Filling should be staged so that no adjacent cells have more than a half difference in the level of filling for units of greater height than 500mm.

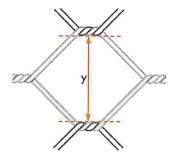
To assist in maintaining face alignment and reduce deformation, the use of external formwork i.e. timber or scaffold tubes can be tied onto the external face of the structure at third heights and then removed upon completion.

DATE	PROCUREMENT MAR MATERIAL APPROVAL REQUEST MAR REF. NUMBER					REF. NUMBER
6/10/17						0143
CONTRACT:				M1 Jct 23a to	Jct 25	
SUBCONTRACTOR	/ SUPPLIER			CGT		
SPECIFIED PRODU	CT OR SYSTEM			Hexagonal wo	oven me	sh for Gabion
PROPOSED PRODUMANUFACTURER	JCT OR SYSTEM	AND		Enviromesh O Park • Etruria Staffordshire	• Stoke	
CONTRACT SPECIF	FICATION			SHW 600 seri	es	
DEVIATION FROM (CURRENT SPECI	FICATION, IF A	ιNΥ	non		
DRAWING REFERE	NCE					
WHERE TO BE USE	:D					
OFFSITE OR PRE-D	ELIVERY INSPEC	CTION REQUIR	ED	YES 🗌 N	10 🗵 (If Y	es, see page 2)
ON-SITE MOCK UP	REQUIRED			YES ☐ NO ☒ (If Yes, see page 2)		
SAMPLE REQUIRED)			YES ☐ NO ☒ (If Yes, see page 2)		
TECHNICAL LITERA	ATURE/CATALO	GUE REQUIRED)	YES 🖂	10 🗌 (If Y	es, see page 2)
TEST CERTIFICATE	REQUIRED			YES 🗌 N	IO 🛛 (if Y	es, see page 2)
COSHH ASSESSME	NTS REQUIRED			YES 🗌 N	10 🗵 (if Y	es, see page 2)
PLANNED DATE FO	R INCORPORAT	ION INTO THE				
SUBCONTRACTOR/SUPPLIER COMMENTS:						
Signe Name: G				areth Worral	Date:	6/10/17
SITE TEAM COMME	SITE TEAM COMMENTS:					

Sig	ned:			Name:	A	A.F.D'Rozario	Date:	6 th Oct 17		
DESIGNER/ SPECIFIER COMMENTS:										
✓	MATER	IAL/ SY	STEM ACCEPTED)		MATERIAL/ SYS	STEM NOT AC	CEPTED		
	gned for esigner			Name:	(3 Summerfield	Date:	17 th Oct 17		
LIST OF SUPPORTING DOCUMENTS, INCLUDING RECORDS OF SAMPLES SUPPLIED, MOCK-UPS AND OFF SITE INSPECTIONS										
LIS	T OF S				•					
LIS	T OF S				ND O					
1				K-UPS AN	ND O		PECTION No. OF	S		
			PPLIED, MOC	K-UPS AN	ND O		No. OF PAGES	NOTES Gabion baskets		
			PPLIED, MOC	K-UPS AN	ND O		No. OF PAGES	NOTES Gabion baskets		

Hexagonal Woven Mesh

ENV-P27-HEX-03.IS



Garner Street Business Park • Etruria • Stoke-on-Trent • Staffordshir · e ST4 7B1-1

Tel: +44 (0) 845 136 0 IOI • Fax: +44 (0)845 136 0202 • Online: www.enviromeshgabions.co.ul<

Gabion Design Specification • Hexagonal Woven Mesh

ENV-P27-HEX (Polymer Powder Coated Grey)

SPECIFIED MESH DOUBLE TWIST WOVEN

Nominal dimension (y): Gabions, 80mm Mattresses, 60mm

Gabions are to be manufactured and/ or supplied by:

Enviromesh, Garner Street Business Park, Etruria, Stoke-on-Trent, Staffordshire, ST4 7BH.

Telephone +44 (0)845 136 0 IO I Fax +44 (0)845 136 0202 Email: enquiries@enviromeshgabions.co.uk Online: www.enviromeshgabions.co.uk

The certification, materials, manufacture, assembly and installation of the above-mentioned product shall comply with all of the following criteria:

Certification

- I. Allgabion materials and accessories must be certified in accordance with British Board of Agrement **(BBA)** certificate no. 00/3682. This is for current General Building Regulations where the life expectancy is **120 years**.
- 2. All gabion products are manufactured in accordance with the requirements of BS EN 10223-3:2013.
- 3. Evidence of current BBA certification and relevant certificates of conformity with respect to wire strength and coating weights used in the manufacture of the mesh fabric and wire products are to be issued upon request.

Materials

The wire used in the manufacture of the gabions and installation accessories shall comply with the following:

Mesh Fabric

The mesh fabric shall be formed by twisting pairs of wires through one and a half turns to form a hexagonal flexible net pattern of nominal size **80mm x** I **00mm**. The end wires of the mesh panel are terminated by being wrapped around a heavy selvedge wire.

Hexagonal Woven Mesh

ENV-P27-HEX-03.I 5

Garner Street Business Park • Etruria • Stoke-on-Trent • Staffordshire ST4 7BH

Tel: +44 (0) 845 136 0 IO I • Fax: +44 (0)845 136 0202 • Online: www.enviromeshgabions.co.ulc

The nominal wire diameter for the mesh fabric shall be **2.70mm** and **3.40mm** for the selvedge wire. All wire is in accordance with BS EN I 0218-2:2012 and BS EN I 0223-3:2013 with an ultimate tensile strength of between **350 to 500N/mm**².

Lacing Wire

The lacing wire used for site assembly shall be of a nominal **2.2mm** wire diameter in accordance with BS EN 10218-2:2012 and shall have a tensile strength that falls within a range of **350 to 550 N/mm**².

Corrosion Resistance

All wire used in the gabion production or accessories shall be Zinc or Zinc 95% Aluminium 5% coated in accordance with BS EN I 0244-2:2009 (Class A) with an additional extruded organic polymer powder coating (grey) of **0.5mm** nominal radial thickness.

This organic polymer powder coating is in accordance with BS EN 10245-2:2011.

Manufacture

Unit Formation

The gabion is to be formed from mesh panels so that the front, rear, base and lid are formed from one continuous sheet, such that the front and rear faces have the mesh orientated vertically.

Diaphragms (partitioning panels) and end panels (all vertically orientated mesh) are connected to the base panel with full-length lacing. This process must be undertaken in a factory-controlled environment. Diaphragm spacings should not exceed I .00m. The supply of loose diaphragm panels for fitting on site is not acceptable.

Gabion Sizes

It should be noted that it is industry standard for gabions to be quoted as overall nominal sizes.

Designation of sizes length x width x height

Gabion standard unit lengths: 2000mm, 1500mm and 1000mm

Gabion standard unit widths: 1000mm

Gabion standard unit heights: 500mm and I 000mm

Hexagonal Woven Mesh

ENV-P27-HEX-03.I 5

Garner Street Business Park • Etruria • Stoke-on-Trent • Staffor dshire ST4 7BH

Tel: +44 (0) 845 136 0 IOI • Fax: +44 (0) 845 136 0202 • Online: www.enviromeshgabions.co.ul<

Assembly and Installation

Note Please also refer to manufacturer's installation instructions, which are available upon request in either electronic or hard copy format.

Jointing

Gabions are supplied with lacing wire as standard for horizontal jointing of adjacent units whilst empty. Lacing is to be continuous along all joints using alternate single and double loops at a maximum spacing of I 00mm ensuring that it forms a tight joint. Start or termination of lacing is formed by three turns ensuring the free end is turned into the unit.

If CLS0 'C' rings are to be used for final jointing as an alternative to lacing, then these must be installed at every other mesh opening to achieve the required joint strength.

Where gabions are to be pre-filled and lifted instead of filling in situ, it is necessary to brace each cell in both directions. In such circumstances the manufacturer must be consulted prior to supply to ensure product is suitable for application.

Geotextile Separators

Where a geotextile separator between the rear of the gabion and backfill is to be used, refer to the engineer's design proposal and specification.

Foundations, Wall Inclinations, Face Configurations, Drainage and Backfilling

Reference to the engineer's design proposal must be made with respect to foundation requirements, wall inclination, face configuration (stepped, flush or combination thereof), drainage and backfilling requirements. Any soft areas in the sub-grade should be excavated and replaced with a granular material to the engineer's requirements.

Filling

Units are to be filled with a hard, durable, non-frost susceptible rock, stone or clean crushed concrete as specified by design. The grading of the fill is to be I 00 to 150mm or I 00 to 200mm (6G).

The units shall be filled in layers not exceeding 340mm, if large voids are present then the stone must be re-orientated to minimise voids. Where specified the gabions are to have a hand placed front face.

The units shall be filled such that the mesh lid bears down onto the gabion filling material. It may be beneficial to blind the top of the filled unit with a 20 to 50mm aggregate.

Filling should be staged so that no adjacent cells have more than a half difference in the level of filling for units of greater height than 500mm.

To assist in maintaining face alignment and reduce deformation, the use of external formwork i.e. timber or scaffold tubes can be tied onto the external face of the structure at third heights and then removed upon completion.

DATE 09/02/18	PROCUREMENT MATERIAL APPROVAL REQUEST MAR REF. NUMBER 0227							
CONTRACT:				M1 Jct 23a to J	ct 25			
SUBCONTRACTOR	/ SUPPLIER			CGT				
SPECIFIED PRODU	CT OR SYSTEM			Lotrak 100 no	n woven	geotextile		
PROPOSED PRODUMANUFACTURER	JCT OR SYSTEM AI	ND		Terrablue - Lotrak 100 no	n woven	geotextile		
CONTRACT SPECIF	-ICATION			Volume 2 work specification A 600 Earthwork	Appendic			
DEVIATION FROM	CURRENT SPECIFI	CATION, IF A	NY	Increased stre kN/M Cbr Puncture 1500N	_			
DRAWING REFERE	NCE			HA549342-AM 000602 /601	AR-HGT-	SWI-DR-CE-		
WHERE TO BE USE	:D			Separation fro and 6N	m cohes	ive material		
OFFSITE OR PRE-D	ELIVERY INSPECT	ION REQUIR	ED	NO ⊠ (If Yes, see page 2)				
ON-SITE MOCK UP	REQUIRED			NO ⊠ (If Yes, see page 2)				
SAMPLE REQUIRE	D			NO ⊠ (If Yes, see page 2)				
TECHNICAL LITERA	ATURE/CATALOGU	JE REQUIRED)	YES 🖂				
TEST CERTIFICATE	REQUIRED			NO ⊠ (if Yes, see page 2)				
COSHH ASSESSME	NTS REQUIRED			NO ⊠ (if Yes, see page 2)				
PLANNED DATE FO	R INCORPORATIO	ON INTO THE						
SUBCONTRACTOR	SUBCONTRACTOR/SUPPLIER COMMENTS:							
Signed:		Name:	Wi	II Huskinson	Date:	08/02/18		
SITE TEAM COMME								
Signed:		Name:	Α.	F.D'Rozario	Date:	9 th Feb 18		

DESIGNER/ SPECIFII	ER COMMENTS:				
Y MATERIAL/ SY	STEM ACCEPTED		MATERIAL/ SYSTE	M NOT A	CCEPTED
Signed for designer	Name:	G Sun	nmerfield	Date:	15/2/18
	ORTING DOCUMENTS PPLIED, MOCK-UPS A				
ITEM	TITL	E		No. OF PAGES	NOTES
1	Product information			2	Technical Data Sheet.pdf
2	Lotrak Non-woven spec sheet	1	Lotrak Non woven spec sheet.pdf		
3	Don and Low BSI Certificate of Registration			1	Don and Low BSI Certificate of Regist

Home (http://terrablue.co.uk/)

Lotrak 100

Nonwoven separation and filtration geotextile

Lotrak [®] 100 is a mechanically bonded nonwoven geotextile, with market established technical and hydraulic properties to address everyday, industry requirements of separation and filtration.

Lotrak [®] 100 is an effective separator beneath selected granular materials, and for lining french or narrow trench drains.

The main purpose of this geotextile is to prevent the loss of construction aggregates into the underlying soil.

- Proven separator
- CBR 1S00N
- Tensile strength 8 kN x 8 kN

Roll size; 4.Smt x 100mt

(http://terrablue.co.uk/wp-content/uploads/2016/09/lotra 100.jpg)

Lotrak 100

Proudly powered by WordPress (http://wordpress.org/) I Theme: Sydney

Home (http://terrablue.co.uk/)

About Terra Blue (http://terrablue.co.uk/index.php/about-us/) Our Products

Blog (http://terrablue.co.uk/index.php/blog-2/)

Downloads (http://terrablue.co.uk/index.php/downloads/)

Get in Touch (http://terrablue.co.uk/index.php/contact/)

Lotrak® nonwoven grades

Technical Data

Test	Standard		100	200	300
Tensile Strength	EN 10319	MD	8	18	25
(kN / m)	EN 10319	CD	8	18	25
Elongation at max. load	EN 40240	MD	45	50	65
(%)	EN 10319	CD	45	50	65
CBR Puncture Resistance	EN ISO 12236		1500	2900	4300
Cone Drop Penetration (mm)	EN 13433		36	18	13
Pore Size 90% finer than (microns)	EN ISO 12956		100	70	70
Water Permeability (m / sec)	EN ISO 11058		130x10 ⁻³	80x10 ⁻³	65x10 ⁻³
Effect of UV Light			The Poly	propylene used contains a U\	/ inhibitor
Weight (g/m²)			100	200	300
Roll Size		Width	4.5	4.5	4.5
		Length	100	100	100

All products are manufactured under BS EN ISO 9001.

Don & Low reserves the right to change specifications or other product information. Don & Low accepts no responsibility or liability for information provided by third parties. No warranties, express or implied, are offered regarding the suitability of any product for your use, as site conditions and customer requirements vary. Should you require further information, please contact us. Products are sold subject to the seller's terms and conditions of sale. No warranty or immunity is offered against infringement of patents or other intellectual property rights.

©Don & Low Limited, 2013. The intellectual property in the products is owned and protected by Don & Low or its licensors.

bsi.

Certificate of Registration

QUALITY MANAGEMENT SYSTEM - ISO 9001:2008

This is to certify that: Don & Low Ltd

Technical Textiles Division Newford Park House

Glamis Road Forfar 008 IFR United Kingdom

Holds Certificate Number: FM 23905

and operates a Quality Management System which complies with the requirements of ISO 9001:2008 for following scope:

The manufacture and development of polyolefin tapes and yarns from 15 to 1000 tex with various cross sections. The manufacture, development and supply of woven polypropylene fabrics in widths up to 5 metres f9r industrial end uses. manufacture and supply of regranulated polypropylene pellets.

For and on behalf of BSI:

Frank Lee, EMEA Compliance & Risk Director

Original Registration Date: 19/04/1993

Latest Revision Date: 08/09/2015

Effective Date: 24/10/2015 Expiry Date: 23/10/2018

Page: 1 of 1

...making excellence a habit□

This certificate was issued electronically and remains the property of BS! and is bound by the conditions of contract. An electronic certificate can be authenticated **online**. Printed copies can be validated at <u>www.bsigroup.com/ClientDirectory</u>

MAR **DATE PROCUREMENT REF. NUMBER** MATERIAL APPROVAL REQUEST 0165 27.10.2017 CONTRACT: M1 Jct 23a to Jct 25 Walker Sign Erectors Ltd/ SUBCONTRACTOR/ SUPPLIER Bettamix Concrete Limited - Volumetric Concrete Supplier Unit 1 Every Street, Bury, BL9 5BE. SPECIFIED PRODUCT OR SYSTEM Concrete PROPOSED PRODUCT OR SYSTEM AND C35/45 S4 MANUFACTURER Series 1200 CONTRACT SPECIFICATION Series 1700 **DEVIATION FROM CURRENT SPECIFICATION, IF ANY** None Pad Reinforced Drawings: HA549342-AMAR-SMN-DRAWING REFERENCE SWI-DR-CB-160003 to 160005 To be used for the construction of sign bases as WHERE TO BE USED per Appendix 12/1 and 17/1 NO ⊠ (If Yes, see page 2) YES OFFSITE OR PRE-DELIVERY INSPECTION REQUIRED **ON-SITE MOCK UP REQUIRED** YES NO \boxtimes (If Yes, see page 2) YES SAMPLE REQUIRED $NO \boxtimes (If Yes, see page 2)$ YES 🖂 TECHNICAL LITERATURE/CATALOGUE REQUIRED NO (If Yes, see page 2) YES 🖂 TEST CERTIFICATE REQUIRED NO (if Yes, see page 2) COSHH ASSESSMENTS REQUIRED YES NO \boxtimes (if Yes, see page 2) PLANNED DATE FOR INCORPORATION INTO THE October/November 2017 WORKS: SUBCONTRACTOR/SUPPLIER COMMENTS: Revision 2 - correction to S4 slump Revision 3 - Increased cement content to achieve Max water Cement Ratio - 0.45. Signed: S. Hutchinson Date: R3 05.02.2018 Name: SITE TEAM COMMENTS: Revised mix submitted 6th Feb 18 A.F.D'Rozario 6th Feb 18 Signed: Name: Date:

Costain Galliford Try Smart Motorways Joint Venture

Material Approval Request

DESIGNER/ SPECIFIER COMMENTS:

C35/45 should conform to mix 2 of 1700 series specification. Max water/cement ratio should be 0.45. Please submit new mix design

Revision dates 19/01/18 accepted

✓ MATERIAL/ SYSTEM ACCEPTED			MATERIAL/ SYSTEM	M NOT AC	CEPTED		
	gned for esigner			Name:	Josh Palmer	Date:	6 th Feb 2018

LIST OF SUPPORTING DOCUMENTS, INCLUDING RECORDS OF SAMPLES SUPPLIED, MOCK-UPS AND OFF SITE INSPECTIONS

ITEM	TITLE	No. OF PAGES	NOTES
1	Mix Design C35/45	1	PDF
2	Additional Test Certs Sulphates Alkali, Chloride	3	WSEL - C35.45
3	ISO 9001:2015	2	Bettamix - Doc Evide
4	Kite Mark 206	1	

	Cor	ncrete Mix De	sign	THE QUALITY SCHEME FOR READY MIXED CONCRETE 009
Customer Name:				
Site Address:	MI J23a - 25		-	
Quotation Number:	N/A			
Supplying Plant/s:	Burv Plant			
		oncrete mix designs for th	an above contract	
		_	ueries, please contact us.	
Quote Mix Number:	51			
Concrete Description:	C35/45			-
Nom. Aggregate Size (mm):	20	_		
Cement Type:	CEM 1 52.5			
Slump (mm):	54			
Minimum Cement Content:	480			
Max. Water/Cement Ratio:	0.45			
Exposure Class(s):	XF4,XC4,XD3			
Design Chemical Class:	DC-1			
Design	Saturated Surface Dry	Masses for One Cubic Me	etre (Units kg)	
Cement (kg):	480			
Addition (kg):	0			
Blend Proportion(%):				
Aggregate 1. (kg):	1098			
Aggregate 2 (kg):	695			
Aggregate 3 (kg):	0			
Aggregate 4 (kg):	0			
Fine Aggregate Content(%):	47			
Admixture 1.:	0.0			
Admixture 2:	0.0			
Admixture 3:	0.0			
Hand Added Material 1.:	0.0			
Hand Added Material 2:	0.0			
Water/Cement Ratio:	0.45			
1107	to the concincion decide	m the above concrete m	ix designs.	1
Cement: Addition:	CEM 1 52.5	Ribblesdale-Hanson		
	0/ 4/00	Destrict		
Aggregate 1.:	Stone 4/20 Sand 0/2	Doveh <u>oles</u> Doveholes		
Aggregate 2: Aggregate 3:	Sanu 0/2	Doveroles	·-0	
Aggregate 4:		1		
Admixture 1.:		l		
Admixture 2:	1-		/	
Admixture 3:	•	_		
Hand Added Material 1			ī	
		<u> </u>		-
Hand Added Material 2:				
		omments		
Quote Mix Number:5_1	C35/45			4
			_	

All information contained above is correct at the time of issue, but may change

All cwill 140 the qually cequ:.ement. ofou, ,y,tem.

Authorised By:

Date of Issa

Bettamix Concrete

Name Julie Hanley

Signed

ON SITE DELIVERIES DAY AND NIGHT

Helping Build Solid Foundations
Below is the calculated alkali content for the most onerous mix requested. Calculations in accordance with BRE Digest 330 and BS 8500 pt 2

EQUIVALENT ALKALI CONTENT

Contractor Contract	Walker Signs		Agg Reactivity\CEM I	=0.6% alkali</th <th><!--=0.75% alkali</th--><th>>0.75% alkali</th></th>	=0.75% alkali</th <th>>0.75% alkali</th>	>0.75% alkali
Contract			Low	No Calc. Required	No Calc. Required	5kg
	M1 J23a - 25		Normal	CEM I No Calc. Required. Blended cement 3.5kg	3.5kg 3.5kg	3kg 3kg
			High	2.5kg	2.5kg	2.5kg
Supplying Plant	Bettamix Concrete		Aggregate reactive	vity for this concrete	Normal	
Mix Details	C35/C45		Max Alkali for I	Mix kg/m3	3.5	
<u>Materials</u>	Kg/m ³	% Alkali content				
CEM 1	480 x	0.75		CEM 1 Contribution	n	2.70
Contributions from or low or normal reactivity of PFA is included in the mix of PFA is included in the mix of PFA is included in the mix of PFA is included in the mix of high reactivity aggregates of PFA is included in the mix of PFA is included	nggregates. at >/= 25% then no further at 20-24% then add PFA k at < 20% then add PFA kg s at >/= 35% then no furthen	gs X %alkali X 0.2. s X %alkali calculation is required.	(Factor = 0) (Factor = 0.2) (Factor = 1) (Factor = 0) (Factor = 1)			
or low or normal reactivity of GGBS is included in the mix GGBS is included in the mix GGBS is included in the mix or high reactivity aggregates. GGBS is included in the mix GGBS is included in the mix GGBS is included in the mix aggregates.	x at $>/= 40%$ then no further x at $25-39%$ then add GGE x at $< 25%$ then add GGB. x at x x x x x x x x x x	S kgs X %alkali X 0.5. S kgs X %alkali. er calculation is required.	(Factor = 0) (Factor = 0.5) (Factor = 1) (Factor = 0) (Factor = 1) Factor			
<u>GGBS</u>	0 x	0.00	x 0.00	Addition Contributi	on	0.00
Contributions from	other sources (add	led if the sum total ex	ceeds 0.2kg/m3)	Others Contribution		
<u>VRA</u>	0 x	0.00	1	0.00		
<u>AEA</u>	0 x	0.00	1	0.00		
<u>VATER</u>	0 x	0.00 % Chloride content	Factor	0.00		
/20mm Aggregate	1098 x	0.010	x 0.76	0.08		
Sand	695 x	0.001	x 0.76	0.01		
		Total Contribution fr	rom other sources	0.09	Add if >/=0.2kg	0.00
	Alkali	i Content =	2.70	Kg/m ³		
	Tikan		2.10	116/111		
	This Con	ncrete Conforms	with EN206 & F	3S8500 pt 2		

Date

02-Feb-18

CHLORIDE ION CONTENT

Below is the calculated Chloride content, expressed as a % of cement weight for the most onerous mix requested.

Contractor	Walker Signs							
Contract	M1 J23a - 25							
Supply Plant(s)	Bettamix Concret e							
Mix Details	C34/C45							
<u>Materials</u>	Kg/m ³	% Chloride content	Contribution kg/m3					
<u>CEM 1</u>	480 x	0.07	0.34					
WRA	0.00 x	0.00	0.00					
<u>AEA</u>	0 x	0.00	0.00					
4/20mm Aggregate	1098 x	0.01	0.11					
Sand	695 x	0.001	0.01					
		Total Chlorides per m3 =	0.45					
The Total Chloride contribu	tion is now expressed	as a percentage of the total coment of	entant thus					

The Total Chloride contribution is now expressed as a percentage of the total cement content thus

Signed

Name

Julie Hanley

Chloride Content	= 0.09 % by mass cement
This Concrete	Conforms with EN206 & BS8500 pt 2

Date

02-Feb-18

SULPHATE CONTENT

Below is the calculated Sulphate content, expressed as a % of cement weight for the most onerous mix requested.

Contractor	Walker Signs								
Contract	M1 J23a - 25								
Supply Plant(s)	Bettamix Concrete								
Mix Details	C35/45								
<u>Materials</u>	Kg/m^3	% Sulphate content	Contribution kg/m3						
<u>CEM 1</u>	480 x	3.33	15.98						
<u>WRA</u>	0.00 x	0.00	0.00						
<u>AEA</u>	0 x	0.00	0.00						
4/20mm Aggregate	1098 x	0.80	8.78						
Sand	695 x	0.001	0.01						
		Total Sulphates per m3 =	24.77						
The Total Chloride contribut	tion is now expressed	as a percentage of the total cement or	antont						

The Total Chloride contribution is now expressed as a percentage of the total cement content

Sulph	ate Conte	ent =	5.16 % by mass cement					
	This Concrete Conforms with SHW 2602							
Name	Julie Hanley	Signed			Date	02-Feb-18		

bsi.

Certificate of Registration

QUALITY MANAGEMENT SYSTEM - ISO 9001:2015

This is to certify that:

Bettamix Concrete Limited

Unit 1

Every Street

Bury BL9 SBE

United Kingdom

Holds Certificate Number: FS 639381

and operates a Quality Management System which complies with the requirements of ISO 9001:2015 for the following scope:

Please see scope page.

Andrew Launn, EMEA Sys Cert Ops & Compliance Director

Original Registration Date: 2016-03-21 Latest Revision Date: 2017-07-03

For and on behalf of BSI:

Effective Date: 2016-03-21 Expiry Date: 2019-03-20

Page: 1 of 2

...making excellence a habiC

This certificate was issued electron, cally and remains the property of BS! and is bound by the conditions of contract. An electronic certificate can be authenticated <u>online</u>.

Printed copies can be validated at www.bsigroup.com/ClientDirectory

Certificate No: FS 639381

Registered Scope:

The manufacture and supply of concrete pre-mixes and products. The supply, installation and repair of fences for infrastructure works in accordance with National Highway Sector Scheme 2A. The supply, installation, maintenance and repair of vehicle restraint systems in accordance with National Highway Sector Scheme 2B. The management of static temporary traffic management on motorways and high speed dual carriageways including on-line widening schemes in accordance with National Highway Sector Scheme 12A/12B. The natural environment and landscape including ecology for infrastructure in accordance with National Highway Sector Scheme 18C, Landscape Maintenance, including litter picking, maintenance of established trees and shrubs, arboricultural work, tree and vegetation removal, hedgerow and verge maintenance (including mowing).

Original Registration Date: 2016-03-21 Effective Date: 2016-03-21 Latest Revision Date: 2017-07-03 Expiry Date: 2019-03-20

Page: 2 of 2

This cert1flcdte wds issued electronically and rermiins the property of [351 and Is bound by the conditions of contract. /In electronic certificate can be authenticated <u>online</u>.

Printed copies can be validated at www.bs1group.com/ClientDirectory

•I.Certificate of Entitlement to use the

to use the

Kitemark

BS EN 206 & BS 8500

in respect of concrete supplied from Mobile Concrete Batching Units conforming to BS EN 206 and BS 8500-2 under a Quality System complying with ISO 9001.

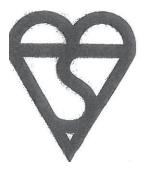
The BSI Kitemark Scheme for Ready-Mixed Concrete is Accredited by UKAS, the UK Accreditation Service.

KITEMARK UCENCE No. KM 562981

The Kitemark Scheme Certification Technical Manager, BSI, hereby confirms that

Bettamix Concrete Limited

Unit 1 **Every Street** Bury Lancashire **BL9 SBE United Kingdom**


For mobile batching units identified as:

PO62 BFJ; MD16 LVU.

is entitled to use the Kitemark in accordance with the Conditions governing the use of the Kitemark.

Mike Wharton, 1st January 2017

Certificate of Entitlement valid to: 31st December 2017

...making excellence a habit:

This Certificate remains the property olBSI and shall be returned immediately upon request.

DATE

PROCUREMENT

MAR

11/01/18	MATER	RIAL APPR	ROVAL	REQUES	T	,	REF. NUMBER 0218
CONTRACT:				M1 Jct 23a	to Jct 25	5	
SUBCONTRACTOR	Fencing Partnership/Severn Bore Piling/Hanson Readymix						
SPECIFIED PRODU	Concrete						
PROPOSED PROD MANUFACTURER	UCT OR SYSTEM A	AND		C35/45			
CONTRACT SPECI	FICATION			SHW 1700 se	eries		
DEVIATION FROM	None						
DRAWING REFERE	ENCE			HA549342- 160002 & 3		SMA	-SWI-DR-CB-
WHERE TO BE USI	ĒD			Bored piles for Environmental Barrier			
OFFSITE OR PRE-I	DELIVERY INSPEC	TION REQUIR	RED	YES	NO 🖂 ((If Ye	es, see page 2)
ON-SITE MOCK UP	REQUIRED			YES ☐ NO ☒ (If Yes, see page 2)			
SAMPLE REQUIRE	D			YES ☐ NO ☒ (If Yes, see page 2)			es, see page 2)
TECHNICAL LITER	ATURE/CATALOG	UE REQUIRE	D	YES ⊠ NO ☐ (If Yes, see page 2)			es, see page 2)
TEST CERTIFICAT	E REQUIRED			YES 🗌	NO 🖂 ((if Ye	es, see page 2)
COSHH ASSESSM	ENTS REQUIRED			YES⊠ NO ☐ (if Yes, see page 2)			es, see page 2)
PLANNED DATE FOR INCORPORATION INTO THE WORKS:				January 18			
SUBCONTRACTOR/SUPPLIER COMMENTS:							
Signed:		Name:	Ма	rk Saunders	Dat	e:	10 th Jan 18
SITE TEAM COMMI	ENTS:						
Signed:		Name:	Δ	F D'Rozario	Dat	Δ.	11 th Jan 18

DES	IGNER/ SPE	CIFIER COMMENTS:.					
√	MATERIAL	/ SYSTEM ACCEPTED		MATERIAL/ SYSTEM NOT ACCEPTED			
	gned for esigner		Name:	•	Josh Palmer	Date:	11 Jan 2018

LIST OF SUPPORTING DOCUMENTS, INCLUDING RECORDS OF SAMPLES SUPPLIED, MOCK-UPS AND OFF SITE INSPECTIONS

ITEM	TITLE	No. OF PAGES	NOTES
1	Mix design	1	Hanson concrete Mix design certificat

CERTIFICATE OF CONCRETE COMPOSITION

Certificate No: 1950619118 28.11.2017 Page 1 of 1

Dated: 28.11.2017

Contractor:

Severn Bore Piling Ltd Leys Road BRIERLEY HILL West Midlands DY5 3UP UNITED KINGDOM

Site address:

JUNCTION 23A - 25 {JUNCTION 23A - 2 JUNCTION 23A - 25 NEWTON DE55 5TZ UNITED KINGDOM

Your Reference:

Customer Service Centre

One Marlborough Court SYSTON, LEICESTER Leicestershire LE7 1AD UNITED KINGDOM

South East Sales: 0330 123 9385 South Central East Sales: 0330 123 4732 Central East Sales: 0330 123 0267 London Sales: 0330 123 0799

Concrete Orders: 0330 123 0766

www.hanson.co.uk

Supplying plant: 3086 Nottingham Concrete

Supplying plant. 300	o Nottingham Concrete			ı
MATERIAL	DESCRIPTION	SUPPLIER	SOURCE	ADMIXTURE UNITS
CEMENT	CEMI	HANSON CEMENT	RIBBLESDALE	
ADDITION1	GGBS	HANSON CEMENT	TEESPORT	
Aggregate 1	GRAVEL QUARTZ 20	HANSON AGGREGATES	SHARDLOW QUARRY	
Aggregate 2	SAND	HANSON AGGREGATES	SHARDLOW QUARRY	
ADMIXTURE 1	SK160	SIKALTD		I/100 kg cement
		MIX SPECIFICATION	ONS	1
Quote Line ID	10			
MAT ID				
MIX/GRADE	C35/45			
DC/CL CLASS	DC3			
MAX AGG SIZE	20			
	CIIIA+SR			
CEMENT TYPE				
CONSISTENCE	S4			
MCC	380			
MAX W/C	0.40			
CHLORIDE %	0.30 %			
	SSD	CONCRETE COMPOSITIO	N ka/cubic metre	
CEMENT	215			
ADDITION1	215			
Aggregate 1	960			
Aggregate 2	786			
WATER	169			
		MINTURE BOOK SEC (SEE	LINUTO A DOVE'	
		MIXTURE DOSAGES (SEE	UNITS ABOVE)	ı
Admix 1 & 2	0.950			
Admix 3 & 4				
Admix 5 & 6]
Admix 7 & 8				
W/C Ratio	0.40	<u> </u>	1	<u> </u>
Alkali kg	1.81			
	· ·			1
CI % SO4 %	0.08 2.01	1		i

Material sources and proportions may change subject to quality and availability. Concrete is supplied in accordance with the requirements of the current edition of BS8500-2.

All orders are made on Hansons Standard Conditions of Sale, a	a copy of which are available at www.hanson.co.uk
	Otana and

MAR DATE **PROCUREMENT REF. NUMBER** MATERIAL APPROVAL REQUEST 0093 06/07/2017 CONTRACT: M1 Jct 23a to Jct 25 Van-Elle SUBCONTRACTOR/ SUPPLIER SPECIFIED PRODUCT OR SYSTEM Steel reinforcement Steel reinforcement from PROPOSED PRODUCT OR SYSTEM AND Total Construction Supplies Ltd & **MANUFACTURER Lemon Groundwork Solutions Ltd** 1600 & 1700 CONTRACT SPECIFICATION **DEVIATION FROM CURRENT SPECIFICATION, IF ANY** None DRAWING REFERENCE N/A Bored piles 450mm, 750mm and WHERE TO BE USED 900mm diameter. OFFSITE OR PRE-DELIVERY INSPECTION REQUIRED YES NO \boxtimes (If Yes, see page 2) NO \boxtimes (If Yes, see page 2) **ON-SITE MOCK UP REQUIRED** YES YES NO \boxtimes (If Yes, see page 2) SAMPLE REQUIRED YES NO \boxtimes (If Yes, see page 2) TECHNICAL LITERATURE/CATALOGUE REQUIRED TEST CERTIFICATE REQUIRED YES NO \boxtimes (if Yes, see page 2) COSHH ASSESSMENTS REQUIRED YES NO \boxtimes (if Yes, see page 2) PLANNED DATE FOR INCORPORATION INTO THE WORKS: 17/07/2017 SUBCONTRACTOR/SUPPLIER COMMENTS: Name: **Luke Gardiner** 06/07/2017 Signed: Date: SITE TEAM COMMENTS: Name: A.F.D'Rozario 6th July 17 Signed: Date:

	141	iateriai Approvai Negi					
DESIG	NER/ SPE	CIFIER COMMENTS:					
✓ N	VIATERIAL/	SYSTEM ACCEPTED		MATERIAL/ SYST	EM NOT AC	CEPTED	
	ned for signer		Name:	Denis Shapley	Date:	09/07/17	
LIST OF SUPPORTING DOCUMENTS, INCLUDING RECORDS OF SAMPLES SUPPLIED, MOCK-UPS AND OFF SITE INSPECTIONS							
				•			
				•			
	SAMPI		OCK-UPS	S AND OFF SITE I	NSPECTON No. OF	TIONS	

Product Conformity

CERTIFICATE OF APPROVAL

Product Conformity Certification

This is to certify that

Total Construction Supplies Limited

at its establishament at

Wolverhampton

has satisfied the Authority that it operates a quality management system that complies with the requirements of BS EN ISO 9001 2008 and the relevant CARES Quality and Operations Assessment Schedules. Where appropriate, and as listed below, it has further satisfied the Authority that it manufactures and/or supplies products that conform with the stated product standards and is entitled to use the CARES marks on its products using the processes and procedures registered with the Authority.

Scope of certification:

Processing of steel reinforcement to BS 8666 and BS 4466
Stocking and distribution of BS 4449, BS 4482 and BS 4483
Manufacture of pre-assembled MAG welded fabrications
using reinforcing bar in the size range 10 to 50mm to the relevant requirements of
BS 7123 and CARES Quality and Operations Assessment Schedules 6 and 10 using tack
welds and semi-structural joints produced under factory conditions

This certificate remains the property of the Authority and is issued subject to the Regulations of the Authority. This certificate is uncontrolled when printed. To check the validity of this certificate please visit www.ukcares.com or contact us on +44 1732 450000.

CERTIFICATE NUMBER

FIRST APPROVAL

ISSUE DATE

EXPIRY DATE

111101

November 2011

01 January 2017

31 December 2017

SIGNED FOR UK CERTIFICATION AUTHORITY FOR REINFORCING STEELS

Chief Executive Officer

The use of the Accreditation Mark indicates accreditation in respect of those activities covered by the accreditation certificate number 002. UK Certification Authority for Reinforcing Steels, Pembroke House, 21 Pembroke Road, Sevenoaks, Kent, TN13 1XR, UK. A Company Limited by Guarantee. Registered in England No. 1762448.

Cert. Ref. AllC112010 59201365

CERTIFICATE OF APPROVAL

Product Conformity Certification

This is to certify that

Lemon Groundwork Solutions Ltd

at its establishament at

Rugby

has satisfied the Authority that it operates a quality management system that complies with the requirements of BS EN ISO 9001 2008 and the relevant CARES Quality and Operations Assessment Schedules. Where appropriate, and as listed below, it has further satisfied the Authority that it manufactures and/or supplies products that conform with the stated product standards and is entitled to use the CARES marks on its products using the processes and procedures registered with the Authority.

Scope of certification:

Processing of steel reinforcement to BS 8666 and BS 4466 Stocking and distribution of BS 4449, BS 4482 and BS 4483

This certificate remains the property of the Authority and is issued subject to the Regulations of the Authority. This certificate is uncontrolled when printed. To check the validity of this certificate please visit www.ukcares.com or contact us on +44 1732 450000.

CERTIFICATENUMBER

FIRSTAPPROVAL

ISSUEDATE

EXPIRY DATE

950601

February 2000

01 January **201** *7*

31 December 2017

SIGNED FOR UK CERTIFICATION AUTHORITY FOR REINFORCING STEELS

lee Brankley, Chief Executive Officer

Theuse of the Accrediation Mork incicotes occreditation in resped of those octivities covered by the occreditation certificate num>er002. UKCertiliootion Authority for Reinfoteing Steels, Perrbroke House, 21 Perm.-oke Rood, So,enooks, Kent, TNI3 IXR, UK ACorrponylirrited by Guorontee. Regi, tered in England No. 1762448.

Cert. Ref:AIICI12010 26502 79

DATE		PROCUREMENT MATERIAL APPROVAL REQUEST					MAR REF. NUMBER	
06.07.2017							0097	
CONTRACT:		M1 Jct 23a to						
SUBCONTRACTOR/ SUPPLIER				Camel Pre-cast.				
SPECIFIED PRO	DUC	T OR SYSTEM			Pre-cast Br	ico Blocl	KS	
PROPOSED PRODUCT OR SYSTEM AND MANUFACTURER					Camel Pre-cast, Hoyle Mill, Kinsley, Pontefract, WF9 5JB			
CONTRACT SPE	CIFI	CATION			Series 600 -	- earthwo	orks	
DEVIATION FROM CURRENT SPECIFICATION, IF ANY					N/A			
DRAWING REFE	REN	ICE			Series 600 -	- earthwo	orks	
WHERE TO BE USED				Verges as an alternative to gabion baskets.				
OFFSITE OR PR	E-DE	LIVERY INSPECT	ION REQUIRE	ĒD	YES ☐ NO ☑ (If Yes, see page 2)			
ON-SITE MOCK	UP F	REQUIRED			YES ☐ NO ☑ (If Yes, see page 2)			
SAMPLE REQUI	RED				YES NO (If Yes, see page 2)			
TECHNICAL LIT	ERA	TURE/CATALOGU	JE REQUIRED)	YES ☑ NO ☐ (If Yes, see page 2)			
TEST CERTIFICA	ATE	REQUIRED			YES ⊠ NO ☐ (if Yes, see page 2)			
COSHH ASSESS	MEN	NTS REQUIRED			YES 🗌	NO 🖂 (if	f Yes, see page 2)	
PLANNED DATE WORKS:	FOF	RINCORPORATIO	N INTO THE					
	OR/S	SUPPLIER COMM	ENTS:					
Signed:			Name:	E	Ben Morris	Date	: 06.07.2017	
SITE TEAM COM	IMEN	NTS:						
Signed:			Name:	A.	F.D'Rozario	Date	e: 12 th July 17	

004

015

016

BRICO Brochure low res.pdf

> Prologis RW_ 27-01-10.pdf

2046_Structural design_Rev B.pdf

Lobslack 39444_Final Calcs re

terial Approval Request		Smart Mo	torways Joint Venture
IER COMMENTS:			
STEM ACCEPTED	MATERIAL/ SYSTE	M NOT AC	CCEPTED
Name:		Date:	
•			
TITLE	.	No. OF PAGES	NOTES
Camel pre-cast brid	co block data.	004	Brico earthwork retaining structure.
	STEM ACCEPTED Name: ORTING DOCUMENTS, PPLIED, MOCK-UPS AN	IER COMMENTS: STEM ACCEPTED Name: ORTING DOCUMENTS, INCLUDING RECO	IER COMMENTS: /STEM ACCEPTED Name: MATERIAL/ SYSTEM NOT ACCEPTED Name: Date: ORTING DOCUMENTS, INCLUDING RECORDS OF PLIED, MOCK-UPS AND OFF SITE INSPECTION TITLE No. OF PAGES

Camel pre-cast brico block installation brochure.

Brico block structure design calculations.

Example of Brico block structural design calculation

for previous scheme.

Lobslack 39444_Final Calcs rev.D

002

003

004

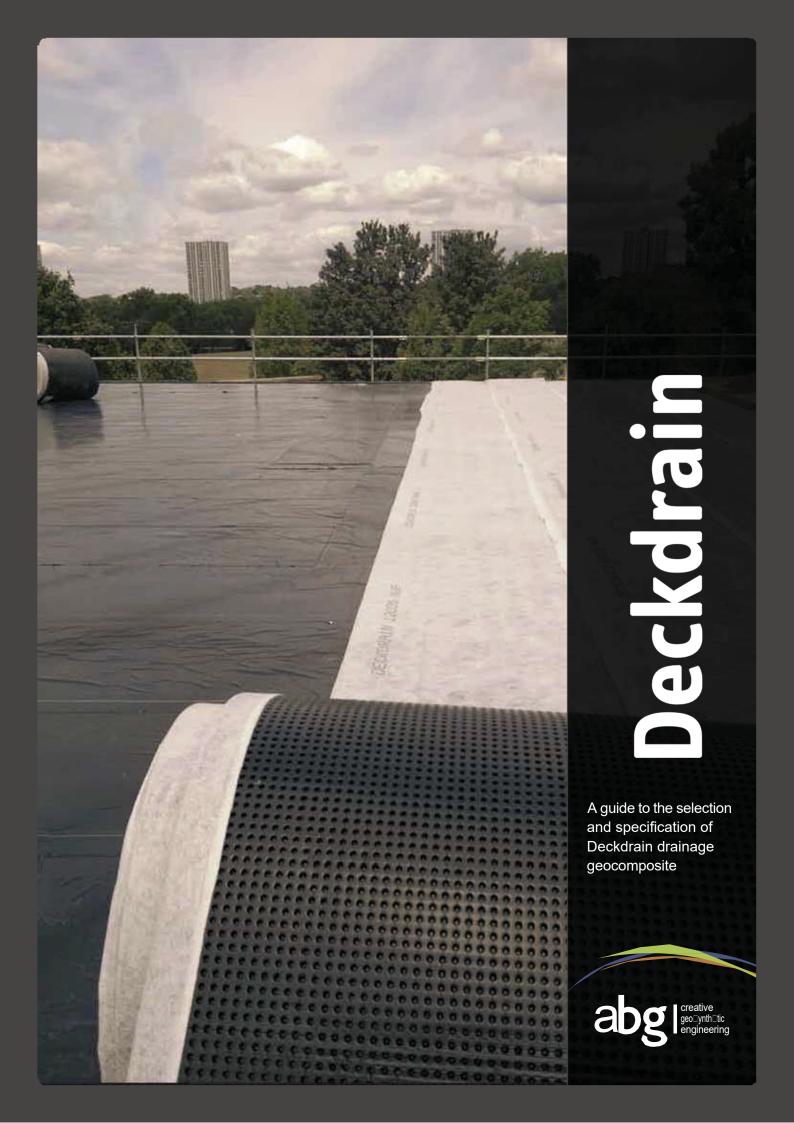
005

	MATERIAL APPROVAL REQUEST											
				RFI 399 sheet pile wall drainage.docx								
				backfill behind all cutting	sheet pile w	alls within a						
					\boxtimes							
				\boxtimes								
					\boxtimes							
					\boxtimes							
SUBCONTRA	CTOR/SUPPLIER COMM	MENTS:										
Signed:		Name:	Е	Ben Argyle	Date:	8/9/17						
SITE TEAM C	OMMENTS:											
Signed:		Name:	A.I	F.D'Roizario	Date:	8 th Sep 17						

	DESIGNER/ SPECIFIER COMMENTS: Drainage and Geotechnics both accept this product in accordance with RFI399										
✓ MATERIAL/ S	SYSTEM ACCEPTED	MATERIAL/ SYSTEM NOT ACCEPTED									
Signed for designer	Name:	Michael Jones	Date:	19/09/2017							
1	Catalogue		6	Catalogue.pdf							
2	RFI 399			RFI 399 sheet pile wall drainage.docx							
3	Datasheet			ABG DECK 1200S.ST170-D.CE.B							
4	Case study		2	ABG Structural Drainage Bridge Ab							
5	BBA cert		8	Deckdrain BBA certificate.pdf							

Deckdrain 1200s/st170

DECKDRAIN 1200S/ST170 is a geocomposite drainage layer comprising a high performance single cuspated HDPE (High Density Polyethylene) core with a geotextile filter thermally bonded to one side. The textile filter has a flap that extends beyond the core on one edge. The product is practically impermeable one side. It is used as an engineered drainage layer in structural applications, its major areas of use being behind retaining structures, on roof decks and in subsurface works.


Geocomposite Properties						
Thickness at 2kPa	(mm)	11.8			±10%	EN ISO 9863-1
Mass per unit area	(g/m2)	1 120			approx	EN ISO 9864
Usable Tensile strength MD / CMD	(kN/m)	18 / 11			-10%	EN ISO 10319
Elongation at above load MD / CMD	(%)	45 / 30			nominal	EN ISO 10319
CBR puncture resistance	(N)	2 750			-20%	EN ISO 12236
Perpendicular Water Inflow	(dimple	side only)				
Water flow at 50mm head	(I/m2·s)	67.5			±30%	EN ISO 11058
At 2kPa permeability (coefficient)	(m/s)	1.65 x 10 ⁻³			±30%	EN ISO 11058
Breakthrough head	(mm)	0				BS 6906 pt 3
In-plane water flow MD and CMD		HG = 1.0		HG = 0.1		<u>Hydraulic gradient</u>
at 20kPa confining pressure	(I/m·s)	4.25	±0.50	1.25	±0.20	EN ISO 12958
at 100kPa confining pressure	(I/m·s)	3.20	±0.50	0.85	±0.20	EN ISO 12958
at 200kPa confining pressure	(I/m·s)	1.80	±0.50	0.45	±0.20	EN ISO 12958
with soft foam contact surfaces to simu	ulate textil	e intrusion into t	he core due t	o soil pressure		
Resistance to weathering		To be covered	in 14 days			EN 12224
Resistance to chemicals		Excellent				EN 14030
Design life		120 years (man	ufacturer's de	eclaration)		
Geotextile Properties						
Thickness at 2kPa	(mm)	1.1			±20%	EN ISO 9863-1
Tensile strength MD/CMD	(kN/m)	14.5 / 15.5			-10%	EN ISO 10319
Pore size 0 ₉₀	(µm)	70			±30%	EN ISO 12956
CBR puncture resistance	(N)	2 200			-10%	EN ISO 12236
Dynamic perforation cone drop	(mm)	24			+13%	EN ISO 13433
Type and material	Non-wo	ven needle-punc	hed long stap	e fibre polyprop	ylene	
Product Dimensions						
Standard roll dimensions	1.1 m x 5	50 m or 2.2 m x 2	5 m. Other siz	es on request.		

Notes

- 1. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 2. The tolerance on roll length is 1.5% and on roll width is 1.0%.
- 3. Guidance on interface shear strength, creep and certain other parameters is available. Site specific tests are strongly recommended.
- 4. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.
- 5. Please refer to separate sheets for fixing instructions. A COSHH certificate is available on request.

Deckdrain

Deckdrain is a high performance geocomposite which offers an environmentally friendly alternative to traditional structural drainage techniques that utilise aggregates

Deckdrain consists a high strength flexible polyethylene cuspated core with a non-woven geotextile bonded onto one or both sides.

The geotextile filters a wide range of materials allowing water to perculate into the core to be efficiently transported away to a discharge point. The geotextile is bonded to the core to ensure that it does not deform into the drainage passages under the load of the backfill material allowing continuity of the drainage void.

The single cuspated HOPE core forms

Deckdrain Applications

A strong, robust geocomposite layer designed to:

- Relieve external water pressure from buried structures.
- Provide drainage behind retaining walls, potable water reservoir roofs and walls, tunnels, roof gardens
- Provide drainage under block paving.
- Relief of uplift pressure beneath tanks, slabs and culverts.
- Capillary break layer below base slabs.
- Deckdrain can be applied horizontally on roofs and below base slabs or vertically against walls.

a high-performance drainage layer with clear void to allow flow in all directions. The compressive strength and creep resistance properties of Deckdrain ensures that the core maintains its drainage capacity, even when subjected to compressive loads.

Deckdrain is durable and sufficiently robust to resist the mechanical stresses imposed during installation and throughout the design life.

Use of Deckdrain will eliminate the need for further protection of the waterproofing.

Advantages

When compared with aggregate drainage layers Deckdrain geocomposites are much thinner yet offer superior flow characteristics. This reduces dead loads associated with aggregate drainage layers and may reduce required thickness of the roof slab construction.

The wide roll Deckdrain composites are especially suited for rapid installation on large block paving or roof drainage projects.

Deckdrain enhances structural waterproofing performance by providing an additional barrier that prevents the majority of the water reaching the liner.

The high CBR puncture resistance of Deckdrain provides protection and prolongs the life of the waterproofing.

Installation

Deckdrain is easy to handle and is rapidly installed without the need for specialist plant.

Deckdrain has a built in geotextile overlap that ensures integrity of the drainage layer across the entire installation area.

Health safety and environment

All components of deckdrain are inert and do not present a hazard to health.

Supply

Deckdrain is Manufactured in 4mm, 6mm, 7mm, 12mm & 25mm thickness and I.Im, 2.2m or 4.4mm wide rolls.

Chemical resistance

Deckdrain has excellent resistance to petrol, oils, acid, alkalis, leachate and all common chemicals.

Deckdrain Advantages

- · Cost effective
- Allows us of lower specification backfill materials.
- · Reduced excavation and backfill.
- · Technically defined filter properties
- · High impact and crush strength.
- Long life performance and high flow capacity.
- Compatible with most waterproofing systems; provides additional protection to waterproofing system.
- Easy and quick to install.

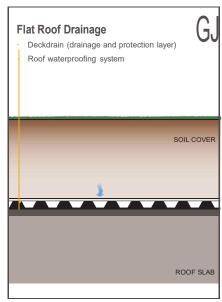
Structural Drainage

Deckdrain geocomposite drainage layer is ideal for structural drainage applications; it provides sub-surface drainage with higher performance and lower cost than conventional granular filters layers. It has been specially designed to be compatible with structural waterproofing and to give the optimum performance over the whole life of the structure.

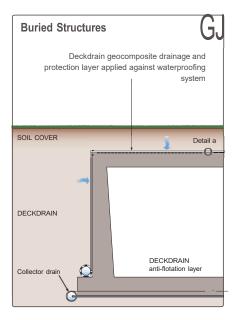
Deckdrain enhances the performance of the waterproofing systems by providing an additional barrier, preventing the majority of the water reaching the waterproofing system.

Deckdrain geocomposite drainage system has a proven record in structural drainage and offers a 120 year design life.

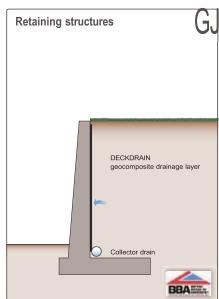
When installed on external faces of a buried structure Deckdrain collects and drains percolated groundwater from the backfill material. Installed with the flat face of the core against the structure and dimpled face against the backfill, Deckdrain also provides a high level of protection to the waterproofing system.



Retaining Structures


Deckdrain installed behind retaining structures acts as an efficient groundwater drainage system. Deckdrain provides a high-level of protection to the structure offering drainage capacity 10 to 50 times better than filter stone.

Applications

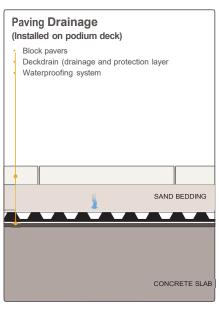

Potable water reservoirs, water/sewage treatment plants, pumping stations, basements and many other sub-surface applications. Deckdrain will resist the high loads of extremely deep basements and horizontal applications.

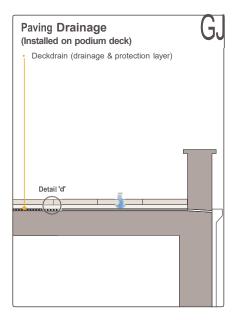
Block paving, roof and podium deck drainage

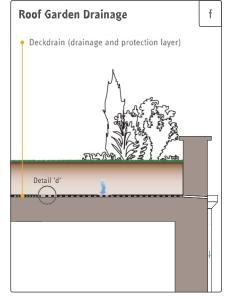
Deckdrain has a structure and the physical attributes to make it ideal for use in block paving drainage. Its hydraulic properties offer reliable and sustainable performance whilst the mechanical properties ensure the product endures the rigours of installation and long-term loading.

Its primary function is to collect and remove seepage water from the sand course below block paving. This helps prevent saturation of the sand, especially critical in constructions where traffic loading is expected and the foundation layer is relatively impermeable (e.g. concrete, asphalt, roof decks, etc.). In order for the sand course to provide adequate support to the blocks it must be relatively dry. If the sand becomes saturated with seepage water, the traffic load may liquifaction of the sand resulting pumping occuring through the joints. This condition is easily identified on existing sites by surface staining and open joints. In severe cases the blocks will be loose and uneven.

The solution is to lay Deckdrain below the sand to prevent the sand becoming saturated. Deckdrain also provides protection against puncture where a




waterproofing membrane is required below the block paving (e.g. rooftop car parks or tanked SuDS pavements).


Green roofs and podium decks

Deckdrain offers an effective and reliable drainage system for roof gardens and podium decks of all sizes.

The high CBR puncture resistance of Deckdrain protects the waterproofing from backfilling forces and root penetration.

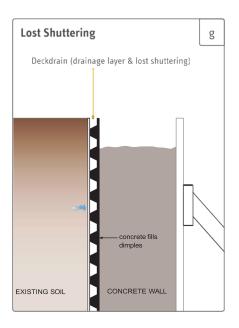
Special applications

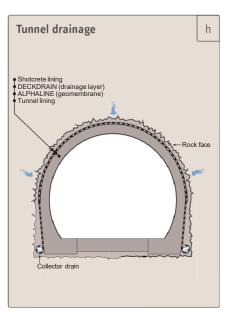
Deckdrain geocomposites are widely used in structural drainage applications where its high flow capacity and puncture resistance offer excellent drainage and protection properties.

Deckdrain provides a more environmentally acceptable solution than crushed stone drainage layers. It is lighter, uses less transport and helps conserve finite natural resources. Due to its high drainage properties Deckdrain often enables low grade recycled material to be used as backfill.

Lost shuttering

Deckdrain as a lost shuttering is installed with the flat face of the core towards the concrete and dimples against the existing soil. Poured concrete fills the dimples and Deckdrain becomes an integral part of the new structure. It acts as a groundwater drainage system providing a high level of protection to the new structure.




Deckdrain is highly effective for use in the structural drainage of cut and cover tunnel constructions.

In cut and cover tunnel constructions the use of Deckdrain provide a highly effective drainage zone. against the structure whilst offering the additional benefit of acting as a durable protection layer against the

chosen waterproofing system protecting it from damage during the construction phase of the project..

Deckdrain is a direct replacement for the granular drainage backfill, traditionally used in these constructions, thereby saving material movements and handling both during the excavation and backfilling operations.

Associated materials

ABG manufacture a complementary range of geosynthetic materials to help solve associated problems. When contemplating the many aspects of landfill and environmental projects the following products may enhance your overall design:

Alphaline Polyethylene and polypropylene

geomembranes

Claymat Geosynthetic clay liners

Abtex Geotextiles for separation,

protection and filtration

Erosamat Erosion control mats to stabilise exposed soil areas

Erosaweb Honeycomb web for slope

stabilisation and access roads

Webwall Environmental soil retaining

walls

ABG Service

ABG provide full service from initial consultation, design and specification through to advice on installation and on-going maintenance. Our in-house Technical Team, many of whom are charted civil engineers offer practical advice and guidance to the project team whilst ensuring that the requirements of the regulatory requirements and codes of practice are met.

Project design Design confirmation Feasibility study Cost advise System development

abg Itd. E7 Meltham Mills Rd, Meltham, West Yorkshire, HD9 4DS 01484 852096 e suds@abgltd.com wwww.abgltd.com @abg_ltd

Appendix E Pile Installation Records

- **E.1: Concrete Pile Installation Records**
- E.2: Sheet Pile Installation Records Northbound
- E.3: Sheet Pile Installation Records Southbound

E.1 - Summary of Concrete Pile Installation Records

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
ENV	EAV01-3	EAV01-3	6832	3.1	CFA	180	450	*C35/45 *DC3 *S4 · 10mm	2.775	42990
ENV	EAV02	EAV02	6832	3.5	CFA	180	450	· C35/45 •DC3 •S4 · 10mm	2.775	43399
ENV	EAV06-3	EAV06-3	6832	3.1	CFA	220	450	· C35/45 •DC3 •S4 · 10mm	2.775	42983
ENV	EAV07	P1	6832	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	2.8	43113
ссту	CCTV07	P1	6832	2.775	CFA	150	450	*C35/45 *DC3 *S4 •10mm	3	42972
Rottm	ROTTM-FTP-S8S-800y	P1	6816	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	3	42983
ссту	CCTV02	P1	6832	2.775	CFA	170	450	• C35/45 • DC3 • S4 • 10mm	3.1	42986
Small Sign	TS3	P5	6825	Full depth	CFA	210	450	•C35/45 •DC3 •S4 •10mm	3.1	42976
Small Sign	TS3	P6	6825	Full depth	CFA	150	450	•C35/45 •DC3 •S4 •10mm	3.1	42972
Small Sign	TS4	P5	6825	Full depth	CFA	180	450	• C35/45 • DC3 • S4 • 10mm	3.1	42977
Small Sign	TS4	P6	6825	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	3.1	42978
ссти	CCTV33	P1	6832	2.775	8ored	180	450	•C35/45 •DC3 •S4 •10mm	3.5	43064
ссту	CCTV33	P1	6832	2.775	8ored	180	450	•C35/45 •DC3 •S4 •10mm	3.5	43064
Small Sign	TS3	P2	6825	Full depth	CFA	150	450	*C35/45 *DC3 *S4 •10mm	4	42972
Small Sign	TS3	P3	6825	Full depth	CFA	150	450	•C35/45 •DC3 •S4 •10mm	4	42972
Rottm	ROTTM-FTP-S8S-800y	P2	6816	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	4.1	42984
Small Sign	TS3	P1	6825	Full depth	CFA	210	450	· C35/45 •DC3 •S4 · 10mm	4.1	42976
Small Sign	TS3	P4	6825	Full depth	CFA	210	450	•C35/45 •DC3 •S4 •10mm	4.1	42976

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Small Sign	TS4	P3	6825	Full depth	CFA	200	450	*C35/45 *DC3 *S4 •10mm	4.1	42978
Small Sign	TS4	P4	6825	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	4.1	42977
Small Sign	TS4	P1	6825	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	4.2	42977
Small Sign	TS4	P2	6825	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	4.2	42968
Small Sign	N831	P1	6825	4.825	CFA	220	450	•C35/45 •DC3 •S4 •10mm	4.825	43013
ссти	CCTV8	P1	6832	4.775	CFA	160	450	• C35/45 • DC3 • S4 • 10mm	5	43055
Small Sign	N8S05	P1	6832	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	5	43041
Small Sign	N8S05	P2	6832	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	5	43040
Radar	RAD16	RAD16	6832	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	5	43003
Radar	RAD27	P1	6832	4.77	8ored	180	450	• C35/45 • DC3 • S4 • 10mm	5	43105
Radar	RAD19	RAD19	6832	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	5.1	42999
Small Sign	S892	P1	6832	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.1	42979
Small Sign	S892	P2	6832	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	5.1	42982
Small Sign	TS1	P1	6825	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	5.15	42989
Small Sign	TS1	P2	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.15	42990
Small Sign	TS1	P3	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.15	42990
Small Sign	TS1	P4	6825	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	5.15	42989
Small Sign	TS1	P5	6825	Full depth	CFA	200	450	*C35/45 *DC3 *S4 •10mm	5.15	42989
Small Sign	TS1	P6	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.15	42990

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Small Sign	N841	P1	6825	4.825	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.2	42997
Small Sign	N841	P2	6825	4.825	CFA	200	450	•C35/45 •DC3 •S4 •10mm	52	42998
Radar	RAD03	RAD03	6832	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.2	42986
Radar	RAD06	RAD06	6832	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	5.2	42985
Radar	RAD17	RAD17	6832	Full depth	CFA	220	450	*C35/45 *DC3 *S4 •10mm	5.2	43012
Small Sign	S869	P1	6825	Full depth	CFA	170	450	• C35/45 • DC3 • S4 • 10mm	5.2	43000
Small Sign	S869	P2	6825	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	5.2	43003
Small Sign	S869	P3	6825	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	5.2	43003
Small Sign	S869	P4	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.2	43000
Small Sign	TS2	P2	6825	Full depth	CFA	180	450	*C35/45 *DC3 *S4 *10mm	5.2	42991
Radar	RAD01	RAD01	6832	Full depth	CFA	180	450	•C40/45 •DC3 •S4 •10mm	5.3	42969
Radar	RAD06	P1	6832	Full depth	CFA	190	450	•C35/45 •DC3 •S4 •10mm	5.3	42996
Small Sign	TS1	P7	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.3	42990
Small Sign	TS1	P8	6825	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	5.3	42989
Small Sign	TS2	P3	6825	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	5.3	42991
Radar	RAD05	P1	6832	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	5.4	42993
Radar	RAD15	RAD15	6832	Full depth	CFA	200	450	• C35/45 • DC3 • S4 • 10mm	5.4	43004
Small Sign	TS2	P1	6825	Full depth	CFA	170	450	*C35/45 *DC3 *S4 •10mm	5.4	42992
Small Sign	TS2	P4	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.4	42992

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Small Sign	TS2	P6	6825	Full depth	CFA	180	450	*C35/45 *DC3 *S4 •10mm	5.4	42991
Small Sign	TS2	P7	6825	Full depth	CFA	200	450	· C35/45 •DC3 •S4 · 10mm	5.4	42991
ENV	EAV03	EAV03	6832	4.775	CFA	220	450	•C35/45 •DC3 •S4 •10mm	5.5	43042
Small Sign	N831	P2	6825	4.825	CFA	160	450	•C35/45 •DC3 •S4 •10mm	5.5	43012
Small Sign	N831	P3	6825	4.825	CFA	160	450	•C35/45 •DC3 •S4 •10mm	5.5	43012
Small Sign	N831	P4	6825	5.825	CFA	220	450	• C35/45 • DC3 • S4 • 10mm	5.5	43013
Small Sign	N852	P1	6832	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	5.5	43150
Small Sign	N858	P2	6832	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	5.5	43145
Radar	RAD28	RAD28	6832	Full depth	CFA	185	450	•C35/45 •DC3 •S4 •10mm	5.5	43150
Radar	RAD30	RAD30	6832	Full depth	CFA	180	450	*C35/45 *DC3 *S4 •10mm	5.5	43150
Radar	RAD30	RAD30	6832	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	5.5	43151
Radar	RAD34	RAD34	6832	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.5	43151
Radar	RAD36	RAD36	6832	Full depth	CFA	190	450	•C35/45 •DC3 •S4 •10mm	5.5	43154
Small Sign	S837	P1	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.5	43010
Small Sign	S837	P2	6825	Full depth	CFA	160	450	•C35/45 •DC3 •S4 •10mm	5.5	43011
Small Sign	S837	P3	6825	Full depth	CFA	160	450	*C35/45 *DC3 *S4 *10mm	5.5	43011
Small Sign	S837	P4	6825	Full depth	CFA	170	450	• C35/45 • DC3 • S4 • 10mm	5.5	43011
Small Sign	\$872	P1	6825	Full depth	CFA	220	450	*C35/45 *DC3 *S4 •10mm	5.5	43005
Small Sign	S872	P2	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.5	43004

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Small Sign	TS2	P5	6825	Full depth	CFA	170	450	*C35/45 *DC3 *S4 •10mm	5.5	42992
ссту	CCTV14	P1	12825	Full depth	CFA	170	750	•C35/45 •DC3 •S4 •10mm	5.5	43109
ссту	CCTV19	P1	12825	Full depth	CFA	170	750	•C35/45 •DC3 •S4 •10mm	5.5	43112
ссту	CCTV22	CCTV22	12825	4.8	CFA	200	750	•C35/45 •DC3 •S4 •10mm	5.5	43076
ссти	CCTV24	CCTV24	12825	4.8	CFA	170	750	•C35/45 •DC3 •S4 •10mm	5.5	43132
ссту	CCTV25	CCTV25	12825	4.8	CFA	170	750	• C35/45 • DC3 • S4 • 10mm	5.5	43140
ссти	CCTV26	CCTV26	12825	4.8	CFA	180	750	•C35/45 •DC3 •S4 •10mm	5.5	43131
ссти	CCTV27	CCTV27	12825	4.8	CFA	210	750	•C35/45 •DC3 •S4 •10mm	5.5	43449
Radar	RAD11	P1	12825	4.8	8ored	165	750	•C32/45 •DC3 •S4 •10mm	5.5	43056
Radar	RAD20	P1	6832	4.775	8ored	200	450	*C32/45 *DC3 *S4 •10mm	5.5	43110
ссту	CCTV04	P1	12825	Full depth	CFA	230	750	•C35/45 •DC3 •S4 •10mm	5.6	43025
ссти	CCTV12	P1	6832	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	5.7	43115
Small Sign	N830	P2	6832	4.775	CFA	240	450	•C35/45 •DC3 •S4 •10mm	5.7	43025
Radar	RAD21	RAD21	6832	Full depth	CFA	160	450	•C35/45 •DC3 •S4 •10mm	5.7	43031
Radar	RAD23	RAD23	6832	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	5.7	43018
Small Sign	\$840	P1	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.7	43014
Small Sign	S854	P1	6825	Full depth	CFA	170	450	• C35/45 • DC3 • S4 • 10mm	5.7	43029
Small Sign	S854	P2	6825	Full depth	CFA	180	450	*C35/45 *DC3 *S4 •10mm	5.7	43015
Small Sign	TS2	P8	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.7	42992

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Radar	RAD24	P1	6832	4.775	8ored	180	450	•C32/45 •DC3 •S4 •10mm	5.7	43109
Small Sign	N830	P1	6832	4.775	CFA	180	450	•C35/45 •DC3 •S4 •10mm	5.8	43026
Small Sign	N842	P1	6825	4.825	CFA	190	450	•C35/45 •DC3 •S4 •10mm	5.8	42998
Small Sign	N842	P2	6825	4.825	CFA	200	450	*C35/45 *DC3 *S4 •10mm	5.8	42999
Small Sign	N842	P3	6825	4.825	CFA	200	450	· C35/45 •DC3 •S4 · 10mm	5.8	42999
Small Sign	N842	P4	6825	4.825	CFA	190	450	•C35/45 •DC3 •S4 •10mm	5.8	42999
Radar	RAD33	RAD33	6832	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.8	43151
Small Sign	S855	P1	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.8	43006
Small Sign	S855	P2	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.8	43007
Small Sign	S854	P3	6825	Full depth	CFA	180	450	*C35/45 *DC3 *S4 *10mm	5.9	43015
Small Sign	S854	P4	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	5.9	43029
CCTV	CCTV15	P1	12825	Full depth	CFA	200	750	•C35/45 •DC3 •S4 •10mm	6	43028
CCTV	CCTV31	CCTV31	12825	4.8	CFA	190	750	•C35/45 •DC3 •S4 •10mm	6	43125
CCTV	CCTV34	P1	12825	Full Depth	CFA	170	750	•C35/45 •DC3 •S4 •10mm	6	43118
Radar	RAD14	RAD14	6832	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	6.2	43041
CCTV	CCTV21	CCTV21	12825	5.3	CFA	200	750	•C35/45 •DC3 •S4 •10mm	6.5	43075
Radar	RAD18 S8 G326	P1	12825	4.8	8ored	200	750	•C32/45 •DC3 •S4 •10mm	6.5	43066
Small Sign	N844	P1	6825	Full depth	CFA	190	450	*C35/45 *DC3 *S4 •10mm	7	43116
Radar	RAD22	P1 Anchor	40mm Dywidag 8ar	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	7	43033

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Radar	RAD22	P2 Anchor	40mm Dywidag 8ar	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	7	43033
Small Sign	S840	P2	6832	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	7	43017
ссти	CCTV17	P1	12825	Full depth	CFA	160	750	•C35/45 •DC3 •S4 •10mm	7	43032
Gantry	G323	P1	12825	6.8	8ored	180	750	•C32/45 •DC3 •S4 •10mm	7	43138
Gantry	G323	P2	12825	6.8	8ored	NA	750	· C32/45 •DC3 •S4 · 10mm	7	43139
Gantry	G323	P3	12825	6.8	8ored	NA	750	•C32/45 •DC3 •S4 •10mm	7	43139
Gantry	G323	P4	12825	6.8	8ored	160	750	•C32/45 •DC3 •S4 •10mm	7	43138
Gantry	G323	P1	12825	6.8	8ored	180	750	•C32/45 •DC3 •S4 •10mm	7	43138
Gantry	G323	P2	12825	6.8	8ored	NA	750	•C32/45 •DC3 •S4 •10mm	7	43139
Gantry	G323	P3	12825	6.8	8ored	NA	750	· C32/45 •DC3 •S4 · 10mm	7	43139
Gantry	G323	P4	12825	6.8	8ored	160	750	• C32/45 • DC3 • S4 • 10mm	7	43139
ссту	CCTV05	P5	6832	6.775	CFA	210	450	•C35/45 •DC3 •S4 •10mm	7.1	42989
Small Sign	N828	N828	6832	6.775	CFA	170	450	•C35/45 •DC3 •S4 •10mm	7.3	43446
Small Sign	N852	N852	6832	Full depth	CFA	160	450	•C35/45 •DC3 •S4 •10mm	7.4	43034
Small Sign	N856	N856	6832	Full depth	CFA	230	450	• C35/45 • DC3 • S4 • 10mm	7.4	43035
Radar	RAD25	RAD25	6832	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	7.4	43035
Small Sign	N840	P1	6832	6.775	CFA	200	450	• C35/45 • DC3 • S4 • 10mm	7.5	42998
Small Sign	N8S12	P1	6832	Full depth	CFA	220	450	*C35/45 *DC3 *S4 •10mm	7.5	43012
Small Sign	N8S12	P2	6832	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	7.5	42969

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Radar	RAD26	RAD26	6832	Full depth	CFA	200	450	*C35/45 *DC3 *S4 •10mm	7.5	43039
Small Sign	S822	S822	6832	Full depth	CFA	170	450	· C35/45 •DC3 •S4 · 10mm	7.5	43152
Small Sign	S825	S825	6832	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	7.5	22-02-218
Small Sign	S841	S841	6832	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	7.5	43017
ссти	CCTV23	CCTV23	12825	6.8	CFA	210	750	· C35/45 •DC3 •S4 · 10mm	7.5	43122
ссти	CCTV11	P1	12825	Full depth	CFA	200	750	• C35/45 • DC3 • S4 • 10mm	7.9	43026
Radar	RAD22	RAD22	6832	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	8	43032
ссти	CCTV10	P1	12825	Full depth	CFA	220	750	•C35/45 •DC3 •S4 •10mm	8	43042
ссти	CCTV30	CCTV30	12825	6.8	CFA	200	750	•C35/45 •DC3 •S4 •10mm	8	43036
Gantry	G324	P1	12825	7.8	8ored	200	750	• C32/45 • DC3 • S4 • 10mm	8	43136
Gantry	G324	P2	12825	7.8	8ored	NA	750	• C32/45 • DC3 • S4 • 10mm	8	43137
Gantry	G324	P3	12825	7.8	8ored	NA	750	•C32/45 •DC3 •S4 •10mm	8	43137
Gantry	G324	P4	12825	7.8	8ored	220	750	•C32/45 •DC3 •S4 •10mm	8	43136
Gantry	G324	Anchor Pile	40mm Dywidag 8ar	Full Depth	8ored	200	750	• C32/45 • DC3 • S4 • 10mm	8	43136
ссту	CCTV18	P1	12825	Full depth	CFA	220	750	•C35/45 •DC3 •S4 •10mm	8.7	43116
Small Sign	S843	P1	6825	Full depth	CFA	140	450	*C35/45 *DC3 *S4 •10mm	9.5	43019
Small Sign	S848	P2	6825	Full depth	CFA	200	450	*C35/45 *DC3 *S4 *10mm	9.5	43021
Small Sign	S848	P3	6825	Full depth	CFA	200	450	*C35/45 *DC3 *S4 •10mm	9.5	43020
Small Sign	\$850	P1	6825	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	9.5	43028

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Small Sign	\$850	P2	6825	Full depth	CFA	220	450	*C35/45 *DC3 *S4 •10mm	9.5	43028
Small Sign	S811	P2	6832	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	10	43154
Small Sign	S811	P3	6832	Full depth	CFA	180	450	•C35/45 •DC3 •S4 •10mm	10	43154
Small Sign	S848	P4	6825	Full depth	CFA	140	450	•C35/45 •DC3 •S4 •10mm	10	43019
Small Sign	S848	P5	6825	Full depth	CFA	200	450	· C35/45 •DC3 •S4 · 10mm	10	43021
Small Sign	S848	P6	6825	Full depth	CFA	200	450	•C35/45 •DC3 •S4 •10mm	10	43020
Small Sign	N846	P1	6832	9.77	8ored	200	450	•C32/45 •DC3 •S4 •10mm	10	43112
Small Sign	N846	P1	6832	9.77	8ored	180	450	•C32/45 •DC3 •S4 •10mm	10	43111
Small Sign	\$850	P3	6825	Full depth	CFA	220	450	•C35/45 •DC3 •S4 •10mm	10.2	43027
Small Sign	\$850	P4	6825	Full depth	CFA	200	450	*C35/45 *DC3 *S4 *10mm	10.2	43028
Small Sign	S811	P1	6825	Full depth	CFA	160	450	•C35/45 •DC3 •S4 •10mm	10.5	43152
Small Sign	S811	P4	6825	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	10.5	43152
Small Sign	S812	P1	6832	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	10.5	43152
Small Sign	S812	P2	6832	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	10.5	43152
Small Sign	S843	P1	6832	Full depth	CFA	170	450	•C35/45 •DC3 •S4 •10mm	10.5	43017
Small Sign	S843	P2	6832	Full depth	CFA	160	450	•C35/45 •DC3 •S4 •10mm	10.5	43017
Small Sign	S828	P1	6832	9.775	8ored	200	450	•C32/45 •DC3 •S4 •10mm	10.5	43108
Small Sign	S828	P2	6832	9.775	8ored	180	450	*C32/45 *DC3 *S4 •10mm	10.5	43105
Small Sign	G101	Anchor Pile	40mm Dywidag 8ar	Full Depth	8ored	200	750	•C35/45 •DC3 •S4 •10mm	12	42947

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Gantry	G101	P1	12825 & 40mm Dywidag 8ar	11.8 & Full Depth	8ored	200	750	*C35/45 *DC3 *S4 ·10mm	12	42979
Gantry	G101	P3 Test Pile	12825	11.8	8ored	190	750	•C35/45 •DC3 •S4 •10mm	12	42983
Gantry	G101	P2	12825	11.8	8ored	210	750	•C35/45 •DC3 •S4 •10mm	12	42984
Gantry	G101	P1	12825	11.8	8ored	190	750	· C35/45 •DC3 •S4 • 10mm	12	42947
Gantry	G314	P2	12825	11.8	8ored	200	750	•C32/45 •DC3 •S4 •10mm	12	43084
Gantry	G314	P3	12825	11.8	8ored	220	750	•C32/45 •DC3 •S4 •10mm	12	43084
Gantry	G314	P4	12825 & 36mm Dywidag 8ar	11.8 & Full Depth	8ored	200	750	•C32/45 •DC3 •S4 •10mm	12	43083
Gantry	G314	Test Anchor	36mm Dywidag 8ar	Full Depth	8ored	220	750	•C32/45 •DC3 •S4 •10mm	12	43083
Gantry	G305	P1	12825	12.78	8ored	210	750	•C35/45 •DC3 •S4 •10mm	12.5	43051
Gantry	G305	P2	12825 & 40mm Dywidag 8ar	12.78 & Full Length	8ored	200	750	• C35/45 • DC3 • S4 • 10mm	12.5	43054
Gantry	G305	P3	12825	12.78	8ored	210	750	• C35/45 • DC3 • S4 • 10mm	12.5	43038
Gantry	G305	Test	40mm Dywidag 8ar	Full Depth	8ored	180	750	•C35/45 •DC3 •S4 •10mm	12.5	43049
Gantry	G305	P4	12825	12.78	8ored	220	750	*C35/45 *DC3 *S4 •10mm	13	43048
Gantry	G320	P1	15832	12.8	8ored	NA	900	· C32/45 •DC3 •S4 · 10mm	13	43137
Gantry	G320	P2	15832	12.8	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	13	43138
Gantry	G320	P3	15832	12.8	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	13	43138
Gantry	G320	P3	15832	12.8	8ored	NA	900	• C32/45 • DC3 • S4 • 10mm	13	43137
Gantry	G307	P1	12825	Full Depth	8ored	160-200	750	· C35/45 •DC3 •S4 · 10mm	15	43110
Gantry	G307	P2	12825	Full Depth	8ored	210-190	750	•C32/45 •DC3 •S4 •10mm	15	43111

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Gantry	G309	P3	12825	Full Depth	8ored	180-160	750	*C32/45 *DC3 *S4 ·10mm	15	43111
Gantry	G309	P4	12825	14.88	8ored	190-210	750	•C32/45 •DC3 •S4 •10mm	15	43110
Gantry	G313	P1-Test Pile	12825	14.8	8ored	NA	750	•C32/45 •DC3 •S4 •10mm	15	43082
Gantry	G313	P2	12825	14.8	8ored	160-180	750	• C32/45 • DC3 • S4 • 10mm	15	43077
Gantry	G310	P1	12825	14.88	8ored	200-210	750	•C32/45 •DC3 •S4 •10mm	15.5	43104
Gantry	G310	P2	12825	14.88	8ored	200-210	750	•C32/45 •DC3 •S4 •10mm	15.5	43105
Gantry	G310	P3	12825	14.88	8ored	205-180	750	•C32/45 •DC3 •S4 •10mm	15.5	43105
Gantry	G310	P4	12825	14.88	8ored	160-170	750	•C32/45 •DC3 •S4 •10mm	15.5	43104
Gantry	G307	P1	12825	Full Depth	8ored	210-180	750	•C35/45 •DC3 •S4 •10mm	16	43115
Gantry	G307	P4	12825	Full Depth	8ored	170-190	750	• C35/45 • DC3 • S4 • 10mm	16	43115
Gantry	G321	P1	12825	15.78	8ored	210-220	750	• C32/45 • DC3 • S4 • 10mm	16	43126
Gantry	G321	P2	12825	15.78	8ored	190-220	750	•C32/45 •DC3 •S4 •10mm	16	43129
Gantry	G321	P3	12825	15.78	8ored	210-220	750	•C32/45 •DC3 •S4 •10mm	16	43129
Gantry	G321	P4	12825	15.78	8ored	170-180	750	• C32/45 • DC3 • S4 • 10mm	16	43126
Gantry	G301	Anchor Pile	Anchor 8ar	NA	8ored	NA	900	• C32/45 • DC3 • S4 • 10mm	16	42879
Gantry	G301	Anchor Pile	Anchor 8ar	NA	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16	42879
Gantry	G202	Working Anchor Pile	15832	16.6	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43021
Gantry	G202	Working Test	15832	16.6	8ored	NA	900	*C32/45 *DC3 *S4 *10mm	16.5	43020
Gantry	G202	6	15832	16.6	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43021

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Gantry	G202 N8	1	15832	16.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43104
Gantry	G202 N8	2	15832	16.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43105
Gantry	G202 N8	3	15832	16.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43104
Gantry	G301	P1	15840	NA	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43033
Gantry	G301	P1 Working Test	15840	NA	8ored	NA	900	· C32/45 •DC3 •S4 · 10mm	16.5	43032
Gantry	G301	P3	15840	NA	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43032
Gantry	G301	P4	15840	NA	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43033
Gantry	G301	Anchor Pile	15840	NA	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43033
Gantry	G311	P5	15832	26.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43116
Gantry	G311	P6	15832	26.3	8ored	NA	900	*C32/45 *DC3 *S4 •10mm	16.5	43115
Gantry	G311	P7	15832	16.3	8ored	NA	900	• C32/45 • DC3 • S4 • 10mm	16.5	43115
Gantry	G311	P8	15832	16.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43116
Gantry	G311 N8	P1	15832	16.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43042
Gantry	G311 N8	P2	15832	16.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43045
Gantry	G311 N8	P3	15832	16.3	8ored	NA	900	• C32/45 • DC3 • S4 • 10mm	16.5	43055
Gantry	G311 N8	P4	15832	16.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43042
Gantry	G311 N8	Anchor Pile	15832	16.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	16.5	43045
Gantry	G301	Test Pile	15840	17.745	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	17	42878
Gantry	G312	P1	12825	17.78	8ored	180-200	750	•C32/45 •DC3 •S4 •10mm	18	43088

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Gantry	G312	P2	12825 & 40mm Dywidag 8ar	17.78 & Full Length	8ored	220	750	*C32/45 *DC3 *S4 ·10mm	18	42784
Gantry	G312	P3	12825	17.85	8ored	170-185	750	*C32/45 *DC3 *S4 •10mm	18	43090
Gantry	G312	P4-Test Pile	12825	17.78	8ored	160-180	750	•C32/45 •DC3 •S4 •10mm	18	43089
Gantry	G312	Test Anchor	36mm Dywidage 8ar	Full Depth	8ored	190-205	750	· C32/45 •DC3 •S4 · 10mm	18	43090
Gantry	G326S8	Test Anchor	40mm Dywidag 8ar	Full Depth	8ored	180-190	750	*C32/45 *DC3 *S4 •10mm	18	43068
Gantry	G326S8	Test Anchor	40mm Dywidag 8ar	Full Depth	8ored	180-190	750	•C32/45 •DC3 •S4 •10mm	18	43068
Gantry	G326S8	P1	12825	17.78	8ored	200	750	•C32/45 •DC3 •S4 •10mm	18.5	43136
Gantry	G326S8	P2	12825	17.78	8ored	190-200	750	•C32/45 •DC3 •S4 •10mm	18.5	43062
Gantry	G326S8	P3	12825	17.78	8ored	160-200	750	•C32/45 •DC3 •S4 •10mm	18.5	43070
Gantry	G326S8	P4	12825	17.78	8ored	160-170	750	*C32/45 *DC3 *S4 •10mm	18.5	43069
Gantry	G112	Non-working Test	15832	20.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	20.5	42811
Gantry	G112	Test Pile	15 832	Full Depth	8ored	NA	900	• C32/45 • DC3 • S4 • 10mm	21.2	43117
Gantry	G112	Anchor Pile	Anchor 8ars	NA	8ored	NA	900	• C32/45 • DC3 • S4 • 10mm	21.2	43026
Gantry	G112	P1	15832	20.6	8ored	NA	900	• C32/45 • DC3 • S4 • 10mm	21.2	43026
Gantry	G112	P2	15832	20.6	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	21.2	43027
Gantry	G112	P3	15832	20.6	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	21.2	43027
Gantry	G319	P1	15832	25.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	25.5	43123
Gantry	G319	P2	15832	25.3	8ored	NA	900	*C32/45 *DC3 *S4 *10mm	25.5	43122
Gantry	G319	P3	15832	25.3	8ored	NA	900	· C32/45 •DC3 •S4 · 10mm	25.5	43122

Structure	Foundation	Pile No	Cage Design	Cage Length [m]	Piling Method	Slump [mm]	Pile Diamter [mm]	Concrete	Depth of Pile from PPL [m]	Date
Gantry	G319	P4	15832	25.3	8ored	NA	900	*C32/45 *DC3 *S4 •10mm	25.5	43123
Gantry	G308	P1	15832	26.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	26.5	43064
Gantry	G308	P2	15832	26.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	26.5	43068
Gantry	G308	P3	15832	26.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	26.5	43068
Gantry	G308	P4	15832	26.3	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	26.5	43064
Gantry	G308	Anchor Pile	Anchor 8ar	NA	8ored	NA	900	•C32/45 •DC3 •S4 •10mm	26.5	43066
Gantry	G313	P3	12825	14.8	8ored	190-200	750	*C32/45 *DC3 *S4 •10mm	NA	43082
Gantry	G313	Test Anchor	NA	NA	8ored	170-180	750	•C32/45 •DC3 •S4 •10mm	NA	43078
Gantry	G314	P1	12825	11.8	8ored	220	750	•C32/45 •DC3 •S4 •10mm	NA	43083
Gantry	G324	Test Anchor	40mm Dywidag 8ar	Full Depth	8ored	180-190	750	•C32/45 •DC3 •S4 •10mm	NA	43068
Gantry	G326	P4	12825	17.78	8ored	160-170	750	•C32/45 •DC3 •S4 •10mm	NA	43136

E.2 - Summary of Sheet Pile Installation Records - Northbound

Chainage Start	Chainaga Fud	Location	Earthwork Type	Date	Pre augerBelow Platform	Sheet	Total Structure		king Shee	t Pile		Intermediate \$	Sheet Pile
Chamage Start	Chamage End	Location	Earthwork Type	Date	Level [m]	Pile Type	Length (m)	Section	Steel Grade	Total King Sheet Pile Wall Length (m)	Section	Steel Grade	Total Intermediate Sheet Pile Wall Length (m)
185140	185220	N8	Cutting			Steel	80	ZZ26	S 355 GP	8.0	ZZ18	S 355 GP	3.0
185220	185270	N8	Cutting	19-08-2017 to 30-08-2017	9.2 to 8.0	Steel	50	ZZ26	S 355 GP	10.0	ZZ18	S 355 GP	3.3
185270	185320	N8	Cutting			Steel	50	ZZ26	S 355 GP	8.0	ZZ18	S 355 GP	3.0
185904	185950	N8	Embankment			Steel	46	ZZ26	S 355 GP	6.5	ZZ18	S 355 GP	3.0
185950	185990	N8	Embankment			Steel	40	ZZ26	S 355 GP	6.5	ZZ18	S 355 GP	3.1
185990	186040	N8	Embankment			Steel	50	ZZ26	S 355 GP	6.5	ZZ18	S 355 GP	3.0
186040	186090	N8	Embankment	23/02/2018	Handover Completion Certificate Available	Steel	50	ZZ26	S 355 GP	7.5	ZZ18	S 355 GP	3.3
186090	186230	N8	Embankment		Certificate Available	Steel	140	ZZ26	S 355 GP	6.5	ZZ18	S 355 GP	3.0
186230	186270	N8	Embankment			Steel	40	ZZ26	S 355 GP	7.5	ZZ18	S 355 GP	3.5
186270	186340	N8	Embankment			Steel	70	ZZ26	S 355 GP	6.5	ZZ18	S 355 GP	3.0
186390	186443	N8	Embankment	24/01/2018	Handover Completion Certificate Available	Steel	53	ZZ18	S 355 GP	6.5	ZZ18	S 355 GP	2.4
186500	186530	N8	Embankment	20/12/2017	6	Steel	30	ZZ26	S 355 GP	6.0	ZZ18	S 355 GP	3.0
188760	188850	N8	Embankment	31/10/2017	Handover Completion Certificate Available	Steel	90	ZZ26	S 355 GP	9.0	ZZ18	S 355 GP	4.5
191770	191830	N8	Embankment	09-01-2018 to 10-01-2018	9.0 to 7.5	Steel	60	ZZ26	S 355 GP	6.0	NA	NA	NA
193320	193350	N8	Cutting	16/01/2018	9.0 to 7.5	Steel	30	ZZ26	S 355 GP	10.0	ZZ18	S 355 GP	3.5

E.3 - Summary of Sheet Pile Installation Records - Southbound

								King Sheet Pi	ile Wall	Int	ermediate	Sheet Pile
Chainage Start	Chainage End	Location	Earthwork Type	Date	Pre auger below platform level	Total Structure Length (m)	Section	Steel Grade	Total Pile Length (m)	Section	Steel Grade	Total Length (m)
183860	183950	S8	Cutting	05-09-2017 to 06-09-2017	3.5-4.5	90	ZZ18	S 355 GP	5.5	ZZ18	S 355 GP	2.5
187800	187830	S8	Embankment	05/09/2017 to 06-09-2017	Handover Completion Certificate Available	30	ZZ 26	S 355 GP	6.5	ZZ18	S 355 GP	3.3
187910	187930	S8	Embankment	1		20	ZZ18	S 355 GP	7.5	ZZ18	S 355 GP	1.6
188100	188130	S8	Embankment	NA	NA	30	ZZ18	S 355 GP	7.0	ZZ18	S 355 GP	2.4
188410	188500	S8	Embankment	NA	NA	90	AZ46	S 390 GP	11.0	ZZ18	S 355 GP	3.7
188500	188540	S8	Embankment	NA	NA	40	ZZ26	S 355 GP	8.0	ZZ18	S 355 GP	3.0
188750	188770	S8	Embankment	31/10/2017	NA	20	ZZ26	S 355 GP	7.5	ZZ18	S 355 GP	4.8
188930	188950	S8	Embankment	NA	NA	20	ZZ26	S 355 GP	8.0	ZZ18	S 355 GP	3.3
189160	189180	S8	Embankment	NA	6	20	ZZ26	S 355 GP	8.0	ZZ18	S 355 GP	3.7
189280	189305	S8	Embankment	NA	NA	25	ZZ18	S 355 GP	6.5	ZZ18	S 355 GP	2.5
189750	189790	S8	Embankment	NA	NA	40	ZZ26	S 355 GP	9.0	ZZ18	S 355 GP	3.9
192090	192140	S8	Embankment			50	AZ36	S 390 GP	8.0	ZZ18	S 355 GP	3.0
192190	192240	S8	Embankment	1		50	AZ36	S 390 GP	11.0	ZZ18	S 355 GP	4.1
192240	192260	S8	Embankment	1		20	AZ36	S 390 GP	8.0	ZZ18	S 355 GP	3.0
192260	192300	S8	Embankment	23/02/2018	Handover Completion Certificate Available	40	AZ36	S 390 GP	11.0	ZZ18	S 355 GP	4.1
192370	192400	S8	Embankment	1	Certificate Available	30	AZ36	S 390 GP	11.0	ZZ18	S 355 GP	4.1
192400	192480	S8	Embankment	1		80	AZ36	S 390 GP	12.0	ZZ18	S 355 GP	3.4
192480	192519	S8	Embankment]		39	AZ36	S 390 GP	12.0	ZZ18	S 355 GP	3.5
192710	192747	S8	Embankment	06-02-2018 to 15-02-2018	Handover Completion Certificate Available	37	AZ50	S 390 GP	12.5	ZZ18	S 355 GP	4.5
192747	192830	S8		06-02-2018 to 15-02-2018	NA	83	AZ36	S 390 GP	8.5	ZZ18	S 355 GP	3.5
193300	193320	S8	Cutting	NA	NA	20	ZZ18	S 355 GP	5.0	ZZ18	S 355 GP	1.8

Appendix F Summary of Pile Testing

- F.1: Preliminary Test Results
- F.2: Working Pile Load Test Results

F.1 - Results of Preliminary Tests

	Test Date	Working Load [kN]	Max. Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	cle 2	Сус	cle 3
G:101 Preliminary	root bato	Tronking Load [Kiv]	maxi root zoaa [mt]	· no Dinia [min]	i no zongar [m]	Load [kN]	606	Zero*	909	Zero**	1212	Zero***
	14-15 Aug. 2017	606	1212	750	11	Sett. [mm]	0.45	0.133	0.86	0.29	1.9	0.7
G:304 Preliminary	Test Date	Working Load [kN]	Max. Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	cle 2	Сус	cle 3
G.304 Preliminary						Load [kN]	1517	Zero*	2275	Zero**	3034	Zero***
	18-19 Sep. 2017	1517	3034	900	13.4	Sett. [mm]	3.63	1.64	6.09	2.5	7.25	3.44
C:442 Draliminam	Test Date	Working Load [kN]	Max. Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	cle 2	Сус	cle 3
G:112 Preliminary						Load [kN]	1110	Zero*	2220	Zero**	3330	Zero***
	30-31 Aug. 2017	1110	2220	900	20	Sett. [mm]	1.32	0.64	2.07	1.06	2.65	1.24

Zero*: Unloading Settlement after 1st Cycle. Zero**: Unloading Settlement after 2nd Cycle. Zero**: Residual Settlement after 3rd Cycle.

F.2 - Results of Working Pile Load Tests

G:202	Test Date	Working Load [kN]	Maximum Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	ele 2
G.202						Load [kN]	849	Zero*	1273.5	Zero**
	20-21 Oct. 2017	849	1273.5	900	16.5	Sett. [mm]	0.62	0.36	1.15	0.69
G:203	Test Date	Working Load [kN]	Maximum Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	ele 2
G.203						Load [kN]	713	Zero*	1069.5	Zero**
	5-6 Jan. 2018	713	1069.5	900	25.5	Sett. [mm]	0.24	0.14	0.4	0.2
G:301 P2	Test Date	Working Load [kN]	Maximum Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	cle 2
0.00112						Load [kN]	1539	Zero*	2308.5	Zero**
	2-3 Nov. 2017	1539	2308.5	900	16.5	Sett. [mm]	1.29	0.64	2.43	1.17
G:301	Test Date	Working Load [kN]	Maximum Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	ele 2
G.301						Load [kN]	1539	Zero*	2308.5	Zero**
	19-20 Dec. 2017	1539	2308.5	900	16.5	Sett. [mm]	1.12	0.49	2.22	1.19
G:303	Test Date	Working Load [kN]	Maximum Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	cle 2
0.505						Load [kN]	1033	Zero*	1549.5	Zero**
	5th Dec. 2017	1033	1549.5	900	21.5	Sett. [mm]	1.2	0.36	1.87	0.64
G:311	Test Date	Working Load [kN]	Maximum Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	ele 2
0.511						Load [kN]	590	Zero*	885	Zero**
	13-14 Nov. 2017	590	885	900	16.5	Sett. [mm]	0.23	0.03	0.42	0.11
G:313	Test Date	Working Load [kN]	Maximum Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	cle 2
0.515						Load [kN]	412	Zero*	618	Zero**
	20-21 Dec. 2017	412	618	750	15	Sett. [mm]	0.69	0.2	1.1	0.37
G:315	Test Date	Working Load [kN]	Maximum Test Load [kN]	Pile Dima [mm]	Pile Length [m]	Cycle	Сус	cle 1	Сус	cle 2
G.315						Load [kN]	1222	Zero*	1833	Zero**
	30 Nov-1Dec. 2017	1222	1833	900	26.5	Sett. [mm]	0.54	0.13	0.84	0.2

Zero*: Unloading Settlement after 1st Cycle. Zero**: Residual Settlement after 2rd Cycle.

Appendix G Confirmatory Ground Investigation (Just in Time GI)

REHOLE RECORD - BH FTP NB2 _1M_2

(Window Sampler)

Site

0	GROUP				-	M1 J23a to J25 Ground	Investigation		
Client Costa	: ain Galliford	Try				Boring diameter: 120 mm to 10.00m	Casing diameter:	Project N G17	o.: 7057
Logge	ed by: JP	Ground	Level: 3	37.58 mAO[)	Date: 24/07/2017	Location: 447106E - 329269N	Scale:	1:50
Ref:	Samples & In situ Depth (m)	Tests SPT N	Water	Level (mAOD)	Depth	Stra	ata Description	Legend	Backfil
iter.	Deptii (iii)	3F1 N		37.46	(m) 0.12	MADE GROUND - Macad	<u> </u>		2
D1	0.50-0.60	(0)		37.32	0.26	MADE GROUND - Macad	am road construction.		
D2 S D3	1.10-1.30 1.20 1.40-1.50	133 kPa (0) N=12 (0)		36.68	0.90		rey fine to coarse SAND and Itstone GRAVEL. (road stone ng wet below 0.60m.		<u> </u>
D4 S	1.60-1.90 2.00	(0) N=21				slightly gravelly CLAY wit siltstone cobbles. Gravel quartz, siltstone and mud	is angular to sub-rounded dstone.		
S D5	3.00 3.00-3.30	N=20 (0)				cobble or boulder), (
D6	3.60-3.90	(0)		34.08	3.50	MADE GROUND - Stiff re CLAY with many angular	ddish brown and light grey silty siltstone fragments.		
S D7	4.00 4.10-4.20	N=23 (0)		33.58	4.00	MADE GROUND - Stiff re slightly gravelly CLAY wit	ddish brown and light grey silty h occasional angular		
D8	4.80-5.00	(0)		33.08	4.50	quartz, siltstone and mud	is angular to sub-rounded dstone.		
S	5.00	N=45				MADE GROUND - Stiff re CLAY with many angular	ddish brown and light grey silty siltstone fragments.		
С	6.00	N=44							
				30.98	6.60	MADE GROUND - brown	fine to coarse SAND and		

sub-angular to sub-rounded quartz GRAVEL. (Determined

Sheet 1 of 2

from open hole arisings only).

Remarks and Water Observations

7.00

8.50

C

- 1. Advanced through road construction using coring attachment.
- 2. Hand dug starter pit to 1.10m, to check for services.

50/60mm

()/0mm

3. Set of three Hand Shear Vane (HSV) tests undertaken at 1.00m gave average apparent undrained shear strength of 133 kPa, using the pilcon unit (HSV3) and the 19mm vane.

(continued next sheet)

- 4. Soils noted as being wet below 0.60m, water (perched) forming to level of 0.75m in pit.
- 5. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden (to 6.60m) then by open-hole / driving casing from through dense coarse grained soils (to 10.00m).
- 6. Borehole backfilled with sodium bentonite (pellets) to 1.50m below surface, rapid setting concrete to 0.10m then surface reinstated upon completion.

- ${\bf 1.} \ \ {\bf Advanced} \ through \ road \ construction \ using \ coring \ attachment.$
- 2. Hand dug starter pit to 1.10m, to check for services.
- 3. Set of three Hand Shear Vane (HSV) tests undertaken at 1.00m gave average apparent undrained shear strength of 133 kPa, using the pilcon unit (HSV3) and the 19mm vane.
- 4. Soils noted as being wet below 0.60m, water (perched) forming to level of 0.75m in pit.
- 5. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden (to 6.60m) then by open-hole / driving casing from through dense coarse grained soils (to 10.00m).
- 6. Borehole backfilled with sodium bentonite (pellets) to 1.50m below surface, rapid setting concrete to 0.10m then surface reinstated upon completion.

REHOLE RECORD - BH R FTPSB5_800Y

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	in Galliford	d Try					Boring diameter: 120 mm to 3.00m 100 mm to 10.00m	Casing diameter: 120 mm to 3.00m	Project No G17	
Logge	ed by: JP	Gr	ound	Level:			Date: 05/04/2017-06/04/2017	Location: -	Scale:	1:50
S	amples & In sit	1		Water	Level	Depth	Strata	Description	Legend	Backfill
Ref:	Depth (m)	SPT	N		(mAOD)	(m) 0.15		own silty fine to coarse SAND		
						1.00	MADE GROUND - Greyish bro			
S	1.20	N=	14				MADE GROUND - No sample continuation of drain.	recovery, although probable		
S B1	2.00 2.00-2.40	N=	14			2.00	MADE GROUND - Medium d	ense brown and reddish brown		
						2.40	SAND. Gravel is angular fine quartz, siltstone and mudsto	to coarse granite,	/ X X	
S	3.00	50/5	0			3.00	Firm reddish brown locally li silty CLAY with occasional an lithorelicts, becoming more	ngular medium siltstone	X X X X X X X X X X X X X X X X X X X	
CR	3.00-4.00	39 21	5				Extremely weak reddish brow gravel sized fragments within coarse sand matrix).	wn SILTSTONE (recovered in	* * * * * * * * * * * * * * * * * * *	
CR	4.00-5.50	43 15 7	0				Very weak locally weak thinl mottled pale red sandy SILTS laminations of firm to stiff grown weathering.	STONE with frequent thin	X X X X X X X X X X X X X X X X X X X	
С	5.50	50/29	m fh				band of firm green mott mudstone and siltstone litho to 5.40m.		X X X X X X X X X X X X X X X X X X X	
CR	5.50-7.00	85 84 44	10				recovered as gravel betv	veen 5.40m and 5.50m.	× × × × × × × × × × × × × × × × × × ×	
			6				fracture noted at 6.75m undulating rough, partly ope		X X X X X X X X X X X X X X X X X X X	
CR	7.00-8.50	87 86 31	10				fracture noted at 7.70m undulating rough, partly ope		X X X X X X X X X X X X X X X X X X X	
			10				fracture noted from 8.25 sub-vertical, planar and undishiply rough, black surface	5m to 8.50m, ulating, smooth to	x x x x x x x x x x x x x x x x x x x	
		TCR SCR RQD	FI FS				(continued next sheet)		Sheet	1 of 2

- 1. Hand dug starter pit to 1.00m to check for services.
- 2. Hand dug trial pit collapsing and unstable, unable to progress pit to 1.20m.
- 3. No sample recovery from 1.20m to 2.00m.
- 4. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 3.00m, then by rotary coring techniques from 3.00m to the borehole base, with a mist flush.
- 5. Borehole backfilled with sodium bentonite (pellets) upon completion.

REHOLE RECORD - BH R FTPSB5_800Y

Sheet 2 of 2

(Window Sampler plus Rotary Core)

	ROUP	U L 1		00	-10	4	Site M1 J23a to J25 Ground Inve	estigation		
Client	t ain Galliford	d Try					Boring diameter: 120 mm to 3.00m 100 mm to 10.00m	Casing diameter: 120 mm to 3.00m	Project No.	
Logg	ed by: JP	Gı	ound	Level:			Date: 05/04/2017-06/04/2017	Location: -	Scale:	1:50
Ref:	Core Dat Depth (m)	TCR ASB	FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
CR	8.50-10.00	99 99 56	7			10.00	Remaining Detail: 8.25m - 8 Detail 9.00m - 9.00m:f 9.00m to 9.70m, sub-vertica to partly open, no staining, band of firm to stiff red mudstone lithorelicts noted End of Borehole at 10.00 m	racture noted from al, undulating rough, tight soft red clay infill. silty CLAY with	X X X X X X X X X X X X X X X X X X X	

- 1. Hand dug starter pit to 1.00m to check for services.
- 2. Hand dug trial pit collapsing and unstable, unable to progress pit to 1.20m.
- 3. No sample recovery from 1.20m to 2.00m.
- 4. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 3.00m, then by rotary coring techniques from 3.00m to the borehole base, with a mist flush.
- 5. Borehole backfilled with sodium bentonite (pellets) upon completion.

REHOLE RECORD - BH R-FTPNB2_600Y

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

							T		
Client						Boring diameter:	Casing diameter:	Project No).:
Costa	in Galliford	l Try				150 mm to 11.00m	120 mm to 10.50m	G170	057
Logg	ed by: IG	Ground	Level: 3	36.07 mAOI)	Date: 20/04/2017-24/04/2017	Location: 329665E - 446979N	Scale:	1:50
Sef:	amples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfi
B1 B2	0.20-0.50 0.50-0.80			35.57	0.50	MADE GROUND - Soft light I SILT. Gravel is sub-angular to quartzite, mudstone, sandst			
В3	0.80-1.00			35.27	0.80		ish brown locally grey slightly		
D4 S	1.10-1.20 1.20	N=13		34.97	1.10	gravelly CLAY. Gravel is sub- to coarse quartzite, mudsto		/ }}}}	
D5 B6	1.20-1.65 1.20-2.00 2.00	N=18		34.42	1.65	MADE GROUND - Greyish br coarse SAND. Gravel is sub-a to coarse limestone, quartzi	angular to sub-rounded fine		
D7 B8	2.00-2.45 2.00-3.00	IN-10				MADE GROUND - Soft locall locally grey slightly sandy SII			
S B10 D9	3.00 3.00-4.00 3.00-3.45	N=15				MADE GROUND - Soft locally grey CLAY with frequent gra sub-angular to sub-rounded	ivel sized fragments of		
S D11	4.00 4.00-4.45	50/135mm		31.77	4.30	becoming firm below 3.	60m.		
S	5.00	50/110mm		31.77	4.50	Yellowish brown fine to coal fine to coarse quartzite GRA becoming very dense be	VEL.		
D12	5.00-5.45					becoming very dense se	5.00m.		
S D13 D14 D15	6.00 6.00-6.45 6.00-6.20 6.00-7.00	N=25		30.07	6.00	Stiff reddish brown slightly goccasional gravel sized fragr sub-angular to rounded fine mudstone.	ments of coal. Gravel is		
S	7.00	N=47				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
S	8.00	N=17							
S	9.00	50/206mm		27.07	9.00				
	1	1	1		1	(continued next sheet)		Sheet	1 of 2

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. No groundwater entries were encountered during drilling operations.
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 4.00m and 6.00m to 6.20m, then by open hole / driving casing from 4.00m to 6.00m and 6.00m to the borehole base (due to dense gravels and the borehole collapsing during dynamic sampling).
- 4. Borehole backfilled with sodium bentonite (pellets) upon completion.

REHOLE RECORD - BH R-FTPNB2_600Y

Sheet 2 of 2

(Window Sampler plus Rotary Core)

Site

GROUP						M1 J23a to J25 Ground Inv	estigation		
Client	t ain Galliford	l Try				Boring diameter: 150 mm to 11.00m	Casing diameter: 120 mm to 10.50m	Project N	
Logg	ed by: ıG	Ground	Level: 3	36.07 mAOI)	Date: 20/04/2017-24/04/2017	Location: 329665E - 446979N	Scale:	1:50
Ref:	Samples & In sit		Water	Level	Depth	Strata	Description	Legend	Backfill
B16	Depth (m) 9.50-10.50	SPT N		(mAOD)	(m) 9.50	Very dense reddish brown s rounded fine to coarse quar	andy silty sub-angular to	× × × ×	
ВІО	9.30-10.30			20.37	9.30	Reddish brown gravelly silty Gravel is sub-angular to rou quartzite.	y fine to coarse SAND. unded fine to medium	* * * * * * * * * * * * * * * * * * *	
S D17 B18	10.50 10.50-10.95 10.50-11.00	50/180mm		25.57	10.50	Very dense reddish brown s	ilty fine to medium SAND.		
	25.07 11.00 End of Borehole at 11.00 m				K(//)X(//)X(

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. No groundwater entries were encountered during drilling operations.
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 4.00m and 6.00m to 6.20m, then by open hole / driving casing from 4.00m to 6.00m and 6.00m to the borehole base (due to dense gravels and the borehole collapsing during dynamic sampling).
- 4. Borehole backfilled with sodium bentonite (pellets) upon completion.

REHOLE RECORD - BH R-FTPSB4_800Y

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Consider 9 in situ Tests	GROOP						WII J23a to J25 Ground investigation				
Samples & In situ Tiests Water Level Depth (m) Strata Description Legend Eagend			d Try				_	_	-		
Ref. Depth (m) SPTN Water (mADD) (m) (mADD) (m) Strata Description Strata Description (mADD) (m) (mADD) (m) (mADD) (m) (mADD) (m	Logg	ed by: PM	Ground	Level:			Date: 10/05/2017-12/05/2017	Location: -	Scale:	1:50	
B1 0.20-0.40 B2 0.50-1.00 B2 0.50-1.00 B3 1.20 N=7 B3 1.20-2.00 B4 2.00-3.00 B5 3.00 N=25 B5 3.00 N=25 B5 3.00 N=25 B5 3.00 N=31 B6 4.00 N=31 B6 6.00-7.00 B7 5.00-6.00 B8 6.00-7.00 B8 7 5.00-6.00 B8 7 5.00-6.00 B8 8 6.00-7.00 B8 9 7.50-7.80 B8 8 6.00-7.00 B8 9 7.50-7.80 B8 9			1	Water			Strata	Description	Legend	Backfill	
MADE GROUND - Light brown and grey slightly gravelly medium to coarse SAND. Gravel is angular to sub-rounded fine to coarse quartite and sandstone with frequent medium to coarse igneous roadstone. MADE GROUND - Reddish brown mottled grey slightly gravelly clayey medium to coarse SAND. Gravel is angular to sub-rounded fine to medium sandstone and mudstone. Solution of the common of the common of the coarse stands of the coar			SPTN		(mAOD)	0.20	MADE GROUND - Topsoil (so				
MADE GROUND - Reddish brown mottled grey slightly gravelly clayey medium to coarse SAND. Gravel is angular to sub-rounded fine to medium sandstone and mudstone. becoming loose below 1.20m. MADE GROUND - Stiff brown mottled yellow and grey friable slightly gravelly sitty CLAY. Gravel is angular to sub-angular medium to coarse siltstone, sandstone and mudstone.	S	1.20	N=7			0.40	medium to coarse SAND. Gr sub-rounded fine to coarse	avel is angular to quartzite and sandstone			
S 3.00 N=25 S 3.00 N=31 S 5.00 N=30 N=30 S 7.50 T.50 N=38 S 7.00 S0/275mm N=38 S 7.50 S0/275mm N=38	S	2.00	N=25			2.00	gravelly clayey medium to c angular to sub-rounded fine	oarse SAND. Gravel is			
friable slightly gravelly silty CLAY. Gravel is angular to sub-angular medium to coarse siltstone, sandstone and mudstone with a high sub-rounded sandstone cobble content between 2.00m and 4.00m. S	B4	2.00-3.00					becoming loose below 2	•	/		
86 4.00-5.00 S 5.00 B7 5.00-6.00 N=38 88 6.00-7.00 N=38 S 7.00 50/275mm The state of the state			N=25				friable slightly gravelly silty angular to sub-angular med sandstone and mudstone with a high sub-rounded	CLAY. Gravel is ium to coarse siltstone, disandstone cobble			
B7 5.00-6.00 S 6.00 B8 6.00-7.00 S 7.00 50/275mm no sample recovery 7.00 to 7.50 due to installation of casing. MADE GROUND - Brown clayey sub-rounded to rounded			N=31								
88 6.00-7.00			N=30								
D9 7.50-7.80 7.50 7.50			N=38								
MADE GROUND - Brown clayey sub-rounded to rounded	S	7.00	50/275mm					0 to 7.50 due to			
MADE GROUND - Brown gravelly medium to coarse SAND. Gravel is sub-rounded to rounded fine to medium quartzite and sandstone No recovery 8.00 to 9.00 (due to casing							Gravel is sub-rounded to rou quartzite and sandstone.	unded fine to medium			
S 9.00 N=20 9.00	S	9.00	N=20			9.00			Z.V.		
(continued next sheet) Sheet 1 c							(continued next sheet)		Sheet	1 of 2	

- 1. Hand dug starter pit to 1.20m.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 10.00m and 12.00m to 15.00m then open hole / driving casing from 10.00m to 12.00m (due to dense gravels), with a mist flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level on completion.

REHOLE RECORD - BH R-FTPSB4_800Y

(Window Sampler plus Rotary Core)

Site

	ROUP					M1 J23a to J25 Ground Inve		I	
Client	: ain Galliford	l Try				Boring diameter: 120 mm to 15.00m	Casing diameter: 120 mm to 14.00m	Project No	
COST	iiii Gaiiiioi u	illy						G170	057
Logg	ed by: рм	Ground	Level:			Date: 10/05/2017-12/05/2017	Location: -	Scale:	1:50
Ref:	Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata I	Description	Legend	Backfill
B11	9.00-10.00			, -,	, ,				
						7.80m - 9.00m : Remaining Dinstall)	Detail : 8.00m - 8.00m :		
S	10.00	43/220mm			10.00	9.00m - 10.00m : Firm grey b occasional fragments of blac sub-rounded sandstone cobb	ck plant remains and a low	/	薑
						Very dense brown medium to rounded medium to coars GRAVEL.			
S B12	12.00 12.00-13.00	N=30				becoming dense below 12.00m.			
S	13.00	N=33							
D13 S	13.80-14.00 14.00	N=36			13.80	Dense brown sub-rounded to quartzite and sandstone GRA	o rounded medium to coarse AVEL.		
D14	14.50-15.00				14.50		arse SAND and sub-rounded to tzite and sandstone GRAVEL.		
S	15.00	N=41			15.00	End of Borehole at 15.00 m			

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 10.00m and 12.00m to 15.00m, then open hole / driving casing from 10.00m to 12.00m (due to dense gravels), with a mist flush.

Sheet 2 of 2

4. Borehole backfilled with sodium bentonite (pellets) to ground level on completion.

BOREHOLE RECORD - BH FTP-SB4-600Y

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	in Galliford	Try				Boring diameter: 150 mm to 10.50m	Casing diameter: 120 mm to 10.50m	Project No G17	
Logg	ed by: IG	Ground	Level:			Date: 15/05/2017-17/05/2017	Location: -	Scale:	1:50
9	amples & In situ	Tests	Water	Level	Depth	Church	D	Legend	Backfil
Ref:	Depth (m)	SPT N		(mAOD)	(m)		Description	***************************************	NO77807
D1	0.20-0.50				0.15	MADE GROUND - Topsoil (s SILT with frequent rootlets)	oft light brown organic sandy		
D3 S D4 D5	1.00-1.20 1.20 1.20-1.65 1.20-2.00	N=10			1.00 1.20	MADE GROUND - Yellowish brown gravelly silty fine to medium SAND with occasional sub-angular gravel to cobble sized macadam and limestone fragments. Gravel is sub-angular to rounded fine to coarse quartz, flint, mudstone and limestone.			
S D6	2.00 2.00-2.45	N=8				MADE GROUND - Greyish brown gravelly silty fine to coarse SAND. Gravel is sub-angular to sub-rounded fine to coarse limestone and quartz.			
D7	2.00-3.00					MADE GROUND - Firm local gravelly sandy CLAY. Gravel fine to coarse quartz and m			
S D8 D9	3.00 3.00-3.45 3.00-4.00	N=13							
S D10 D11	4.00 4.00-4.45 4.00-5.00	N=18			4.00	MADE GROUND - Firm local gravelly CLAY. Gravel is sub- to medium quartz and mud			
S D12	5.00 5.00-6.00	N=15							
S D13 D14	6.00 6.00-6.45 6.00-6.50	N=17				becoming reddish brow 5.80m.	n mottled grey below		
S D16	7.00 7.00-7.45	N=44			7.00	MADE GROUND - Firm local mottled grey slightly gravel occasional carbonaceous m sub-angular to rounded fine and flint.	ly sandy CLAY with		
C D17	8.50 8.50-9.50	N=32				Yellowish brown gravelly sil Gravel is sub-angular to rou and mudstone.			
								×,, ×	
				1		(continued next sheet)		Sheet	1 of 2

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden from 1.20m to 7.00m; 8.50m to 9.50m and advanced by driving casing from 7.00m to 8.50m and 9.50m to 10.00m due to dense gravels.
- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

BOREHOLE RECORD - BH FTP-SB4-600Y

(Window Sampler plus Rotary Core)

Site

GROUP						M1 J23a to J25 Ground Inve	estigation		
Clien	t ain Galliford	l Try				Boring diameter: 150 mm to 10.50m	Casing diameter: 120 mm to 10.50m	Project N	o.: 057
Logg	ed by: IG	Ground	Level:			Date: 15/05/2017-17/05/2017	Location: -	Scale:	1:50
	Samples & In sit		Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
Ref:	9.50	SPT N N=49	/175mm 10.50 and mudstone.						
C	10.50	50/175mm				End of Borehole at 10.50 m			

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden from 1.20m to 7.00m; 8.50m to 9.50m and advanced by driving casing from 7.00m to 8.50m and 9.50m to 10.00m due to dense gravels.

Sheet 2 of 2

- 3. No groundwater seepages were encountered during boring operations. $\label{eq:constraint}$
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

BOREHOLE RECORD - BH-FTP-NB2-800Y

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

GROUP						M1 J23a to J25 Ground Inve	estigation		
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 10.45m	Casing diameter: 120 mm to 10.00m	Project N G17	
Logg	ed by: ss	Ground	Level: 3	38.30 mAOE)	Date: 15/06/2017-16/06/2017	Location: 329484E - 447037N	Scale:	1:50
Ref:	amples & In sit	u Tests SPT N	Water	Level (mAOD)	Depth	Strata	Description	Legend	Backfill
Kei.	Deptii (iii)	SPIN		38.14	(m) 0.16		reyish brown slightly gravelly		
B1	0.30-0.50					silty SAND).	/		===
B2	0.80-1.10					MADE GROUND - Reddish-b silty gravelly locally very gra	rown to greyish-brown slightly velly fine to coarse		EE
		N=7		37.20	1.10	SAND with a low angular to limestone and granite cobbl	sub-rounded quartz,		
S B3	1.20 1.20-2.00	N=7				\angular to rounded fine to c	oarse mixed lithology		E==
							ranite limestone and quartz.		
S B4	2.00 2.00-2.60	N=5				sandy slightly gravelly silty (EE
54	2.00-2.00					fine to coarse mixed litholog mudstone and siltstone.	gy, predominantly		EEE
						noted as becoming soft greyish-brown and reddish-l			EE
С	3.00	N=7				2.70m.			
B5	3.30-3.70								EE
С	4.00	N=16							E==
В6	4.40-5.00								
									EE
С	5.00	N=22							
В7	5.30-6.00								EE
С	6.00	N=17							EE
B8	6.30-6.90								
									EE
С	7.00	50/150mm		31.35	6.95	Very dense reddish brown fi	ing to coarse SAND and		
							e to coarse quartz and chert		
С	8.50	50/225mm							
						(continued next sheet)		Sheet	1 of 2

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 7.00m, then by open-hole / driving casing from 7.00m to 10.00m, through dense sands and gravels.
- 3. Dynamic sample refused at 6.97m, on very dense sands and gravels.
- 4. No groundwater entries were observed during boring operations.
- 5. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

BOREHOLE RECORD - BH-FTP-NB2-800Y

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

						•		
: in Galliford	Try				Boring diameter: 120 mm to 10.45m	Casing diameter: 120 mm to 10.00m		lo.: 7057
ed by: ss	Ground	Level:	38.30 mAOE)	Date: 15/06/2017-16/06/2017	Location: 329484E - 447037N	Scale:	1:50
Samples & In sit		Water	Level	Depth (m)	Strata	Description	Legend	Backfill
10.00	50/160mm				Very dense reddish brown f	ine to coarse SAND and		
					Ena of Borenoie at 10.45 m			
	ed by: ss samples & In sit Depth (m)	ed by: ss Ground iamples & In situ Tests Depth (m) SPT N	ed by: ss Ground Level: stamples & In situ Tests Depth (m) SPT N 10.00 50/160mm	ed by: ss Ground Level: 38.30 mAOC Ground Leve	SPT N SPT N SPT N SPT N Solution tin Galliford Try ed by: ss	rin Galliford Try 120 mm to 10.45m 120 mm to 10.00m	Ain Galliford Try 120 mm to 10.45m 120 mm to 10.00m G17	

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 7.00m, then by open-hole / driving casing from 7.00m to 10.00m, through dense sands and gravels.

Sheet 2 of 2

- 3. Dynamic sample refused at 6.97m, on very dense sands and gravels.
- ${\bf 4.}\ \ {\bf No}\ groundwater\ entries\ were\ observed\ during\ boring\ operations.$
- 5. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

BOREHOLE RECORD - BH-FTP-SB2_600Y

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

Client	: ain Galliford	Try				Boring diameter: 120 mm to 3.00m	Casing diameter: 120 mm to 3.00m	Project N G17	lo.: 7057
Logg	ed by: ss	Ground	Level: 4	15.58 mAOE)	100 mm to 6.50m Date: 31/05/2017-01/06/2017	Location: 334599E - 447167N	Scale:	1:50
9	Samples & In situ	u Tests	Water	Level	Depth			Legend	Backfill
Ref:	Depth (m) 0.40-0.60	SPT N		(mAOD) 45.28	(m) 0.30	MADE GROUND - Greyish-brocoarse SAND. Gravel is angul limestone, sandstone and sil	ar fine to coarse		
С	1.20	N=13		44.88 43.98	1.60	MADE GROUND - Firm locally locally greyish-brown slightly with a low sub-angular limes Gravel is angular fine to coar and limestone.	gravelly sandy CLAY tone cobble content.		
S B2	2.00 2.00-3.00	N=8				MADE GROUND - Light brow angular fine to coarse limest	one.		
S B3	3.00 3.00-4.00	N=15				MADE GROUND - Firm reddis gravelly CLAY with a medium siltstone cobble content. Gra sub-angular fine to coarse m	n sub-angular mudstone and avel is angular to		
S B4	4.00 4.00-5.00	N=12							
S D5	5.00 5.00-5.45	N=15							
S D6	6.00 6.00-6.45	N=24							
				39.10 39.08	6.48 6.50	MADE GROUND - concrete o End of Borehole at 6.50 m	bstruction.		
								Sheet	1 of 1

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques.
- 3. Encountered concrete obstruction (thought to be water pipe) at 6.50m, borehole terminated.
- 4. No groundwater entries were observed during boring operations.
- 5. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

BOREHOLE RECORD - BH-FTP-SB4-400Y

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client						Boring diameter:	Casing diameter:	Project No.:	
	in Galliford	l Trv				120 mm to 10.00m	120 mm to 10.00m	G17	057
		,						G17	057
Logg	ed by: JP	Ground	Level: 3	37.61 mAO[)	Date: 15/05/2017-16/05/2017	Location: 330387E - 446780N	Scale:	1:50
9	Samples & In sit	u Tests	Water	Level	Depth			Legend	Backfi
Ref:	Depth (m)	SPT N		(mAOD)	(m)	Strata D	Description		
				37.41	0.20	MADE GROUND - Topsoil (so SILT with occasional rootlets)			
B1 D2	0.50-0.60 0.70-0.80			36.71	0.90	MADE GROUND - Stiff friable SILT/CLAY with many gravel s	sized fragments of	<u></u>	
D3	1.10-1.20			36.56	1.05	\sub-angular siltstone sub-bas	se		
S	1.20	N=6				MADE GROUND - Grey fine to	o coarse SAND and angular	/	
D4	1.20-1.60					fine to coarse sandstone GRA		/	
D5	1.60-2.00					MADE CROUND Firms Is sally			
S	2.00	N=7				MADE GROUND - Firm locally			
D6	2.00-2.50	14-7				locally light grey SILT/CLAY w cobble sized fragments of su			
-						mudstone.	angular silestone and		
D7	2.50-3.00								
S	3.00	N=7							
D8	3.00-3.50	14-7							
D9	3.50-4.00								
S	4.00	N=22							
D10	4.00-4.50					soft between 4.00m and	4.20m.		
						band of firm brown and	grey slightly gravelly		
D11	4.50-5.00					clay (boulder clay). Gravel is			
						sub-rounded fine to medium	sandstone. Band located		
S	5.00	N=18				from 4.20m to 4.40m.			
D12	5.00-5.50								
D13	5.50-6.00								
S	6.00	50/180mm		31.61	6.00				
						Very dense brown fine to coa			
							uartz GRAVEL with a medium		
						sub-rounded quartz cobble c	ontent.		
S	7.50	N=21						1.	
D14	7.50-7.80	14-21							
D15	7.80-8.40			29.81	7.80	Firm brown mottled black sa	ndy silty CLAV with some	-	
						local black staining.	may siny CLAT WITH SOME	-x	
						local black stalling.		XX	
D16	8.40-8.50			29.21	8.40	Very dense brown fine to coa	arse SAND and angular to	×	
							uartz GRAVEL with a medium		
						Sab rounded fine to codise q	Marte GIAVEL WITH a MEGICIN		
S	9.00	50/152mm			-				
	1					(continued next sheet)		Sheet	1 of 2

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 8.50m, then by open hole / driving casing from 8.50m to 10.00m, with a mist flush (due to dense gravels).
- 4. Borehole backfilled with sodium bentonite (pellets) upon completion.

BOREHOLE RECORD - BH-FTP-SB4-400Y

(Window Sampler plus Rotary Core)

Site

GROUP					4	M1 J23a to J25 Ground Inve	estigation		
Clien	t ain Galliford	Try				Boring diameter: 120 mm to 10.00m	Casing diameter: 120 mm to 10.00m	Project No	
Logg	ed by: JP	Ground	Level: 3	37.61 mAO[)	Date: 15/05/2017-16/05/2017	Location: 330387E - 446780N	Scale:	1:50
	Samples & In sit		Water	Level	Depth	Strata	Description	Legend	Backfill
Ref:	Depth (m)	SPT N		(mAOD)	(m)	sub-rounded quartz cobble			
S	10.00	50/210mm		27.61	10.00	End of Borehole at 10.00 m			

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 8.50m, then by open hole / driving casing from 8.50m to 10.00m, with a mist flush (due to dense gravels).

Sheet 2 of 2

4. Borehole backfilled with sodium bentonite (pellets) upon completion.

BOREHOLE RECORD - BH-FTP-SB4_1M

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

GROUP					M1 J23a to J25 Ground Investigation				
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 8.45m	Casing diameter: 120 mm to 8.00m	Project No.	
Logge	ed by: ss	Ground	Level:			Date: 19/05/2017	Location: -	Scale:	1:50
S Ref:	amples & In sit	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Stra	ta Description	Legend	Backfill
B1 B2 B3 S	0.30-0.40 0.50-0.60 0.90-1.10 1.20 1.20-1.65	N=16		(11.12)	0.20 0.45 0.65 0.80	SILT with many roots). MADE GROUND - Dark grounded fine to coarse SAND. rounded fine to coarse qu	eyish-brown sandy clayey eyish-brown slightly gravelly Gravel is sub-angular to uartz, siltstone and mudstone.		
S D6 D7	2.00 2.00-2.45 2.30-3.00	N=19			2.40	sandy CLAY. Gravel is ang and siltstone. MADE GROUND - Light gralimestone GRAVEL.	ey sandy angular fine to medium		
S SD8 D9	3.00 3.00-3.45 3.40-3.60	N=12			3.00 3.50	silty fine SAND. Gravel is a mudstone and siltstone becoming medium de MADE GROUND - Firm red			
D10 S SD11	3.80-4.00 4.00 4.00-4.45	50/120mm			3.80	siltstone. MADE GROUND - Medium	n dense reddish-brown slightly D and rounded fine to coarse	****	
S SD12	5.00 5.00-5.45	N=47				CLAY. Gravel is angular fir siltstone.	ddish-brown slightly gravelly ne to coarse mudstone and n slightly silty fine to coarse		
S SD13	6.00 6.00-6.45	50/210mm					p-rounded fine to medium quartz iption based on returned rilling).		
S SD14	7.00 7.00-7.45	50/235mm							
С	8.00	50/220mm			8.45	End of Borehole at 8.45 m			
								Sheet	1 of 1

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 4.00m, then by open hole / driving casing to the borehole base (due to dense gravels), with a mist flush.
- 3. No groundwater entries were observed during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

BOREHOLE RECORD - CPT03-NB2_600Y

(Window Sampler)

Sheet 1 of 1

Site

M1 J23a to J25 Ground Investigation

						Will Jesu to Jes Ground inves	oci Bacion		
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 6.00m	Casing diameter:	Project No G17	
Logge	ed by: JP	Ground	Level: 3	34.04 mAOE)	Date: 17/07/2017	Location: 446928E - 329828N	Scale:	1:50
Ref:	amples & In site	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata D	Description	Legend	Backfill
				33.84	0.20	MADE GROUND - Macadam r	oad construction.		**********
				33.69 33.34	0.35	MADE GROUND - Weak conci (breaking up whilst being cord			
S SD1	1.20 1.20-1.65	N=12 (0)				MADE GROUND - Light grey f angular fine to coarse siltston sub-base).			
D2 S	1.50-1.80 2.00	(0) N=22		32.04	2.00	MADE GROUND - Stiff reddish slightly gravelly CLAY. Gravel sub-rounded quartz, siltstone	is angular to		
D3	2.30-2.70	(0)				MADE GROUND - Stiff reddish CLAY with many angular siltst			
D4 S	2.90-3.00 3.00	(0) 50/45mm		31.14	2.90	MADE GROUND - brown fine sub-angular to sub-rounded c			
С	4.50	N=48							
С	6.00	N=39		28.04	6.00	End of Borehole at 6.00 m			
								Chast	1 of 1

- 1. Advanced through road construction using coring attachment.
- 2. Weak concrete at 0.20m broke up, damaging core attachment.
- 3. Borehole advanced to 1.00m (through concrete and sub-base) using open hole drilling techniques (rock roller).
- 4. Soils noted as being wet below 0.60m, water (perched) forming to level of 0.80m, sealed with casing.
- 5. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden (to 3.00m) then by open-hole / driving casing from through dense coarse grained soils (to 6.00m).
- 6. Borehole backfilled with sodium bentonite (pellets) to 1.50m below surface, rapid setting concrete to 0.10m then surface reinstated upon
- completion.
 7. All arisings removed and area cleaned after shift

BOREHOLE RECORD - CPT04-NB2_200Y

(Window Sampler)

Sheet 1 of 1

Site

M1 J23a to J25 Ground Investigation

						THE SECOND CONTRACTOR OF THE SECOND CONTRACTOR					
Client Costa	in Galliford	Try				Boring diameter: 120 mm to 6.00m	Casing diameter: 120 mm to 6.00m	Project No G17			
Logg	ed by: JP	Ground	Level: 3	3.60 mAOE)	Date: 17/07/2017	Location: 446856E - 330048N	Scale:	1:50		
Ref:	amples & In site	Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill		
				33.38	0.22	MADE GROUND - Macadam	road construction.		********		
				33.05	0.55	MADE GROUND - Concrete	road construction.				
D1	0.70-0.80	125 kPa		32.70	0.90	MADE GROUND - Light grey angular fine to coarse siltst sub-base).					
S D3	1.20 1.20-2.00 2.00	N=10 50/80mm		31.60	2.00	MADE GROUND - Stiff reddi slightly gravelly CLAY with o quartz cobbles. Gravel is ang quartz, siltstone and mudsto	gular to sub-rounded				
							e brown fine to coarse SAND and quartz GRAVEL. (Determined r).				
С	3.00	50/120mm									
С	4.50	50/185mm									
С	6.00	50/170mm		27.60	6.00	End of Borehole at 6.00 m					

- ${\bf 1.} \ \, {\bf Advanced} \ through \ road \ construction \ using \ coring \ attachment.$
- 2. Hand dug starter pit to 1.20m, to check for services.
- 3. Set of three Hand Shear Vane (HSV) tests undertaken at 1.00m gave average apparent undrained shear strength of 125 kPa, using the pilcon unit (HSV3) and the 19mm vane.
- 4. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden then by open-hole / driving casing from 2.00m to 6.00m, through the dense coarse grained soils.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.50m below surface, rapid setting concrete to 0.10m then surface reinstated upon
- completion.
 6. All arisings removed and work area cleaned

BOREHOLE RECORD - R-FTP-SB4_200Y

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

.						Boring diameter:	Casing diameter:	Project No	
Client Costa	t ain Galliford	l Try				120 mm to 13.45m	120 mm to 13.00m	G17057	
Logg	ed by: ss	Ground	Level: 3	35.00 mAOE)	Date: 26/04/2017-28/04/2017	Location: 330200E - 446841N	Scale:	1:50
Ref:	Samples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata I	Description	Legend	Backfil
D1	0.20-0.40			34.85	0.15	MADE GROUND - Topsoil (g silty fine to medium SAND w			
D2	0.60-0.90			34.50	0.50	fragments of concrete and from is angular to rounded fine to	requent rootlets. Gravel		
D3	1.00-1.20			34.15	0.85	\and chert.			
D4 D5	1.20-2.00 1.20-1.45			33.80	1.20	MADE GROUND - Greyish brocking clayey fine to medium SAND sub-rounded fine to coarse grandstone.	. Gravel is angular to		
S D6 D7	2.00 2.00-2.45 2.10-3.00	N=13				MADE GROUND - Stiff reddis slightly gravelly silty CLAY wi siltstone cobble content. Gra fine to medium quartz, siltst	ith a low sub-rounded avel is angular to rounded		
S D8 D9	3.00 3.00-4.00 3.00-3.45	N=16				MADE GROUND - Greyish broand sub-angular to sub-roun siltstone, sandstone and lime	1		
S D10	4.00 4.00-4.45	N=41	_	30.70	4.30	MADE GROUND - Firm locall gravelly silty CLAY with a low and sandstone cobble conterto coarse mudstone, siltston	v sub-angular siltstone nt. Gravel is angular fine		
C D11	5.00 5.00-6.00	50/210mm				Very dense reddish brown fir sub-angular to rounded fine GRAVEL. (Description based open hole drilling).	to coarse quartz and chert		
C D12	6.00 6.00-7.50	N=45				becoming dense betwee	en 6.00m to 7.00m.		
С	7.00	50/235mm							
D13	7.50-9.00								
С	8.00	50/285mm							
С	9.00	50/220mm							
						(continued next sheet)		Sheet	1 of 2

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepage was encountered at 4.60m rising to 4.10m after 20 minutes.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 4.30m, then by open hole / driving casing to the borehole base (due to dense gravels), with a mist flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

BOREHOLE RECORD - R-FTP-SB4_200Y

(Window Sampler)

	SROUP	JEEJ	UU	-10	4	Site M1 J23a to J25 Ground Investigation				
Clien	t ain Galliford	l Try				Boring diameter: 120 mm to 13.45m	Casing diameter: 120 mm to 13.00m	Project No.		
Logg	ged by: ss	Ground	Level:	35.00 mAO[)	Date: 26/04/2017-28/04/2017	Location: 330200E - 446841N	Scale:	1:50	
	Samples & In sit		Water	Level	Depth	Strata Description		Legend	Backfill	
C 12.00 D15 12.00-12.34 C 13.00 D16 13.00-13.32		. Tosts		(mAOD)	(m)	Very dense reddish brown fi sub-angular to rounded fine GRAVEL. (Description based open hole drilling).	ine to coarse SAND and to coarse quartz and chert			
				21.55	13.45	End of Borehole at 13.45 m				

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepage was encountered at 4.60m rising to 4.10m after 20 minutes.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 4.30m, then by open hole / driving casing to the borehole base (due to dense gravels), with a mist flush.

Sheet 2 of 2

4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	in Galliford	Try				Boring diameter: 120 mm to 4.70m	Casing diameter: 120 mm to 4.70m	Project No.: G17057	
Logge	ed by: IG	Ground	Level: 3	6.06 mAOD)	Date: 01/06/2017-21/06/2017	Location: 327635E - 447512N	Scale:	1:50
S Ref:	amples & In sit	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata [Description	Legend	Backfill
D1 D2	0.20-0.40 0.40-0.80	S. I. IV		35.56	0.50	MADE GROUND - Soft dark b SILT with frequent rootlets. C rounded fine to coarse quart	orown slightly gravelly sandy Gravel is sub-angular to	÷	
D3 S D4	1.00-1.10 1.10 1.10-1.55	N=24		34.96 34.86	1.10 1.20	Soft locally firm reddish brov CLAY. Gravel is sub-angular n and sandstone.			
B5	1.10-2.00					Soft reddish brown sandy SIL sized sub-angular siltstone lit		/ × × × × × × × × × × × × × × × × × × ×	
S D6 B7	2.00 2.00-2.45 2.00-2.70	N=19		34.06	2.00	Medium dense reddish brow SAND. gypsum mineralisation a		× × × × × × × × × × × × × × × × × × ×	
B8	2.70-3.00			33.36	2.70	Firm reddish brown speckled		(××××	
S D10	3.00 3.00-5.00	N=25		00.00	2.70	Reddish brown silty fine to m	nedium SAND.	X X X X X X X X X X X X X X X X X X X	
D9 B11	3.00-3.45 3.50-4.00		•	32.56	3.50	Firm locally stiff reddish brow	wn locally grey sandy		
S D12 B13	4.00 4.00-4.45 4.00-4.70	N=20				CLAY.			
S	4.70	N=35		31.36	4.70	Stiff friable reddish brown lo laminated slightly sandy silty		X - X - X - X - X - X - X - X - X - X -	
С	6.00	N=4 78						X	
CR	6.00-7.00	18 12						XX- XX-	
CR	7.00-8.50	100 6 47		28.91 28.51	7.15 7.55	Extremely weak thinly laming SANDSTONE. Bedding discon sub-horizontal, extremely cloplanar and smooth undulatir	tinuities are horizontal to osely spaced, smooth	_ ×—×-	
С	8.50	39 27 50/11 mm 25		28.06	8.00	Extremely weak fissile thinly MUDSTONE locally weathere Bedding discontinuities are h sub-horizontal, extremely clo	laminated reddish brown ed to friable silty clay. porizontal to	X	
						pas nonzontal, extremely the	see, spaces, smooth	<u> </u>	
	殿長					(continued next sheet)		Sheet	1 of 2

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. A groundwater seepages was encountered at 3.50m during boring operations.
- 3. Borehole advanced using P60 (slope climbing) combination rig P60C, using dynamic sampling techniques from 1.20m to 6.00m, then by rotary coring techniques to borehole base, with a mist flush.
- 4. Borehole backfilled with bentonite pellets to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client	ent stain Galliford Try						Boring diameter: 120 mm to 4.70m	Casing diameter: 120 mm to 4.70m	Project No	
	ed by: IG		ound	Tevel: 3	6.06 mAOD	<u> </u>	Date: 01/06/2017-21/06/2017	Location: 327635E - 447512N	Scale:	1:50
2088	Core Data	9	ouna	Water	Level	Depth			Legend	Backfill
Ref:	Depth (m)	ri66	FI	water	(mAOD)	(m)	Strata	Description		×///×///×
Ref: CR CR		TCR	30	Water			7.55m - 8.00m : planar and swith local clay infill. (Grade IVa). 8.00m - 12.50m : Stiff friable grey thinly laminated slightly interbedded with extremely cleplanar and smooth undulating discontinuities. Detail 11.20m - 11.20m : silty fine to medium sand with lithorelics. locally weathered to silt with frequent sandstone lith. End of Borehole at 12.50 m	e reddish brown locally y sandy silty CLAY weak thinly laminated grey with horizontal to osely spaced, smooth ng clean, bedding locally weathered to ith frequent sandstone by fine to medium sand	X	Batkilli
	BR FS								Sheet	2 of 2

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. A groundwater seepages was encountered at 3.50m during boring operations.
- 3. Borehole advanced using P60 (slope climbing) combination rig P60C, using dynamic sampling techniques from 1.20m to 6.00m, then by rotary coring techniques to borehole base, with a mist flush.
- 4. Borehole backfilled with bentonite pellets to ground level upon completion.

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

	MOOF					INIT 125a to 125 Ground investigation					
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 14.00m	Casing diameter: 120 mm to 14.00m	Project N G17	o.: '057		
Logge	ed by: PM	Ground	Level:			Date: 26/04/2017-28/04/2017	Location: -	Scale:	1:50		
S Ref:	amples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata D	Description	Legend	Backfill		
D1	0.30-0.50			(2)	0.20	MADE GROUND - Brown sligh SILT with frequent rootlets. G rounded fine to medium qua	Gravel is sub-rounded ro				
D2 S D3	1.00-1.20 1.20 1.20-2.00	N=6			0.90 1.20	MADE GROUND - Brown grav medium SAND. Gravel is sub- to medium sandstone and gr	angular to sub-rounded fine				
55	1.20 2.00					MADE GROUND - Soft friable	brownish grey CLAY.				
S B4	2.00 2.00-3.00	N=13				MADE GROUND - Stiff friable yellow slightly gravelly sandy sub-angular to sub-rounded f and siltstone.	CLAY. Gravel is				
S B5	3.00 3.00-4.00	N=29									
S B6	4.00 4.00-5.00	N=24									
S B7	5.00 5.00-6.00	N=28									
S B8	6.00 6.00-7.00	50/235mm			6.00	MADE GROUND - Stiff reddisl slightly gravelly slightly sandy sub-angular to sub-rounded f and siltstone.	silty CLAY. Gravel is				
S	7.00	50/265mm									
D9	7.50-8.00				7.50	MADE GROUND - Very dense	brown gravelly medium to				
S	8.00	50/95mm				coarse SAND with occasional cobbles. Gravel is sub-rounde coarse sandstone and quartz limited arising returns from o no recovery from 7.50m	sub-rounded quartz ed to rounded fine to (description based on open hole drilling).				
S	9.00	50/95mm									
						(continued next sheet)		Sheet	1 of 2		

- 1. Hand dug starter pit to 1.20m, to check for services.
- ${\bf 2.}\ \ No\ groundwater\ see pages\ were\ encountered\ during\ boring\ operations.$
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 8.00m and 10.00m to 11.00m, then by open hole / driving casing from 8.00m to 10.00m and 11.00m to the borehole base (due to very dense gravels).
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

Client	: in Galliford	l Trv				Boring diameter: 120 mm to 14.00m	Casing diameter: 120 mm to 14.00m	Project No	
		Ground	Loveli			Dato: 20/04/2017 20/04/2017	Location	Scale:	
	ed by: PM		Levei:	1	1	Date: 26/04/2017-28/04/2017	Location: -	Scale:	1:50
Ref:	Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata D	Description	Legend	Backfill
S B10	10.00 10.00-11.00	50/260mm			10.00	MADE GROUND - Very dense coarse SAND with occasional cobbles. Gravel is sub-rounde coarse sandstone and quartz limited arising returns from o	sub-rounded quartz ed to rounded fine to (description based on open hole drilling).		
						Very dense brown gravelly m frequent clay pockets. Gravel rounded fine to coarse quarta	l is sub-angular to		
S	11.00	50/115mm			11.00	Very dense brown fine to coat to rounded fine to coarse qua (description based on limited open hole drilling).	artz and sandstone GRAVEL returned arisings from		
S D11	12.00 12.00-12.18	50/85mm				no recovery from 11.00m	n to 14.00m.		
S D12	13.50 13.50-13.84 14.00	50/190mm 50/150mm			14.00				
D13	14.00-14.29					End of Borehole at 14.00 m			

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 8.00m and 10.00m to 11.00m, then by open hole / driving casing from 8.00m to 10.00m and 11.00m to the borehole base (due to very dense gravels).

Sheet 2 of 2

4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

GROUP					M1 J23a to J25 Ground Investigation					
Client Costain Gallifo	ord Try				Boring diameter: 120 mm to 11.45m	Casing diameter: 120 mm to 11.00m	Project No G17	ct No.: G17057		
Logged by: ss	Ground	Level:			Date: 03/05/2017-05/05/2017	Location: -	Scale: 1			
Samples & In Ref: Depth (m		Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfil		
D1 0.30-0.60 D2 0.70-1.00			(IIIAOD)	0.20	MADE GROUND - Greyish br fine to coarse SAND with oc fragments of concrete. Grav rounded fine to coarse quar	rown slightly gravelly silty casional gravel sized el is sub-rounded to				
D4 1.20-2.00 S 1.30 D3 1.30-1.55	N=17			1.10	MADE GROUND - Firm light CLAY. Gravel is angular fine siltstone.					
S 2.00 D5 2.00-2.45 B6 2.00-3.00	N=28				MADE GROUND - Firm reddi slightly gravelly clayey SILT. to coarse mudstone and silt	Gravel is angular fine				
S 3.00 D7 3.00-3.45 D8 3.20-3.70				3.20	MADE GROUND - Stiff reddi	sh brown slightly gravelly				
S 3.70	50/275mm				silty CLAY. Gravel is angular and siltstone.	fine to medium mudstone				
C 4.50	50/290mm			4.20	Very dense reddish brown s SAND and sub-angular to ro quartz, chert and mudstone	unded fine to coarse				
C 6.00	50/250mm									
C 7.50	50/160mm									
C 9.00	50/220mm			9.00	(continued next sheet)		Sheet	1 of 2		

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 3.70m, then by driving casing / open hole from 3.70m to the borehole base due to very dense gravels.
- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler)

Site

G	GROUP					M1 J23a to J25 Ground Investigation					
Client	t ain Galliford	I Try				Boring diameter: Casing diameter: Pr 120 mm to 11.45m 120 mm to 11.00m		Project N G17	o.: '057		
Logg	ed by: ss	Ground	Level:			Date: 03/05/2017-05/05/2017	Location: -	Scale:	1:50		
,	Samples & In sit	u Tests	Water	Level	Depth	_		Legend	Backfill		
Ref:	Depth (m)	SPT N		(mAOD)	(m)	Strata	Description				
C C	9.00-11.00	50/160mm 50/135mm				Very dense reddish brown s coarse SAND. Gravel is sub- coarse quartz, chert and mu	angular to rounded fine to				
					11.45						
						End of Borehole at 11.45 m					

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 3.70m, then by driving casing / open hole from 3.70m to the borehole base due to very dense gravels.

Sheet 2 of 2

- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

BOREHOLE RECORD - E1-A1.1

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try						Boring diameter: 120 mm to 10.45m	Casing diameter: 120 mm to 2.60m	Project No		
Logge	ed by: IG	Gr	ound	Level: 3	6.12 mAOD)	Date: 30/05/2017-31/05/2017	Location: 327605E - 447514N	Scale:	1:50
	Samples & In sit			Water	Level	Depth			Legend	Backfill
Ref:	Depth (m)	SPT	N	water	(mAOD)	(m)	Strata	Description	Legena	Dackiii
D1 D2	0.10-0.30 0.50-0.80				35.62	0.50	MADE GROUND - Topsoil (b SILT with frequent rootlets. rounded fine to coarse quar	Gravel is sub-angular to		
D3 S	1.00-1.20 1.20	N=	22		34.92	1.20	MADE GROUND - soft reddi CLAY. Gravel is sub-angular quartz.		XXXXX	
D4 D5	1.20-1.65 1.20-2.00						Firm friable reddish brown s	peckled grey SILT.	(
S D6 D7	2.00 2.00-2.45 2.00-2.70	N=:	37						×××× (×××× (×××× (××××)	
S D8	2.70 2.70-3.15			(
CR	2.70-4.00	100 0 0							X X X X X	
CR	4.00-5.50	63	-						X X X X X X X X X X X X X X X X X X X	
		0			31.12	5.00	Weak grey fine grained SAN	DSTONE.	××××	
S D9	5.50 5.50-5.95	50/150	mm							
CR	5.50-7.00	87 7 0								
			5	-	29.12	7.00	Weak reddish brown MUDS	TONE.		
CR	7.00-8.50	93 93 37								
S D10	8.50 8.50-8.95	50/75	smm							
	TCR FI SCR FS				(continued next sheet)		Sheet	1 of 2		

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepage was encountered at 4.60m during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig CG01, using dynamic sampling techniques through overburden to 2.70m then by rotary coring techniques in rock to base, with a mist flush.
- 4. Borehole backfilled with bentonite to ground level upon completion.

BOREHOLE RECORD - E1-A1.1

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

							0204 00 020 0.044	8		
Client Costain Galliford Try							Boring diameter: 120 mm to 10.45m	Casing diameter: 120 mm to 2.60m	Project N G17	
Logg	ed by: ıG	Gı	round	Level: 3	36.12 mAOE)	Date: 30/05/2017-31/05/2017	Location: 327605E - 447514N	Scale:	1:50
	Core Data	а		Water	Level	Depth			Legend	Backfill
Ref:	Depth (m)	TCR REGIO	FI	Truce.	(mAOD)	(m)	Strata	Description		V///W///W
CR S	8.50-10.00 10.00	93 87 61	6 0 5mm				Weak reddish brown MUDS	TONE.		
					25.67	10.45	End of Borehole at 10.45 m			
		ICR RQD	FS						Sheet	2 of 2
		RQD	FS			Ì			Sneet	2 01 2

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepage was encountered at 4.60m during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig CG01, using dynamic sampling techniques through overburden to 2.70m then by rotary coring techniques in rock to base, with a mist flush.
- 4. Borehole backfilled with bentonite to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	Client Costain Galliford Try Logged by: JP Ground Level: 60.51 mAOD			Boring diameter: 120 mm to 3.50m 100 mm to 16.50m	Casing diameter: 120 mm to 3.50m	Project No G17				
Logge	ed by: JP	Gro	ound	Level: 6	0.51 mAO[)	Date: 04/04/2017-07/04/2017	Location: 324392E - 446829N	Scale:	1:50
Ref:	Samples & In sit	u Tests SPT	N	Water	Level (mAOD)	Depth (m)	Strata [Description	Legend	Backfill
D1	0.40				60.21	0.30	MADE GROUND - Topsoil (so SILT with frequent rootlets).	ft light brown organic sandy		
B2 D3 B4	0.40 0.80 0.80	116 k			59.91	0.60	MADE GROUND - Firm reddi SILT / CLAY. Gravel is angular and siltstone.			
S D5 B6 D7	1.20 1.20 1.20-1.50 1.50-2.00	N=2	25		59.01	1.50	MADE GROUND - Stiff locally slightly gravelly silty CLAY. Go to coarse mudstone and silts	ravel is angular fine		
S D8	2.00 2.00-2.70	N=3	31				MADE GROUND - Very stiff fi slightly gravelly silty CLAY. Go to medium mudstone and sil	ravel is angular fine		
S D9 CR	3.00 3.00-3.45 3.00-4.00	N=2 26 7 0	0		57.81	2.70	Extremely weak fissile reddis rare thin bands of very weak siltstone. Destructured to res (Grade IVa).	to weak greenish grey		
CR	4.00-5.50	30 17 12	0							
C D10 CR	5.50 5.50-5.76 5.50-6.00	50/14 100 84 34	0		55.01 54.51	5.50	Very weak to weak thinly lan MUDSTONE with rare thin la siltstone. Evidence of weather strength and mottled discolo (II).	minations of green ering as slightly reduced		
CR	6.00-7.50	81 17 7	10 0		53.31	7.20	Very weak to weak red locall Fractures are predominantly fractures are horizontal to su closely spaced, planar smoot rare black surface staining. (0)	, randomly oriented. Rare ub-horizontal very h, tight to partly open,		
CR	7.50-9.00	81 59 5	5				Very weak to weak locally manimated red and green MU are horizontal to sub-horizon closely spaced, planar and un rough, partly open, clean. (G	IDSTONE. Bedding fractures ital very closely to indulating, smooth and		
		TCR	FI		1					

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Set of three Hand Shear Vane (HSV) tests undertaken at 0.50m gave average apparent undrained shear strength of 116 kPa, with residual reading of 15kPa, using the pilcon unit 1A and the 19mm vane.
- 3. Set of three HSV tests undertaken at 0.80m gave average apparent undrained shear strength of 123 kPa, with residual reading of 32 kPa.
- 4. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 3.00m, then by rotary coring techniques from 3.00m to base of the borehole, with a mist flush.

(continued next sheet)

Sheet 1 of 2

- 5. Groundwater entry recorded at 15.00m (not sealed) remaining level after 20 minutes.
- 6. Borehole backfilled with sodium bentonite (pellets) on completion.

(Window Sampler plus Rotary Core)

Site

0	GROUP					-	M1 J23a to J25 Ground Inv	estigation		
Client Costa	: ain Galliford	Try					Boring diameter: 120 mm to 3.50m 100 mm to 16.50m	Casing diameter: 120 mm to 3.50m	Project No	
Logg	ed by: JP	G	round	Level: 6	0.51 mAOD)	Date: 04/04/2017-07/04/2017	Location: 324392E - 446829N	Scale:	1:50
Ref:	Core Data	TCR #GB	FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
CR	9.00-10.50 69 58 29 10				(IIIAOD)	(III)	Remaining Detail: 7.50m - 7 frequent thick laminations of and 7.50m.	7.50m : with		
CR	10.50-12.00 97 89 37									
CR	12.00-13.50	95 9 8	9							
CR	13.50-15.00	100 95 68	7		46.66	13.85	Medium strong thinly lamin SILTSTONE with rare thin be mudstone. Fractures are ho very closely to closely space rough and smooth, partly of	rizontal to sub-horizontal, d, undulating and planar,	X X X X X X X X X X X X X X X X X X X	
CR	15.00-16.50	84 73 41	10		44.86	15.65 16.50	Extremely weak to very were with thin beds of interlamin are horizontal to sub-horizon closely space, planar, smooth partly open, clean. (Grade I End of Borehole at 16.50 m	ontal, very closely to th to rough, tight to	NE	

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Set of three Hand Shear Vane (HSV) tests undertaken at 0.50m gave average apparent undrained shear strength of 116 kPa, with residual reading of 15kPa, using the pilcon unit 1A and the 19mm vane.
- 3. Set of three HSV tests undertaken at 0.80m gave average apparent undrained shear strength of 123 kPa, with residual reading of 32 kPa.
- 4. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 3.00m, then by rotary coring techniques from 3.00m to base of the borehole, with a mist flush.

Sheet 2 of 2

- 5. Groundwater entry recorded at 15.00m (not sealed) remaining level after 20 minutes.
- 6. Borehole backfilled with sodium bentonite (pellets) on completion.

BOREHOLE RECORD - BH G202 B

(Window Sampler plus Rotary Core)

Site

(SROUP					M1 J23a to J25 Ground Inve	estigation		
Client Costa	: ain Galliford	l Try				Boring diameter: 120 mm to 13.50m 100 mm to 19.50m	Casing diameter: 120 mm to 13.50m	Project No	
Logg	ed by: ss	Ground	Level:			Date: 19/04/2017-21/04/2017	Location: -	Scale:	1:50
	Samples & In sit	u Tests	Water	Level	Depth	g		Legend	Backfill
Ref:	Depth (m)	SPT N		(mAOD)	(m)		Description	***************************************	N///N///
B1	0.00-1.00				0.40	MADE GROUND - Reddish br silty gravelly fine to coarse S. rootlets. Gravel is angular to quartz, chert and sandstone.	AND with occasional rounded fine to medium		
S D2 D3	1.20 1.20-1.65 1.20-2.00	N=22				MADE GROUND - Orangeish SAND and angular to rounde limestone and sandstone GR	ed fine to medium quartz		
S D4	1.20-2.00 2.00 50/160mm 2.00-2.45				MADE GROUND - Stiff friable with occasional gravel sized slithorelicts.				
		50/475			2.40	MADE GROUND - Very dense orangeish brown fine to coar rounded fine to coarse quart	rse SAND and sub-angular to		
S D5	3.00 3.00-3.45	50/175mm				·			
S	4.00	50/235mm			3.40	Very dense reddish brown sl SAND and sub-rounded to ro and chert GRAVEL.			
s C	7.00	N=43 50/285mm				becoming dense betwee	n 7.00m and 8.00m.		

Remarks and Water Observations

1. Hand dug starter pit to 1.20m, to check for services.

50/170mm

- ${\bf 2.}\ \ No\ groundwater\ see pages\ were\ encountered\ during\ boring\ operations.$
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 3.00m, then open hole / driving casing from 3.00m to 9.00m (due to dense gravels). Borehole advanced from 9.00m to borehole base by rotary coring techniques, with a mist flush.

(continued next sheet)

Sheet 1 of 3

BOREHOLE RECORD - BH G202 B

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

(ROUP					-	M1 J23a to J25 Ground Inve	estigation			
Client	: nin Galliford	l Try					Boring diameter: 120 mm to 13.50m 100 mm to 19.50m	Casing diameter: 120 mm to 13.50m	Project No.: G17057		
Logg	ed by: ss	Gro	ound	Level:			Date: 19/04/2017-21/04/2017	Location: -	Scale:	1:50	
- ·	Core Data		-	Water	Level	Depth	Strata	Description	Legend	Backfill	
Ref: CR	9.00-10.50	TCR RSB	FI		(mAOD)	(m)		wn MUDSTONE. (Description risings from rotary coring 9.00m to 12.00m. Not			
С	10.50	50/255	mm								
CR	10.50-12.00	0 0 0									
С	12.00	50/205	mm 0			12.00	Very weak to weak thinly lar MUDSTONE with occasional laminations of gypsum. Sligh				
CR	12.00-13.50	33 27 7	8				Horizontal fracture, very clo undulating rough, clean. (Gr	sely to closely spaced,			
С	13.50	50/85									
CR	13.50-15.00	100 96 53	6			13.75 14.10	Weak to medium strong thir silty fine to medium grained thick lamination of gypsum. fractures are very closely to undulating slightly rough, pagreen clay infill <6mm.	SANDSTONE with occasional Horizontal bedding closely spaced,			
CR	15.00-16.50	100 97 72	2				Very weak reddish brown sil thin laminations of gypsum. Horizontal fracture are very spaced, undulating rough, p. ().	closely to closely			
			3				Medium strong pale green a coarse grained silty SANDST to thin beds of sandy mudst laminations of gypsum. Hori	ONE with frequent very thin one and occasional thick zontal bedding fractures			
CR	16.50-18.00	100 99 82	2				are closely spaced, undulati	ig siignuy rougii, ciean,			
		TCR	FI							1333	
	TCR FI SCR RQD FS						(continued next sheet)		Sheet	2 of 3	

- 1. Hand dug starter pit to 1.20m, to check for services.
- ${\bf 2.}\ \ No\ groundwater\ see pages\ were\ encountered\ during\ boring\ operations.$
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 3.00m, then open hole / driving casing from 3.00m to 9.00m (due to dense gravels). Borehole advanced from 9.00m to borehole base by rotary coring techniques, with a mist flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

BOREHOLE RECORD - BH G202 B

(Window Sampler plus Rotary Core)

Site

G	ROUP					4	M1 J23a to J25 Ground Inve	estigation		
Client Costa	: ain Galliford	Try					Boring diameter: 120 mm to 13.50m 100 mm to 19.50m	Casing diameter: 120 mm to 13.50m	Project No	
Logg	ed by: ss	Gr	ound	Level:			Date: 19/04/2017-21/04/2017	Location: -	Scale:	1:50
	Core Data			Water	Level	Depth			Legend	Backfill
Ref:	Depth (m)	TCR SCR RQD	FI		(mAOD)	(m)		Description		X///////////
CR	18.00-19.50	91 91 88	0 O		(mAOD)	19.50	Medium strong pale green a coarse grained silty SANDST to thin beds of sandy mudst laminations of gypsum. Hori are closely spaced, undulatin	nd brownish red fine to ONE with frequent very thin one and occasional thick zontal bedding fractures		

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 3.00m, then open hole / driving casing from 3.00m to 9.00m (due to dense gravels). Borehole advanced from 9.00m to borehole base by rotary coring techniques, with a mist flush.

Sheet 3 of 3

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try						Boring diameter: 120 mm to 2.00m	Casing diameter:	Project No	
Logg	ed by: IG	Ground	Level: 3	3.45 mAOE)	Date: 10/04/2017	Location: 328595E - 447330N	Scale:	1:50
Ref:	Samples & In site	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata I	Description	Legend	Backfill
D1 B2	0.15 0.30-1.00	3111		33.25	0.20	MADE GROUND - Topsoil (So slightly sandy SILT. Gravel is sub-rounded fine to coarse of	oft brown slightly gravelly sub-angular to	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
S	1.20	N=19		24.05	1.50	MADE GROUND - Orangeish SAND with occasional gravel concrete. Gravel is angular to quartz, granite and sandston	o rounded fine to coarse		
B3 C	1.50-2.00 2.00	50/65mm	▼	31.95 31.45	2.00	MADE GROUND - Firm locally greenish grey CLAY.	y stiff reddish brown mottled		
	2.00	30/0311111		31.43	2.00	MADE GROUND - Obstruction	n (concrete).	(

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 2.00m (no casing used).

Sheet 1 of 1

- 3. Fragment of blue ribbed plastic pipe recovered in base of window sample at 2.00m.
- 4. Encountered obstruction (thought to be concrete) at 2.00m, unable to continue, borehole terminated at this location and moved 2.0m north.
- 5. Groundwater recorded at 1.80m at end of drilling.
- 6. Borehole backfilled with sodium bentonite (pellets) and surface reinstated upon completion.

BOREHOLE RECORD - BH G202AA

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client		I.T				Boring diameter: 120 mm to 13.50m	Casing diameter:	Project No	
Losta	in Galliford	r y						G170	J57
	ed by: IG		Level: 3	33.45 mAOI)	Date: 10/04/2017-19/04/2017	Location: 328595E - 447330N	Scale:	1:50
S Ref:	amples & In site Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata D	Description	Legend	Backf
D1	0.20-0.60			33.25	0.20	MADE GROUND - Topsoil (so slightly sandy SILT. Gravel is sub-rounded fine to coarse q	sub-angular to	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
D2 D3	0.60-0.90 0.90-1.20			32.85 32.55	0.60	MADE GROUND - Soft locally gravelly sandy CLAY. Gravel is	firm brown slightly	P	
S D4 D5	1.20 1.20-1.65 1.50-2.00	N=15				sub-rounded fine to coarse q mudstone.	uartz, limestone and		
С	2.00	50/105mm		31.45	2.00	MADE GROUND - Grey sandy imestone GRAVEL (sub-base)		(,), (,), (,), (,), (,)	
						MADE GROUND - Firm reddis gravelly CLAY. Gravel is sub-a fine to coarse quartz and mu	-		
С	3.00	50/165mm				Very dense dark brown grave Gravel is sub-angular to sub- quartz, mudstone and sandst from returned arising from o sands / gravels too dense to	rounded fine to coarse cone. (Description derived pen hole drilling, as		
С	4.00	50/195mm							
C D6	5.00 5.00-5.50	50/125mm							
C D7 D8	6.00 6.00-6.10 6.10-7.00	N=33		27.35	6.10	Stiff locally firm friable reddis	sh brown CLAY.		
c	7.00	50/452		26.55	6.90	Cutt fairble and 1911	AV the formula to the		
S	7.00	50/160mm				Stiff friable reddish brown CL bands of mudstone (recovere fragments) and occasional gralithorelicts (no sample recovery fror descriptions based on return coring).	ed as gravel sized avel sized mudstone n 7.00m to 10.00m,		
						coring).			
		1				(continued next sheet)		Sheet	1 of 2

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 2.00m, then by open hole / driving casing from 2.00m to 7.00m and 11.50m to 13.50m (due to very dense gravels). Borehole then advanced by rotary coring techniques from 7.00m to 11.50m (no recovery), with a mist flush.
- 3. No groundwater seepages were encountered during boring operations.
- 4. Unable to penetrate below 13.50m (advance 0.50m in 4 hour shift), due to casing shoe being worn away by dense quartz cobbles. Borehole therefore terminated.
- 5. Borehole backfilled with sodium bentonite (pellets) and surface reinstated in completion.

BOREHOLE RECORD - BH G202AA

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 13.50m	Casing diameter: 120 mm to 12.70m	Project No G170	
Logge	ed by: IG	Ground	Level: 3	33.45 mAOE)	Date: 10/04/2017-19/04/2017	Location: 328595E - 447330N	Scale:	1:50
	amples & In site	u Tests SPT N	Water	Level (mAOD)	Depth (m)		Description	Legend	Backfill
						Stiff friable reddish brown Cl bands of mudstone (recover fragments) and occasional go lithorelicts.	LAY with frequent thin ed as gravel sized		
S D10 D9	10.00 10.00-11.50 10.00-10.45	50/140mm		23.45	10.00	Very dense yellow fine to co to sub-rounded fine to coars high quartz cobble content a (unable to determine boulded drilling method) (Description arisings from open hole drilling to dynamic sample). driller noted an increase 11.00m.	se quartz GRAVEL with a and probable boulders er content due to open hole n based on returned ing, as gravels too dense		
C D12	13.00 13.00-13.50	50/120mm		19.95	13.50	End of Borehole at 13.50 m			
								Shoot	

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 2.00m, then by open hole / driving casing from 2.00m to 7.00m and 11.50m to 13.50m (due to very dense gravels). Borehole then advanced by rotary coring techniques from 7.00m to 11.50m (no recovery), with a mist flush.

Sheet 2 of 2

- 3. No groundwater seepages were encountered during boring operations.
- 4. Unable to penetrate below 13.50m (advance 0.50m in 4 hour shift), due to casing shoe being worn away by dense quartz cobbles. Borehole therefore terminated.
- 5. Borehole backfilled with sodium bentonite (pellets) and surface reinstated in completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

GH	ROUP				•	M1 J23a to J25 Ground Inve	stigation		
Client Costain	n Galliford	Try				Boring diameter: 120 mm to 13.00m 100 mm to 30.00m	Casing diameter: 120 mm to 13.00m	Project No	
Logged	l by: ıg	Ground	Level:			Date: 24/04/2017-03/05/2017	Location: -	Scale:	1:50
San	nples & In situ	ı Tests	Water	Level	Depth			Legend	Backfill
	Depth (m)	SPT N		(mAOD)	(m)	Strata I	Description	********	(N.777.N.777)
D2 D3 D4 S	0.00-0.30 0.30-0.60 0.60-1.00 1.00-1.20 1.20 1.20-1.65	N=24			0.60 1.00 1.20	MADE GROUND - Soft dark b gravelly sandy SILT with freq gravel sized fragments of pol gravel sized fragments of ma and cobbles are sub-angular limestone, quartz and sandst polystyrene board at 0.3	uent rootlets, frequent lystyrene and occasional cadam and concrete. Gravel to rounded fine to coarse tone.		
B6 S D7	2.00 2.00-2.45	50/270mm			1.95	MADE GROUND - Yellowish the fine to coarse SAND with occumacadam fragments. Gravel to rounded fine to coarse lim	casional gravel sized and cobbles are sub-angular		
D8	3.00	50/275mm				MADE GROUND - Soft locally gravelly CLAY. Gravel is sub-ato medium quartz and mudst	angular to rounded fine	*	
	3.00-4.00	30/2/3/////				MADE GROUND - Firm locally grey slightly sandy gravelly C sub-angular to rounded fine limestone and mudstone.		******* ********	
C B10	4.50 4.50-6.00	50/195mm				Very dense yellowish brown coarse SAND. Gravel is sub-ru coarse quartz. (Description b arisings from open hole drilli	ounded to rounded fine to ased on limited returned		
C B11	6.00 6.00-9.00	50/85mm							
С	7.50	50/285mm			6.50	Very dense orangeish brown sub-rounded to rounded fine (Description based on limited open hole drilling).	e to coarse quartz GRAVEL.		
С	9.00	50/130mm			9.00				

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 2.00m, then open hole / driving casing from 2.00m to 13.00m (due to dense gravels). Borehole advanced from 13.00m to the the borehole base by rotary coring techniques, with a mist flush.

(continued next sheet)

Sheet 1 of 4

- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

11.00							Site M1 J23a to J25 Ground Inve	estigation			
Client Costa	t ain Galliford	l Try					Boring diameter: 120 mm to 13.00m 100 mm to 30.00m	Casing diameter: 120 mm to 13.00m	Project No		
Logge	ed by: IG	Gr	ound	Level:			Date: 24/04/2017-03/05/2017	Location: -	Scale:	1:50	
Ref:	Samples & In site	u Tests SPT	N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill	
S D12	5 10.00 50/85mm 12 10.00-10.45						Stiff reddish brown CLAY wir lithorelicts. (Description bas arisings from open hole drill				
D13	11.00-12.00					12.90	coarse quartz GRAVEL. (Des	Dark brown sandy sub-rounded to rounded medium to coarse quartz GRAVEL. (Description based on returned arisings from open hole drilling).			
C C	13.00	N=	5			13.00	Stiff reddish brown friable S sub-angular to sub-rounded mudstone lithorelicts.	ILT with occasional I fine to medium gravel sized			
CR	13.00-14.50	75 67 37	5				Extremely weak reddish bro interbedded with greenish g SANDSTONE with frequent g Discontinuities are horizontaplanar and rough undulating	grey medium grained gypsum mineralisation. al closely spaced smooth			
CR	14.50-16.00	100 93 77	4				grade not possible due to m with sandstone).				
			0								
CR	16.00-17.50	100 100 95	3				becoming very weak to	weak below 16.70m.			
	5					17.30	Weak to medium strong gre grained SANDSTONE with ho undulating rough clean fract	orizontal closely spaced			

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 2.00m, then open hole / driving casing from 2.00m to 13.00m (due to dense gravels). Borehole advanced from 13.00m to the the borehole base by rotary coring techniques, with a mist flush.

(continued next sheet)

Sheet 2 of 4

- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

9600000										
Clien	t						Boring diameter:	Casing diameter:	Project No.:	
Costa	ain Galliford	d Try					120 mm to 13.00m 100 mm to 30.00m	120 mm to 13.00m	G17	057
Logg	ed by: ıG	Gr	ound	Level:			Date: 24/04/2017-03/05/2017	Location: -	Scale:	1:50
Ref:	Core Data Depth (m)	TCR NEB	FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
CR	17.50-19.00	97 97 57	4				Weak to medium strong gre grained SANDSTONE with h undulating rough clean frac	orizontal closely spaced		
С	19.00	50/3	mm							
CR	19.00-20.50	100 83 60	6							
			2							
CR	20.50-22.00	97 97 67	3			21.00	Weak to medium strong red MUDSTONE with frequent g Discontinuities are horizont closely to closely spaced pla rough. (Grade I locally Grad	gypsum mineralisation. al to sub-horizontal very anar smooth and undulating		
CR	22.00-23.50	97 97 67	4							
			2							
CR	23.50-25.00	100 87 80	2							
С	25.00	50/40	J m	-						
CR	25.00-26.50	80 73 67	2							
			3							
CR	26.50-28.00	97 97 60	EI							
		TCR SCR RQD	FI FS	1			(continued next sheet)		Sheet	3 of 4

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 2.00m, then open hole / driving casing from 2.00m to 13.00m (due to dense gravels). Borehole advanced from 13.00m to the the borehole base by rotary coring techniques, with a mist flush.
- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

Sheet 4 of 4

Site

M1 J23a to J25 Ground Investigation

GROOF			IVIT 123a to 125 Ground In	vestigation			
Client	_		Boring diameter: 120 mm to 13.00m	Casing diameter:	Project No.:		
Costain Galliford	Try		100 mm to 30.00m	120 11111 to 13.00111	G17	057	
Logged by: IG	Ground Level:		Date: 24/04/2017-03/05/2017	Location: -	Scale:	1:50	
Core Data		er Level Dept		a Description	Legend	Backfill	
Ref: Depth (m) CR 28.00-29.50 CR 29.50-30.00 C 30.00	### FI	er Level Dept (m)	Weak to medium strong re MUDSTONE with frequent Discontinuities are horizon closely to closely spaced pi rough. (Grade I locally Grad	gypsum mineralisation. tal to sub-horizontal very lanar smooth and undulating	Legend	Backfil	

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 2.00m, then open hole / driving casing from 2.00m to 13.00m (due to dense gravels). Borehole advanced from 13.00m to the the borehole base by rotary coring techniques, with a mist flush.
- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

						WIT 1238 to 123 Ground investigation				
Client Costain Galliford Try Logged by: SS Ground Level: 33.53 mAOD						_	Casing diameter: 120 mm to 18.00m	Project N G17	o.: '057	
Logg	ed by: ss	Ground	Level: 3	33.53 mAOE)	Date: 10/04/2017-18/04/2017	Location: 447237E - 328864N	Scale:	1:50	
Ref:	Samples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth	Strata De	escription	Legend	Backfil	
D1	0.40	SPT IN		33.33	(m) 0.20	MADE GROUND - Topsoil (soft SILT with frequent rootlets).	-			
D2 D3 D4 D5 S D6	0.40 0.80 0.80 1.10-1.50 1.20 1.20	N=19		32.43	1.10	MADE GROUND - Orangish bro slightly cobbly slightly silty fine with occasional gravel sized fra Gravel and cobbles are angular coarse quartzite, sandstone an	e to coarse SAND agments of concrete. r to rounded fine to	/		
S	1.50-2.00 2.00	50/275mm				MADE GROUND - Stiff reddish sandy CLAY. Gravel is angular t medium sandstone, quartzite a	to rounded fine to			
С	3.00	50/210mm		31.23	2.30	Dense reddish brown fine to co sub-angular to rounded fine to GRAVEL no recovery from 2.50 to 4 sands and gravels)	medium quartzite			
С	4.00	N=32								
D8 B9 S	4.70-4.85 4.85-5.40 5.00 5.40-6.00	N=28	•	28.83 28.68	4.70 4.85	Dense reddish brown sandy ro to coarse siltstone, sandstone with occasional cobbles of rou mudstone and quatzite.	and quartzite GRAVEL			
С	6.00	41/144mm				Dense reddish brown slightly g SAND. Gravel is rounded fine q occasional sub-angular mu 5.80 to 5.90m.	quartzite and chert.			
С	7.00	50/95mm								
С	8.00	50/95mm								

Remarks and Water Observations

9.00

1. Hand dug starter pit to 1.20m, to check for services.

50/85mm

- 2. Groundwater entry was encountered at 5.90m (sealed off with casing) rising to 5.10m after 20 minutes.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 6.00m, then by driving casing / open hole from 6.00m to 10.50m (due to very dense gravels). Borehole advanced from 10.50m to base by rotary coring techniques, with a mist flush.

(continued next sheet)

Sheet 1 of 3

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

GROOP					MIT J23a to J25 Ground Inve	estigation		
Client Costain Galliford Try					Boring diameter: 120 mm to 18.00m 100 mm to 24.00m	Casing diameter: 120 mm to 18.00m	Project N G17	
Logged by: ss	Ground	Level: 3	3.53 mAOD)	Date: 10/04/2017-18/04/2017	Location: 447237E - 328864N	Scale:	1:50
Samples & In sit		Water	Level	Depth	Strata	Description	Legend	Backfil
Ref: Depth (m)	SPT N		(mAOD)	(m)	Dense reddish brown slightl SAND. Gravel is rounded find	y gravelly fine to coarse		
C 10.50 10.50-10.83 CR 10.50-12.00	50/184 mm 0 0 0		23.03	10.50	Extremely weak reddish bro recovery, description based returned from rotary coring weathering grade).	on limited arisings		c C
C 12.00 D12 12.00-12.37	50/245 mm							
CR 12.00-13.50 D11 13.00	0 0 0							
C 13.50 D12 13.50-13.95	N=z 6							
CR 13.50-15.00	0 0 0							
C 15.00 D12 15.00	50/18 C mm							
CR 15.00-16.50	0 0 0							
C 16.50 D13 16.50-16.80	-50/15 C mm							
CR 16.50-18.00	0 0 0							
		-	15.53	18.00				

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Groundwater entry was encountered at 5.90m (sealed off with casing) rising to 5.10m after 20 minutes.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 6.00m, then by driving casing / open hole from 6.00m to 10.50m (due to very dense gravels). Borehole advanced from 10.50m to base by rotary coring techniques, with a mist flush.

(continued next sheet)

Sheet 2 of 3

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Logged by: SS Core Data Ref: Depth (m)	Gro	ound				Boring diameter:	Casing diameter:	Project No).:
Core Data	TCR	ound				Boring diameter: Casing diameter: 120 mm to 18.00m 100 mm to 24.00m		Project No.: G17057	
	TCR		Level: 3	3.53 mAOD	ı	Date: 10/04/2017-18/04/2017	Location: 447237E - 328864N	Scale:	1:50
	r fG B	FI	Water	Level (mAOD)	Depth (m)	Strata D	escription	Legend	Backfill
CR 18.00-19.50	95 82 50	5		14.78	18.75	Very weak to weak reddish b MUDSTONE with frequent irr laminations of gypsum and ra siltstone. Evidence of weathe strength and mottled discolu- horizontal to sub-horizontal v	egular thin to thick are very thin beds of ring as slightly reduced ration. Fractures are		
CR 19.50-21.00	100 98 73	7		13.43	20.10	spaced, undulating, rough, pa (Grade II to Grade I). Weak to medium strong thinl grained SILTSTONE with frequent lamination of gypsum. Fractus sub-horizontal, closely spaced smooth, tight to partly open,	ly laminated pale green fine uent thin and rare thick res are horizontal to d, undulating and planar,		
	100 100 76	8		12.43	21.10	Very weak to weak brownish MUDSTONE with frequent irr gypsum. Fractures are sub-ho rough, very closely spaced, ti clean. (Grade I locally Grade I	egular thin laminations of orizontal, undulating, ght to partly open,	******	
_	70	5 0 6		11.03	21.50	Weak to medium strong thinl grained SILTSTONE with freque lamiantion of gypsum and rail Fractures are sub-horizontal, spaced, undulating and planate partly open clean	uent thin to thick re thin mudstone beds. very closely to closely	X X X X X X X X X X X X X X X X X X X	
CR 22.50-24.00	89 73 63	8		9.53	23.15	to partly open, clean. Weak locally medium strong red silty MUDSTONE with rar irregular thin to thick laminat Fractures are horizontal to su closely to closely spaced, und to smooth, tight to partly open Grade II).	e beds of siltstone and ion of gypsum. ib-horizontal, very lulating, slightly rough	******	
						Medium strong thinly lamina SILTSTONE with rare thin to t gypsum. Fractures are horizo undulating and planar, slightl partly open, clean.	hick lamination of ntal to sub-horizontal,		
						Very weak to weak thinly lam locally green silty MUDSTONE lamination of gypsum. Evider slightly reduced strength and Fractures are sub-horizontal, spaced, undulating and planarough, partly open to open, c	E with irregular thin acc of weathering as mottled discolouration. very closely to closely r, smooth to slightly		
	ISB RQD I	FS				End of borehole at 24.00 III		Sheet	 3 of 3

- 1. Hand dug starter pit to 1.20m, to check for services.
- $2. \ \ Groundwater\ entry\ was\ encountered\ at\ 5.90m\ (sealed\ off\ with\ casing)\ rising\ to\ 5.10m\ after\ 20\ minutes.$
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 6.00m, then by driving casing / open hole from 6.00m to 10.50m (due to very dense gravels). Borehole advanced from 10.50m to base by rotary coring techniques, with a mist flush
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

GROUP						M1 J23a to J25 Ground Investigation				
Client Costa	in Galliford	Try				Boring diameter: 120 mm to 16.50m 100 mm to 22.00m	Casing diameter: 120 mm to 16.50m	Project No.		
Logge	ed by: JP	Ground	Level: 3	36.30 mAO[)	Date: 10/04/2017-12/04/2017	Location: 329167E - 447138N	Scale:	1:50	
	amples & In siti		Water	Level	Depth	Strata I	Description	Legend	Backfill	
Ref: B1	Depth (m) 0.40-0.60	SPT N		(mAOD) 36.20	(m) 0.10	MADE GROUND - Topsoil (so SILT with occasional rootlets)	ft light brown organic sandy	/		
B2 S D3	0.90-1.20 1.20 1.20-1.60	N=6	¥	35.00	1.30	MADE GROUND - Brown slig fine to coarse SAND and sub fine to coarse quartz GRAVEI with some sub-rounded partings of clay below 0.90m	-angular to sub-rounded L. quartz cobbles and			
S D5	2.00 2.00-2.50	N=12		34.70	1.60	MADE GROUND - Soft locally reddish brown and occasions with frequent gravel sized fraultstone and rare quartz gra	ally light grey silty CLAY agments of mudstone and	 		
D6 S D7	3.00 3.00-3.40	N=10				MADE GROUND - Soft locally occasionally light grey silty C gravel to cobble sized fragme siltstone.	LAY with frequent			
S D9	4.00 4.20-4.60	N=31		32.90	3.40	POSSIBLE MADE GROUND - Soccasional light grey slightly CLAY. Gravel is angular to su mudstone and siltstone.	sandy slightly gravelly			
S D10	5.00 5.00-5.17	50/85mm		31.40	4.90	Very dense brown fine to co- to sub-rounded fine to coars				
S D10	6.00 6.00-6.40	N=15		30.30	6.00	Firm brown slightly sandy sli CLAY. Gravel is sub-angular t				
D11	6.40-7.00			29.90	6.40	coarse quartz.				
S	7.00	N=38				Dense orangeish brown sligh SAND. Gravel is sub-angular coarse quartz.				
D12	7.50-8.50									
S	8.50	N=29								
D13	9.00-10.00									

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Slight groundwater seepage noted at 1.20m (sealed off with casing) rising to 1.10m after 15 minutes.
- 3. No recovery from 5.30m to 6.00m, cased off.
- 4. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 12.00m, then rotary coring techniques from 12.00m to the borehole base, with a mist flush.

(continued next sheet)

Sheet 1 of 3

5. Borehole backfilled with sodium bentonite (pellets) upon completion.

(Window Sampler plus Rotary Core)

Site

(GROUP				-	M1 J23a to J25 Ground Investigation				
Client Costa	t ain Galliford	l Try				Boring diameter: 120 mm to 16.50m 100 mm to 22.00m	Casing diameter: 120 mm to 16.50m	Project N		
Logg	ed by: JP	Grou	nd Level:	36.30 mAOI)	Date: 10/04/2017-12/04/2017	Location: 329167E - 447138N	Scale:	1:50	
Ref:	Samples & In sit	u Tests SPT N	Water	Level (mAOD)	Depth	Strata	Description	Legend	Backfill	
S D14	10.00 10.50-11.00	50/225mi	m		(m)	Dense orangeish brown slig SAND. Gravel is sub-angular coarse quartz.	htly gravelly fine to coarse			
D15	11.00-11.50	N=31		25.30	11.00	Very stiff friable reddish bro grey silty CLAY with occasio lithorelicts.				
CR	12.00-12.50	60 0 0		24.30	12.00	Extremely weak red mottled Destructured to residually w Grade IVb) reamed out hole from 1				
CR S	12.50-13.50 13.50	100 0 0 50/105 mi	m			very thin bed of mediur 13.25m.	n strong siltstone at			
CR	13.50-15.00	27 0 0								
S	15.00	50/225 mi	m			non-intact between 14. as gravel).	60m and 15.00m (recovered			
CR	15.00-16.50	13 0 0								
CR	16.50-17.50	0 0 0	0	18.80	17.50	Very weak to weak reddish	brown locally green silty			
		1	15			MUDSTONE with frequent in				

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- ${\it 2. \ Slight\ groundwater\ seepage\ noted\ at\ 1.20m\ (sealed\ off\ with\ casing)\ rising\ to\ 1.10m\ after\ 15\ minutes.}$
- 3. No recovery from 5.30m to 6.00m, cased off.
- 4. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 12.00m, then rotary coring techniques from 12.00m to the borehole base, with a mist flush.

(continued next sheet)

Sheet 2 of 3

5. Borehole backfilled with sodium bentonite (pellets) upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Logged by: P Ground Level: 36.30 mAoD Date: 10/04/2017-13/04/2017 Location: 3291677-447138N Scale: 1.50	Clien	ostain Galliford Try						Boring diameter: Casing diameter: 120 mm to 16.50m 100 mm to 22.00m		Project No.: G17057	
Sect Depth (m) Strata Description Strata De	Logg	ed by: JP	Gr	ound	Level: 3	6.30 mAOD)	Date: 10/04/2017-12/04/2017	Location: 329167E - 447138N	Scale:	1:50
Review of the control	- 6				Water			Strata D)escription	Legend	Backfill
CR 20.50 22.00 96 66 10 15.90 20.40 15.90 20.40 15.90 20.40 20.50 20.00 20.50 20.00 20.50 20.00 20.50 20.00 20.50 20.00 20.50 20.00 20.50 20.50 20.00 20.50			87 75			(MAOD)	(m)	gypsum. Evidence of weather strength. Fractures are horizon locally sub-vertical, very close undulating, rough, partly ope	ring as slightly reduced ontal to sub-horizontal ely to closely spaced, en, rare infill of		
Weak thinly laminated reddish brown silty MUDSTONE with rare irregular thin to thick laminations of gypsum. Fractures are horizontal to sub-horizontal, undulating, smooth to slightly rough, partly open to open, clean. (Grade I locally Grade II). End of Borehole at 22.00 m	CR	19.00-20.50	96					red SILTSTONE with occasion laminations of gypsum. Fract sub-horizontal locally sub-ve closely spaced, undulating, sl	al thin and thick ures are horizontal to rtical, very closely to	X X X X X X X X X X X X X X X X X X X	
14.30 22.00 End of Borehole at 22.00 m	CR	20.50-22.00	89					Weak thinly laminated redding with rare irregular thin to thin gypsum. Fractures are horizon undulating, smooth to slightly	ck laminations of ontal to sub-horizontal, y rough, partly open to		
題 民 Sheet 3 of 3								End of Borehole at 22.00 m			
, , , , , , , , , , , , , , , , , , ,			ICR RQD	FS FS						Sheet	3 of 3

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Slight groundwater seepage noted at 1.20m (sealed off with casing) rising to 1.10m after 15 minutes.
- 3. No recovery from 5.30m to 6.00m, cased off.
- 4. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 12.00m, then rotary coring techniques from 12.00m to the borehole base, with a mist flush.
- 5. Borehole backfilled with sodium bentonite (pellets) upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client						Boring diameter: Casing diameter: 120 mm to 18.50m 120 mm to 18.00m			Project No.:		
Costa	in Galliford	d Try				120 mm to 18.50m 100 mm to 21.00m	12U mm to 18.UUm	G17	057		
Logg	ed by: ss	Ground	Level: 3	36.33 mAOD)	Date: 21/04/2017-25/04/2017	Location: 329181E - 447188N	Scale:	1:50		
Ref:	Samples & In sit Depth (m)	tu Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata I	Description	Legend	Backfill		
D1 D2	0.30-0.50			35.73	0.60	MADE GROUND - Greyish br silty fine to coarse SAND wit fragments of concrete. Grave rounded fine to coarse quark sub-rounded quartz.	h occasional gravel sized el is sub-rounded to				
D3	1.20-2.00			35.23	1.10	MADE GROUND - Reddish br coarse SAND and angular to quartz, mudstone and chert sub-rounded quartz cobbles.	rounded fine to coarse GRAVEL with occasional				
S D4 B5	2.00 2.00-2.45 2.00-3.00	N=15		34.33	2.00	MADE GROUND - Reddish br sub-rounded fine to coarse of occasional sub-angular muds	quartz GRAVEL with				
S D6 B7	3.00 3.00-3.45 3.00-4.00	N=15				MADE GROUND - Firm reddi slightly gravelly clayey SILT. (to sub-rounded fine to coars	Gravel is sub-angular				
S D8 B9	4.00 4.00-4.45 4.20-5.00	N=11		32.13	4.20	MADE GROUND - Firm locall slightly gravelly silty CLAY wi					
S D10	5.00 5.00-5.45	50/230mm				sub-rounded siltstone cobble to coarse mudstone and silts	es. Gravel is angular fine				
С	6.00	50/235mm		30.93	5.40	Very dense orangeish brown coarse SAND and sub-round quartz, chert and mudstone	ed to rounded fine to coarse				
С	7.00	50/235mm									
С	8.00	50/265mm									
С	9.00	50/210mm									

Remarks and Water Observations

- 1. Hand dug starter pit exposed warning tape at 0.80m. Starter pit moved 0.30m to avoid fibre optic cable at 1.00m.
- 2. Second hand dug starter pit to 1.20m, to check for services.
- 3. Groundwater entry recorded at 7.30m (sealed off with casing) rising to 6.90m after 20 minutes.
- 4. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 5.00m, then driving casing / open hole from 5.00m to 13.50m (due to very dense gravels). Borehole advanced from 13.50m to base by rotary coring techniques, with a mist flush

(continued next sheet)

Sheet 1 of 3

(Window Sampler plus Rotary Core)

GROUP						Site M1 J23a to J25 Ground Investigation				
Client Costa	t ain Galliford	Try				Boring diameter: 120 mm to 18.50m 100 mm to 21.00m	Casing diameter: 120 mm to 18.00m	Project No		
Logg	ed by: ss	Ground	Level: 3	36.33 mAOI)	Date: 21/04/2017-25/04/2017	Location: 329181E - 447188N	Scale:	1:50	
9	Samples & In sit	u Tests	Water	Level	Depth	C	5	Legend	Backfill	
Ref:	Depth (m)	SPT N		(mAOD)	(m)		Description	11.40.000	N///N///	
С	10.00	Very dense orangeish brown slightly silty fine to coarse SAND and sub-rounded to rounded fine to quartz, chert and mudstone GRAVEL. 10.00 50/85mm Extremely weak reddish brown MUDSTONE (no save recovery, description based on limited arising return of the coarse SAND and sub-rounded to rounded fine to quartz, chert and mudstone GRAVEL.				ed to rounded fine to coarse				
C D11 CR	13.50 13.50-13.95 13.50-15.00	-50/285 mm 0 0 0	-				on limited arising returns			
CR C	15.00-16.50 16.50	0 0 0								
D12 CR	16.50-16.95 16.50-18.00	0 0 0								

Remarks and Water Observations

50/20 mm

- 1. Hand dug starter pit exposed warning tape at 0.80m. Starter pit moved 0.30m to avoid fibre optic cable at 1.00m.
- 2. Second hand dug starter pit to 1.20m, to check for services.
- 3. Groundwater entry recorded at 7.30m (sealed off with casing) rising to 6.90m after 20 minutes.
- 4. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 5.00m, then driving casing / open hole from 5.00m to 13.50m (due to very dense gravels). Borehole advanced from 13.50m to base by rotary coring techniques, with a mist flush.

(continued next sheet)

Sheet 2 of 3

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	t ain Galliford	Try					Boring diameter: 120 mm to 18.50m 100 mm to 21.00m	Casing diameter: 120 mm to 18.00m	Project No G17	
Logg	ed by: ss	Gr	ound	Level: 3	6.33 mAOD)	Date: 21/04/2017-25/04/2017	Location: 329181E - 447188N	Scale:	1:50
Ref:	Core Data Depth (m)	TCR	FI	Water	Level (mAOD)	Depth (m)	Strata [Description	Legend	Backfill
CR	18.50-19.50	85 80 36	6		17.83	18.50	Extremely weak reddish brow recovery, description based of from rotary drilling, no possil weathering grade).	on limited arising returns ble to identify	/	
			2				Moderately weak reddish br MUDSTONE and SILTSTONE mineralisation. (Grade I).	with occasional gypsum		
CR	19.50-21.00	93 88 83					with occasional angular r sized gypsum fragments at 19 disturbed) thick lamination of gypsu	9.85m. (Drilling		
			0		15.33	21.00	inclinced thick lamination 20.49m.	n of gypsum noted at		
							End of Borehole at 21.00 m			

- 1. Hand dug starter pit exposed warning tape at 0.80m. Starter pit moved 0.30m to avoid fibre optic cable at 1.00m.
- 2. Second hand dug starter pit to 1.20m, to check for services.
- 3. Groundwater entry recorded at 7.30m (sealed off with casing) rising to 6.90m after 20 minutes.
- 4. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 5.00m, then driving casing / open hole from 5.00m to 13.50m (due to very dense gravels). Borehole advanced from 13.50m to base by rotary coring techniques, with a mist flush.
- 5. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

						1711 1230 to 123 Ground IIIV			
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 9.00m 120 mm to 24.50m	Casing diameter: 120 mm to 12.00m	Project N G17	o.: '057
Logge	ed by: IG	Ground	Level: 3	33.52 mAO[)	Date: 12/05/2017-18/07/2017	Location: 329905E - 446938N	Scale:	1:50
	amples & In sit	ı	Water	Level	Depth	Strata I	Description	Legend	Backfill
Ref: D1	Depth (m) 0.15-0.70	SPT N		(mAOD) 33.37	(m) 0.15	MADE GROUND - Topsoil (lig silty fine SAND with frequent sub-rounded to rounded fine	tht brown slightly gravelly trootlets. Gravel is	/	
D2 D3 S D4 D5	0.70-1.00 1.00-1.10 1.20 1.20-1.65 1.20-2.00	N=20		32.82 32.52 32.42	0.70 1.00 1.10	SAND with a medium sub-an content. Gravel is sub-angula	ar to rounded fine to		
S D6	2.00 2.00-2.45	50/200mm		31.32	2.20	coarse quartz, flint, mudston MADE GROUND - Firm locally gravelly slightly sandy CLAY. to rounded fine to medium c	y soft reddish brown slightly Gravel is sub-angular		
S	3.00	N=47				MADE GROUND - Greyish brocoarse SAND. Gravel is sub-ato coarse limestone.			
D7 D8	3.00-3.45 3.00-4.50					MADE GROUND - Firm reddi gravelly CLAY. Gravel is sub- to coarse quartz, mudstone a	angular to rounded fine		
S D9	4.50 4.50-6.00	50/225mm				Very dense yellowish brown sub-angular to rounded fine and mudstone GRAVEL. (Des arisings from open hole drilli becoming dense betwee	to coarse quartz, flint cription based on returned ing).		
S D10 D11	6.00 6.00-6.45 6.00-7.50	N=44				becoming dense betwee	en 6.00m to 7.50m.		
S	7.50	50/65mm							
						to the start to the			<u></u>
						(continued next sheet)		Sheet	1 of 3

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden then by open-hole / driving casing to 12.00, through dense coarse grained soils, then rotary coring through rock to base.
- 4. Borehole backfilled with bentonite pellets to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

(GROUP				-	M1 J23a to J25 Ground Investigation				
Client Costa	t ain Galliford	l Try				Boring diameter: 120 mm to 9.00m 120 mm to 24.50m	Casing diameter: 120 mm to 12.00m	Project No		
Logg	ged by: IG	Ground	Level: 3	3.52 mAO[)	Date: 12/05/2017-18/07/2017	Location: 329905E - 446938N	Scale:	1:50	
Ref:	Samples & In site	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill	
						Very dense yellowish brown sub-angular to rounded fine and mudstone GRAVEL. (De arisings from open hole dril				
CR	12.50-14.00	73 50	_	21.52	12.00	Very weak structureless fine Discontinuities are sub-hori smooth planar smooth und	zontal closely spaced			
Ch	12.30-14.00	40		20.22	13.30	mineralisation. Discontinuit sub-horizontal and vertical planar smooth planar rough	FONE with frequent gypsum ies are horizontal closely spaced rough undulating smooth			
CR	14.00-15.50	100 83 43				gypsum coated.	ed closely spaced clean and			
CR	15.50-17.00	100 70 33								
CR	17.00-18.50	100 57 28								

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden then by open-hole / driving casing to 12.00, through dense coarse grained soils, then rotary coring through rock to base.

(continued next sheet)

Sheet 2 of 3

(Window Sampler plus Rotary Core)

Site

(GROUP					•	M1 J23a to J25 Ground Investigation			
Clien	t ain Galliford	l Try					Boring diameter: 120 mm to 9.00m 120 mm to 24.50m	Casing diameter: 120 mm to 12.00m	Project N	o.: 7057
Logg	ed by: IG	Gro	und I	Level: 3	3.52 mAOE)	Date: 12/05/2017-18/07/2017	Location: 329905E - 446938N	Scale:	1:50
Ref:	Core Data Depth (m)	TOR	FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
CR	100					()	Extremely weak medium int MUDSTONE and grey SILTST mineralisation. Discontinuiti sub-horizontal and vertical oplanar smooth planar rough undulating and rough stepp gypsum coated.	terbedded reddish brown FONE with frequent gypsum ies are horizontal closely spaced rough a undulating smooth ed closely spaced clean and		
CR	20.00-21.50									
CR	21.50-23.00	100 65 52								
CR	23.00-24.50	100 43 17								
					9.02	24.50	End of Borehole at 24.50 m			

Remarks and Water Observations

SER RQD

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden then by open-hole / driving casing to 12.00, through dense coarse grained soils, then rotary coring through rock to base.

Sheet 3 of 3

(Window Sampler plus Rotary Core)

Site

G	GROUP					M1 J23a to J25 Ground Investigation				
Client Costa	: ain Galliford	l Try				Boring diameter: 120 mm to 10.50m 100 mm to 18.00m	Casing diameter: 120 mm to 10.50m	Project No		
Logg	ed by: РМ	Ground	Level:	33.64 mAO[)	Date: 20/04/2017-25/04/2017	Location: 329934E - 446891N	Scale:	1:50	
Ref:	Samples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata [Description	Legend	Backfill	
B1	0.00-1.10					MADE GROUND - Brown sligh medium to coarse SAND with concrete fragments. Gravel is medium quartz.	n frequent gravel sized			
S D2	1.20 1.20-2.00	N=15		32.54	1.10	MADE GROUND - Stiff brown frequent gravel sized sub-ang lithorelicts sub-rounded fine to med				
S	2.00	50/125mm		31.64	2.00	coal fragments below 1.50m rounded medium to coar 1.90m. Very dense brownish grey co				
S	3.00	N=50		20.24	2.40	coarse quartz GRAVEL. Cobbl sub-rounded fine to coarse q	es are rounded to			
D3	3.40-4.00			30.24	3.40	Brown fine to coarse SAND.				
S B4	4.00 4.00-5.00	N=41	•	29.64	4.00	Dense brown gravelly mediui sub-angular to sub-rounded f siltstone.				
S D5	5.00 5.00-5.27	50/115mm				becoming very dense be	low 5.00m.			
S D5	6.00 6.00-6.50	N=33		27.64	6.00	Dense brown medium to coa rounded fine to coarse quart (based on limited returned and drilling).				
S	7.50	50/245mm				becoming very dense be	low 7.50m.			

Remarks and Water Observations

1. Hand dug starter pit to 1.20m, to check for services.

50/230mm

- $2. \ \ Groundwater\ entry\ encountered\ at\ 4.50m\ (sealed\ off\ with\ casing)\ remaining\ level\ after\ 20\ minutes.$
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques 1.20m to 5.00m, then open hole / driving casing from 5.00m to 10.50m (due to very dense gravels). Borehole then advanced by rotary coring techniques from 10.50m to the borehole base, with a mist flush.

(continued next sheet)

Sheet 1 of 2

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	t ain Galliford	Try				Boring diameter: 120 mm to 10.50m 100 mm to 18.00m	Casing diameter: 120 mm to 10.50m	Project No.: G17057	
Logge	ed by: PM	Grou	und Level: 3	33.64 mAO[Date: 20/04/2017-25/04/2017	Location: 329934E - 446891N	Scale:	1:50
S Ref:	Samples & In situ Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata I	Description	Legend	Backfill
						Dense brown medium to coa rounded fine to coarse quart (based on limited returned a drilling).			
S CR	10.50	90 87	4	23.14	10.50	Medium strong pale green so thin and thick laminations of fractures are horizontal, clos and planar, smooth, very tigh	sely spaced, undulating	×××××× ×××××× ××××××	
			8	22.14	11.50 12.00	Very weak to weak brownish frequent thin laminations of are horizontal, closely spaced tight, clean.	f gypsum. Bedding fractures		
CR	12.00-13.50	100 97	7	21.34	12.30 12.80	Medium strong pale green fill SANDSTONE with occasional thin beds of gypsum. Horizon closely to closely spaced, und	thick laminations and very ntal fractures are very		
			3	20.44	13.20 13.50	Very weak to weak thinly lar	minated brownish red silty		
CR	13.50-15.00	97 97 93	3	19.44	14.20	Medium strong pale green fin SANDSTONE with occasional gypsum. Fractures are horizo undulating and planar, rough	thin to thick laminations of ontal, closely spaced,		
			0			Very weak to weak brownish occasional thin and thick lam Fractures are horizontal, very spaced, undulating, rough, ti	ninations of gypsum. ry closely to closely		
CR	15.00-16.50	90 90 60		18.04	15.60	Medium strong pale green to medium grained silty SANDS' horizontal, medium spaced, t clean.	STONE. Fractures are		
CR	16.50-18.00	93 93	6			Very weak to weak brownish frequent thin and thick lamin Fractures are sub-horizontal, undulating, smooth, tight, cle	nations of gypsum. , closely spaced, ean.		
		56	0	15.64	18.00	Medium strong pale green to medium grained silty SANDS' laminations to very thin beds	STONE with occasional thick		
		TCR FI SCR FS				(continued next sheet)		Sheet	2 of 2

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Groundwater entry encountered at 4.50m (sealed off with casing) remaining level after 20 minutes.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques 1.20m to 5.00m, then open hole / driving casing from 5.00m to 10.50m (due to very dense gravels). Borehole then advanced by rotary coring techniques from 10.50m to the borehole base, with a mist flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

G	ROUP					M1 J23a to J25 Ground Investigation				
Client	t ain Galliford	d Try				Boring diameter: 120 mm to 10.50m 100 mm to 18.00m	Casing diameter: 120 mm to 10.50m	Project N G17	ect No.: G17057	
Logg	ed by: рм	Ground	Level: 3	33.64 mAOE)	Date: 20/04/2017-25/04/2017	Location: 329934E - 446891N	Scale:	1:50	
Ref:	Core Data Depth (m)	TCR FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill	
						14.20m - 15.60m : horizonto undulating, rough, tight, clean 15.60m - 18.00m : Very weather strong brownish red and graftequent thin to thick laminate closely to closely spaced, undopen, clean. End of Borehole at 18.00 m	an. It to weak locally medium It is a seen silty MUDSTONE with It is a seen sub-vertical, very			
	1	IGB FI	ĺ	1	1	i		1 61 1	2. (2	

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Groundwater entry encountered at 4.50m (sealed off with casing) remaining level after 20 minutes.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques 1.20m to 5.00m, then open hole / driving casing from 5.00m to 10.50m (due to very dense gravels). Borehole then advanced by rotary coring techniques from 10.50m to the borehole base, with a mist flush.

Sheet 2+ of 2

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	in Galliford	Try				Boring diameter: 120 mm to 12.50m 100 mm to 17.00m	Casing diameter: 120 mm to 12.50m	Project No G170	
Logge	ed by: ss	Ground	Level: 3	34.31 mAOE)	Date: 06/05/2017-09/05/2017	Location: 330107E - 446872N	Scale:	1:50
S	amples & In siti	u Tests	Water	Level	Depth			Legend	Backfill
Ref:	Depth (m)	SPT N		(mAOD)	(m)	Strata D	Description		
						MADE COOLIND Coft and dol	a la carrona all'adath carronale.	***************************************	X//XX//XX

LUgge	eu by. ss	Ground	Level.	34.31 MAUL	,	Date. 06/05/2017-09/05/2017 LOCATION. 33010/E - 4468/2N	Scale.	1.30
	amples & In situ		Water	Level	Depth	Strata Description	Legend	Backfill
Ref:	Depth (m)	SPT N		(mAOD) 34.16	(m) 0.15	MADE GROUND - Soft greyish brown slightly sandy slightly gravelly clayey SILT. Gravel is angular to		
D1	0.50-0.70			33.86 33.61	0.45 0.70	rounded fine to coarse quartz.		
D2 S	0.90-1.10	N 40		33.31	1.00	MADE GROUND - Reddish brown and greyish brown gravelly silty fine to coarse SAND. Gravel is angular to rounded fine to coarse quartz, siltstone and mudstone.		
D3 B4 S D5	1.30-1.75 1.30-2.10 2.00 2.00-2.45	N=10 N=19				MADE GROUND - Reddish brown slightly cobbly slightly gravelly silty clayey fine to coarse SAND. Gravel is sub-angular fine to coarse mudstone and siltstone. Cobbles are sub-rounded siltstone and mudstone.		
B6	2.00-2.90			31.46	2.85	MADE GROUND - Greyish and reddish brown silty fine to coarse SAND and angular fine to coarse limestone GRAVEL.	į.	
C D8 D9	3.00 3.00-3.50 3.50-3.60	N=30		30.81	3.50	MADE GROUND - Firm reddish brown gravelly silty CLAY with a low sub-angular siltstone cobble content. Gravel is angular fine to medium mudstone and siltstone.		
C B10	4.00 4.00-5.00	50/255mm		30.31	4.00	MADE GROUND - Firm to stiff greyish brown and reddish brown gravelly sandy CLAY. Gravel is rounded to sub-rounded fine to medium quartz and chert.		
C B11	5.00 5.00-6.00	50/210mm				Reddish brown fine to coarse SAND and sub-angular to rounded fine to coarse quartz, chert and mudstone GRAVEL. Very dense reddish brown to orangeish brown gravelly fine to coarse SAND. Gravel is rounded fine to coarse		
C B12	6.00 6.00-7.50	50/285mm				quartz and chert.		
С	7.00	50/160mm						
B13	7.50-9.00							

Remarks and Water Observations

- 1. Hand dug starter pit to 1.30m, to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.30m to 3.60m, then open hole / driving casing from 3.60m to 12.50m (due to very dense gravels). Borehole advanced from 12.50m to the base by rotary coring techniques, with a mist flush.

(continued next sheet)

Sheet 1 of 2

(Window Sampler plus Rotary Core)

Site

0	GROUP				4	M1 J23a to J25 Ground Investigation					
Client Costa	t ain Galliford	l Try				Boring diameter: 120 mm to 12.50m 100 mm to 17.00m	Casing diameter: 120 mm to 12.50m	Project No.			
Logg	ed by: ss	Ground	Level: 3	34.31 mAOE)	Date: 06/05/2017-09/05/2017	Location: 330107E - 446872N	Scale:	1:50		
	Samples & In sit		Water	Level	Depth (m)	Ctroto D	Description	Legend	Backfill		
Ref:	Depth (m)	SPT N 50/170mm		(mAOD)							
C C	12.00 12.50 12.50-14.00	50/210mm (75/0) m 50 4 50 30	_	21.81	12.50	Medium strong greyish greer silty SANDSTONE with occasion gypsum. Fractures are subhoclosely spaced, undulating, slipartly open, clean.					
С	14.00	6 14/30 mm		20.61	13.70	Weak to medium strong brow MUDSTONE with frequent irr laminations of gypsum. Fract horizontal, closely spaced, un	ures are mainly				
CR	14.00-15.50	90 80 57 3				slightly rough and smooth, tig clean. (Grade I locally Grade I	ght to partly open,				
CR	15.50-17.00	96 96 63 2	-								

Remarks and Water Observations

- 1. Hand dug starter pit to 1.30m, to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.30m to 3.60m, then open hole / driving casing from 3.60m to 12.50m (due to very dense gravels). Borehole advanced from 12.50m to the base by rotary coring techniques, with a mist flush.

End of Borehole at 17.00 m

Sheet 2 of 2

4. Borehole was backfilled with sodium bentonite (pellets) to ground level upon completion.

17.31

17.00

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

G	ROUP				•	M1 J23a to J25 Ground Investigation					
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 18.00m 100 mm to 21.50m	Casing diameter: 120 mm to 18.00m	Project No			
Logge	ed by: ss	Ground	Level: 3	38.85 mAOI)	Date: 22/05/2017-30/05/2017	Location: 330771E - 446616N	Scale:	1:50		
Ref:	amples & In sit	1	Water	Level	Depth	Strata I	Description	Legend	Backfill		
кет: В1	Depth (m) 0.30-0.60	SPT N		(mAOD) 38.65	(m) 0.20	MADE GROUND - Topsoil (gr organic fine to coarse SAND)	eyish-brown gravelly clayey				
B2 S	0.80-1.00	N=13		38.25 37.85	0.60 1.00	MADE GROUND - Dark greyis silty fine to coarse SAND. Gra rounded fine to coarse mixed quartz, siltstone, limestone a	avel is sub-angular to d lithology including	rs.			
S B4	2.00 2.00-2.50	N=13				MADE GROUND - Reddish-br clayey slightly silty fine to co to rounded fine to coarse qu and mudstone GRAVEL with gravelly Clay.	artz, siltstone, sandstone				
B5 S B6	2.60-3.00 3.00 3.00-3.50	N=27		35.85	3.00	MADE GROUND - Medium de slightly clayey fine to coarse angular mudstone and siltsto is angular fine to coarse mud	SAND/SILT with a low one cobble content. Gravel				
В7	3.70-3.90			35.25	3.60	MADE GROUND - Stiff reddis sandy CLAY. Gravel is angula and siltstone.	sh-brown slightly gravelly				
S	4.00	50/215mm				MADE GROUND - Very dense fine to coarse SAND. Gravel mudstone and siltstone.	e reddish-brown gravelly silty is angular fine to coarse				
S	6.00	50/250mm									
S B8	7.50 7.60-9.00 9.00	50/220mm N=46		31.35	7.50	Very dense reddish-brown g Gravel is sub rounded to rou quartz and chert.					
	2.50	~	 	 							

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 5.00m, then by open-hole / driving casing from 5.00m to 18.00m (due to dense gravels). Borehole then advanced by rotary core techniques to 21.50m, with a mist flush.

(continued next sheet)

Sheet 1 of 3

- 3. No groundwater entries were observed during boring operations, however, minor inflows may have been masked by drilling techniques.
- 4. Not possible to measure fracture index in mudstone below 17.50m due to highly fragmented rock cores and poor sample recovery.
- 5. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	t ain Galliford	Try				Boring diameter: 120 mm to 18.00m 100 mm to 21.50m	Casing diameter: 120 mm to 18.00m	Project N G17	
Logg	ed by: ss	Ground	Level: 3	38.85 mAOD)	Date: 22/05/2017-30/05/2017	Location: 330771E - 446616N	Scale:	1:50
	Samples & In situ		Water	Level	Depth	Strata	Description	Legend	Backfil
Ref:	Depth (m)	SPT N		(mAOD)	(m)	Remaining Detail : 9.00m - 9	-		:
				28.35	10.50	dense below 9.00m.	vooiii seconiing		
С	10.50	22/90mm			Medium dense reddish-brov coarse SAND. Gravel is sub- quartz.				
C B9	12.00 12.00-13.50	19/75mm		27.15	11.70	Very dense reddish-brown f sub-rounded to rounded fin GRAVEL.	ine to coarse SAND and e to medium quartz and chert		
С	13.50	N=29				becoming medium dens	se below 13.50m.		
S SD10	15.00 15.00-15.40	50/270mm		Very dense multi-coloured sandy sub-rounded to rounded fine to coarse quartz and chert GRAVEL.					

Remarks and Water Observations

16.50

1. Hand dug starter pit to 1.20m, to check for services.

0 5**0**/165 mm

50/85mm

2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 5.00m, then by open-hole / driving casing from 5.00m to 18.00m (due to dense gravels). Borehole then advanced by rotary core techniques to 21.50m, with a mist flush.

(continued next sheet)

Extremely weak reddish-brown locally light grey thinly laminated MUDSTONE. (Grade IVa to III, locally Grade

Sheet 2 of 3

- 3. No groundwater entries were observed during boring operations, however, minor inflows may have been masked by drilling techniques.
- 4. Not possible to measure fracture index in mudstone below 17.50m due to highly fragmented rock cores and poor sample recovery.
- 5. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

21.35

17.50

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	: iin Galliford	Try					Boring diameter: 120 mm to 18.00m 100 mm to 21.50m	Casing diameter: 120 mm to 18.00m	Project No G17	
Logg	Logged by: SS Ground Level: 38.85 mAOD						Date: 22/05/2017-30/05/2017	Location: 330771E - 446616N	Scale:	1:50
	Core Data Water Level Depth								Legend	Backfill
Ref:						(m)	Strata D	escription	-50	
									_	S

LUGG	eu by. 33	OI.	ound	Level. 3	0.05 IIIAUL		Date. 22/03/2017-30/03/2017	LOCATION. 3307/1E-440016N	Scale.	1.50
	Core Data			Water	Level	Denth	th Co		Legend	Backfill
Ref:	Depth (m)	TCR RED	FI	vvalei	(mAOD)	Depth (m)	Strata De	escription	Legenu	Dackiiii
	,	NQD	1		,	` ,				
I							II).			
I										
		33								
CR	18.50-20.00	20							2	
		17								
									2	
									-	
CD.	20 00 24 50	47								
CR	20.00-21.50	40								
		10								
									70	$+\Box+\Box+\Box$
I										
С	21.50	50/70	mm		17.35	21.50				
							End of Borehole at 21.50 m			
	ĺ									
	ĺ									
I										
I										
I										
I										
I										
I										
I										
I										
I										
I										
I										
I										
I										
I										
I										
I										
										
		SER ROD	퇁						Sheet	3 of 3
		<u> </u>								-

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 5.00m, then by open-hole / driving casing from 5.00m to 18.00m (due to dense gravels). Borehole then advanced by rotary core techniques to 21.50m, with a mist flush.
- 3. No groundwater entries were observed during boring operations, however, minor inflows may have been masked by drilling techniques.
- 4. Not possible to measure fracture index in mudstone below 17.50m due to highly fragmented rock cores and poor sample recovery.
- 5. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try						Boring diameter: 120 mm to 31.00m	Casing diameter: 120 mm to 19.50m	Project No.: G17057	
Logged by: ss Ground Level:						Date: 10/05/2017-17/05/2017	Location: -	Scale:	1:50
Ref:	amples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata [Description	Legend	Backfi
B1 B2	0.30-0.60 0.70-1.00				0.20 0.45	MADE GROUND - Topsoil (gro fine to coarse SAND with free angular to rounded fine to co sandstone.)			
S B3	1.30 1.30-2.00	N=37			1.10	MADE GROUND - reddish brown to greyish brown gravelly silty fine to coarse SAND. Gravel is angular to rounded fine to coarse quartz, siltstone and mudstone.			
D4	1.30-1.75				2.00	MADE GROUND - Light grey sandstone GRAVEL.	sandy angular fine to coarse	/ >>>>	
S D5 D6	2.00 2.00-2.45 2.00-2.50	50/190mm				MADE GROUND - Firm reddish brown slightly sandy slightly gravelly silty CLAY. Gravel is angular fine to medium mudstone and siltstone.			
S D7	3.00 3.00-3.45	50/219mm				MADE GROUND - Very dense gravelly clayey silty fine SAN fine to coarse mudstone and	D. Gravel is angular		
S D8	4.50 4.50-4.95	50/285mm			3.50	MADE GROUND - Reddish br clayey silty angular fine to m siltstone GRAVEL. (Description arisings from open hole drilli	edium mudstone and on based on returned		
В9	5.00-6.00				4.80	Very dense reddish brown fir rounded fine to coarse quart (Description based on return drilling).	tz and chert GRAVEL.		
S B10	6.00 6.00-7.50	50/140mm							
S	7.50	50/145mm							
S	9.00	50/235mm							
						(continued next sheet)		Sheet	1 of 4

- 1. Hand dug starter pit to 1.30m to check for services.
- ${\bf 2.}\ \ No\ groundwater\ see pages\ were\ encountered\ during\ boring\ operations.$
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 2.50m, then by open hole / driving casing from 2.50m to 19.50m (due to dense gravels). Borehole then rotary cored to 31.00m, with a mist flush.
- 4. Borehole collapsing below 25.00m, preventing completion of SPT/CPT's.
- 5. Borehole backfilled with sodium bentonite (pellets) on completion.

(Window Sampler plus Rotary Core)

Site

GROUP						Site M1 J23a to J25 Ground Investigation				
Client Costain Galliford Try						Boring diameter: Casing diameter: 120 mm to 31.00m 120 mm to 19.50m		Project No.: G17057		
Logged by: ss Ground Level:						Date: 10/05/2017-17/05/2017	Location: -	Scale:	1:50	
Ref:	Samples & In sit Depth (m)	u Tests SPT N				Strata Description		Legend	Backfill	
S	10.50	N=48				Very dense reddish brown firounded fine to coarse quar (Description based on return drilling). becoming dense below	ine to coarse SAND and tz and chert GRAVEL. ned arisings from open hole			
S	12.00	50/225mm		13.00	Stiff reddish brown SILT/CLA limited returned arisings fro		x x			
S	13.50	50/235mm			Very dense reddish brown fi rounded fine to coarse quar (Descriptions based on retui hole drilling).	tz and chert GRAVEL.	<u> </u>			
S	15.00	(75/0mm								
S	16.50	50/210mm								

Remarks and Water Observations

18.00

1. Hand dug starter pit to 1.30m to check for services.

50/235mm

- ${\it 2. \ No\ groundwater\ seepages\ were\ encountered\ during\ boring\ operations.}$
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 2.50m, then by open hole / driving casing from 2.50m to 19.50m (due to dense gravels). Borehole then rotary cored to 31.00m, with a mist flush.

(continued next sheet)

Sheet 2 of 4

- 4. Borehole collapsing below 25.00m, preventing completion of SPT/CPT's.
- 5. Borehole backfilled with sodium bentonite (pellets) on completion.

(Window Sampler plus Rotary Core)

Site

C	GROUP				M1 J23a to J25 Ground Investigation						
Clien Costa	t ain Galliford	l Try				Boring diameter: 120 mm to 31.00m	Casing diameter: 120 mm to 19.50m	Project No			
Logg	ged by: ss	Ground	Level:			Date: 10/05/2017-17/05/2017	Location: -	Scale:	1:50		
	Samples & In sit		Water	Level	Depth	Ctrata	Description	Legend	Backfill		
Ref:						Very dense reddish brown f rounded fine to coarse qual (Descriptions based on retu hole drilling).					
S CR	19.50	50/14 mm 83 0 0			19.50	Hard reddish brown slightly medium sub-angular sandst is sub-angular to sub-round limestone, sandstone and q	one cobble content. Gravel ed fine to coarse	* * * * * * * * * * * * * * * * * * *			
CR C D11	21.00-22.50 22.50 22.50-22.70	87 0 0 						× × × × × × × × × × × × × × × × × × ×			
CR	22.50-24.00	97 0 0				No core sample recover	ry 24.00m to 25.50m.	**************************************			
CR	24.00-25.50	0 0 0						* · · · · · · · · · · · · · · · · · · ·			
S	25.50	N= 6						* · · × · · ×			
CR	25.50-27.00	77 0 0						× - × × - × × - × × - ×			

Remarks and Water Observations

- 1. Hand dug starter pit to 1.30m to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 2.50m, then by open hole / driving casing from 2.50m to 19.50m (due to dense gravels). Borehole then rotary cored to 31.00m, with a mist flush.

(continued next sheet)

Sheet 3 of 4

- 4. Borehole collapsing below 25.00m, preventing completion of SPT/CPT's.
- 5. Borehole backfilled with sodium bentonite (pellets) on completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	GROOP						WIT 123a to 125 Ground inv	estigation		
Client	t ain Galliford	l Try					Boring diameter: 120 mm to 31.00m	Casing diameter: 120 mm to 19.50m	Project N G17	o.: '057
Logg	ed by: ss	Gr	ound	Level:			Date: 10/05/2017-17/05/2017	Location: -	Scale:	1:50
Ref:	Core Data	TCR	FI	Water	Level	Depth	Strata	Description	Legend	Backfill
CR	Depth (m) 27.00-28.50	33 0 0	-		(mAOD)	(m)	Hard reddish brown slightly medium sub-angular sandst is sub-angular to sub-round limestone, sandstone and q	* - × - × - × - × - × - × - × - × - ×		
CR	28.50-30.00	63 0 0							* * * * * * * * * * * * * * * * * * *	
CR	30.00-31.00	0 0 0				31.00	End of Borehole at 31.00 m		× × × × × × × × × × × × × × × × × × ×	
		TCR	EI							

Remarks and Water Observations

- 1. Hand dug starter pit to 1.30m to check for services.
- ${\bf 2.}\ \ {\bf No}\ groundwater\ see pages\ were\ encountered\ during\ boring\ operations.$
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 2.50m, then by open hole / driving casing from 2.50m to 19.50m (due to dense gravels). Borehole then rotary cored to 31.00m, with a mist flush.

Sheet 4 of 4

- 4. Borehole collapsing below 25.00m, preventing completion of SPT/CPT's.
- 5. Borehole backfilled with sodium bentonite (pellets) on completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	ROOP					MIT J23a to J25 Ground Inv	estigation		
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 21.45m	Casing diameter: 120 mm to 19.60m	Project N G17	
ogge	ed by: IG	Ground	Level:			Date: 04/05/2017-10/05/2017	Location: -	Scale:	1:50
S Ref:	amples & In site	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
B1 B2 B3	0.00-0.50 0.50-0.70 0.70-1.20	3FTN		(IIIAOD)	0.50	MADE GROUND - Topsoil (so organic slightly gravelly sand rootlets. Gravel is sub-angul medium quartz and flint.)	oft friable light brown dy silt with frequent		
S D4 D5	1.20 1.20-1.65 1.50-2.00	N=4				MADE GROUND - Greyish w coarse SAND. Gravel is sub- to coarse limestone.	hite gravelly silty fine to angular to sub-rounded fine		
S D6	2.00 2.00-2.45	N=14			1.80	MADE GROUND - Soft reddi occasional mudstone cobble sub-rounded fine to coarse	es. Gravel is sub-angular to		
D7	2.00-3.00					is sub-angular to sub-round	al mudstone cobbles. Gravel		
S D8 D9	3.00 3.00-3.45 3.00-4.00	N=26				mudstone becoming firm at and b	elow 2.60m.		
S 010	4.00 4.00-4.45	50/195mm			450				
C D11	5.00 5.00-6.00	N=48			4.50	Dense brown silty fine to co to rounded fine to coarse q			
S D12	6.00 6.00-6.45	N=10			6.00	Medium dense dark brown	clayey fine to medium SAND.		
					6.50	Dense brown silty fine to co to rounded fine to coarse q			
S	7.50	N=46							
S	9.00	50/165mm							
						(continued next sheet)		Sheet	1 of 3

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig AR01 using dynamic sampling techniques from 1.20m to 4.00m and 10.50m to 12.00m, borehole advanced by driving casing / open hole 4.00m to 10.50m and then by rotary coring techniques 12.00m to the base, with a mist flush.
- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

						WIT J25a to J25 Ground IIIV	conganon		
Client	: ain Galliford	Try				Boring diameter: 120 mm to 21.45m	Casing diameter: 120 mm to 19.60m	Project No	
CUSTO		11 y						G170	J5 /
	ed by: IG	Ground	Level:			Date: 04/05/2017-10/05/2017	Location: -	Scale:	1:50
Ref:	Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
D13	9.00-10.50	JF I IV		(IIIAOD)	(111)	Remaining Detail : 9.00m - 9			X//X/X
S	10.50	50/125mm			10.50	very dense below 9.00m.			
D14	10.50-10.95					Stiff reddish brown sandy SI	LT.	X X X X X X X X X X X X X X X X X X X	
S D15	12.00 12.00-12.45	50/270 mm			12.00	Very stiff reddish brown mo		<u> </u>	
D16 CR	12.00-13.50 12.00-13.50	30 0				gravelly CLAY. Gravel is sub- to medium quartz, flint and			
S D17 CR	13.50 13.50-13.95 13.50-15.00	0 - 5U/Z3C mm 0 0 0			15.00	becoming very stiff at a	nd below 13.50m.		
S	15.00	50/200 mm			15.00	Stiff reddish brown mottled			
CR	15.00-16.50	100 0 0				occasional mudstone bands			
S D18	16.50 16.50-16.95	63/23 t mm				(description based on limite rotary coring below 16.50m			
CR	16.50-18.00	0 0 0							
D19	18.00-19.50				18.00	-		20.420.50	

Remarks and Water Observations

1. Hand dug starter pit to 1.20m to check for services.

FI FS

2. Borehole advanced using Commachio 205 combination rig AR01 using dynamic sampling techniques from 1.20m to 4.00m and 10.50m to 12.00m, borehole advanced by driving casing / open hole 4.00m to 10.50m and then by rotary coring techniques 12.00m to the base, with a mist flush.

(continued next sheet)

Sheet 2 of 3

- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	stain Galliford Try						Boring diameter: 120 mm to 21.45m	Casing diameter: 120 mm to 19.60m	Project No G17	
Logg	ed by: IG	Gr	ound	Level:			Date: 04/05/2017-10/05/2017	Location: -	Scale:	1:50
	Core Data			Water	Level	Depth	<u> </u>	5	Legend	Backfill
Ref:	Depth (m) 18.00-19.50	0 0	FI		(mAOD)	(m)	Yellowish brown slightly san fine to coarse quartz, variou GRAVEL. (description based from rotary coring).	is igneous and mudstone		
S D20	19.50 19.50-19.95 19.50-21.00	50/14 0 0 0	mm			19.50	Very stiff reddish brown mo with occasional mudstone b limited arising returns from	ands. (description based on		
S D21	21.00 21.00-21.45	50/43	5mm			21.45	End of Borehole at 21.45 m		-1-1	

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig AR01 using dynamic sampling techniques from 1.20m to 4.00m and 10.50m to 12.00m, borehole advanced by driving casing / open hole 4.00m to 10.50m and then by rotary coring techniques 12.00m to the base, with a mist flush.

Sheet 3 of 3

- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	children and a second					1711 3250 to 325 Ground 1117			
Client Costa	in Galliford	d Try				Boring diameter: 120 mm to 11.00m	Casing diameter: 120 mm to 11.00m	Project N G17	o.: '057
Logge	ed by: IG	Ground	Level:			Date: 10/05/2017-12/05/2017	Location: -	Scale:	1:50
S Ref:	amples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
B1 B2	0.20-0.60	5		(IIII (OD)	0.15	MADE GROUND - Topsoil (so slightly gravelly sandy SILT v Gravel is sub-angular to rou and flint).		 	
B3 S D4 D5	1.00-1.20 1.20 1.20-1.65 1.20-2.00	N=8			1.00	MADE GROUND - Yellowish medium SAND with frequen fragments. Gravel is sub-ang to coarse quartz, flint, muds	t gravel sized concrete gular to sub-rounded fine	P.	
S D6 D7	2.00 2.00-2.45 2.00-3.00	N=12				MADE GROUND - Greyish w coarse SAND. Gravel is sub-to coarse limestone.			
S D8 D9	3.00 3.00-3.45 3.00-4.00	N=22			3.00	MADE GROUND - Soft locally sandy gravelly CLAY. Gravel sub-rounded fine to coarse sandstone.	quartz, mudstone and		
S D10 D11	4.00 4.00-4.45 4.50-6.00	50/205mm				Medium dense reddish brov coarse SAND. Gravel is sub-a coarse quartz, flint and mud based on returned arisings f becoming very dense be	angular to rounded fine to Istone. (Sample description rom open hole drilling).		
S D12 D13	6.00 6.00-6.45 6.00-7.50	N=47			6.00	Dense yellowish brown fine sub-angular to rounded fine and mudstone GRAVEL. (De	to coarse quartz, flint		
S	7.50	50/250mm				arisings from open hole drill	ing).		
D14	7.50-9.00					becoming very dense be	elow 7.50m.		
S	9.00	50/80mm				(continued next sheet)		Choot	1 of 2
			L	L		(continued next sneet)		Sneet	1012

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 3.00m, then by open hole / driving casing from 3.00m to the base of the borehole, using a mist flush.
- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

0	GROUP					M1 J23a to J25 Ground Investigation				
Clien	t ain Galliford	l Try				Boring diameter: 120 mm to 11.00m	Casing diameter: 120 mm to 11.00m	Project N	o.: 057	
Logg	ged by: IG	Ground	Level:			Date: 10/05/2017-12/05/2017	Location: -	Scale:	1:50	
	Samples & In sit		Water	Level	Depth	Strata	Description	Legend	Backfill	
Ref: D15	10.50 10.50-11.00	SPT N 50/90mm		(mAOD)	(m)	Dense yellowish brown fine sub-angular to rounded fine and mudstone GRAVEL. (De- arisings from open hole drill				
C	11.00	50/130mm			11.00	End of Borehole at 11.00 m				

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques from 1.20m to 3.00m, then by open hole / driving casing from 3.00m to the base of the borehole, using a mist flush.

Sheet 2 of 2

- 3. No groundwater seepages were encountered during boring operations.
- 4. Borehole backfilled with sodium bentonite (pellets) to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Boring diameter: Casing diameter: Project I Costain Galliford Try 120 mm to 13.50m 120 mm to 13.50m 120 mm to 13.50m	0.:
100 mm to 21.00m	7057
Logged by: JP Ground Level: 36.04 mAOD Date: 24/05/2017-30/05/2017 Location: 331983E - 446553N Scale:	1:50
Samples & In situ Tests Water Level (mAOD) Depth (m) Strata Description Legend	Backfi
35.84 0.20 SILT). MADE GROUND - Topsoil (soft brown very organic sandy SILT).	
D2 0.70-0.80 0.90-1.00 35.34 35.24 0.70 gravelly silty CLAY. Gravel is sub-angular fine to coarse siltstone.	
S 1.20 N=23 D4 1.50-1.75 D5 1.75-2.00 N=23 MADE GROUND - Brown slightly gravelly silty fine to coarse SAND. Gravel is angular to sub-rounded fine to coarse siltstone.	-
S 2.00 N=16 D6 2.00-2.50 N=16 Gravel is angular fine to coarse SAND. Gravel is angular fine to coarse siltstone.	
D7 2.50-3.00 MADE GROUND - Reddish-brown slightly gravelly silty fine SAND. Gravel is angular to sub-rounded fine to coarse quartz. S 3.00 N=24 becoming medium dense below 1.20m.	
D9 3.50-4.00 MADE GROUND - Stiff reddish brown locally grey silty CLAY with occasional gravel to cobble sized fragments of sub-angular mudstone and siltstone.	
S 4.00 N=22 D10 4.00-4.50	
D11 4.50-5.00	
S 5.00 N=35 31.04 5.00 Medium dense orangeish-brown fine to coarse SAND and sub-angular to rounded fine to coarse quartz and flint GRAVEL. (Description based off returned arisings from open hole drilling).	
C 6.00 50/285mm becoming very dense below 6.00m.	
C 7.00 N=45 becoming dense between 7.00m to 8.00m.	
C 8.00 50/275mm	
C 9.00 50/210mm	· []

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepage was encountered at 16.50m during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 5.00m, then by open-hole / driving casing from 5.00m to 12.00m (due to dense gravels). Then advanced to borehole base by rotary coring techniques, with a mist flush.

(continued next sheet)

Sheet 1 of 3

- 4. No core sample recovery from 12.00m to 13.50m and then 13.50m to 15.00m.
- 5. Rotary core run attempted at 12.00m, however no recovery possible due to coring in sands and gravels.
- 6. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

C	GROUP				4	M1 J23a to J25 Ground Investigation					
Client Costa	t ain Galliford	Try				Boring diameter: 120 mm to 13.50m 100 mm to 21.00m	Casing diameter: 120 mm to 13.50m	Project No			
Logg	ed by: JP	Ground	Level: 3	36.04 mAOE)	Date: 24/05/2017-30/05/2017	Location: 331983E - 446553N	Scale:	1:50		
	Samples & In site		Water	Level	Depth	Churche	Description	Legend	Backfill		
Ref:	Depth (m)	SPT N		(mAOD)	(m)		Description	. 4 . 4 9 0	X//XX//XX		
С	10.00	50/160mm				Medium dense orangeish-br sub-angular to rounded fine GRAVEL. (Description based open hole drilling).					
С	12.00	50/210mm 50/139 mm									
CR	12.00-13.50	0 0 0		23.54	12.50	Extremely weak reddish bro based off limited returned a coring. Not possible to ident to no core sample recovery)	tify weathering grade due				
С	13.50	50/115 mm				no core recovery betwe	en 12.50m to 15.00m.				
CR	13.50-15.00	0 0 0									
C CR	15.00	50/215 mm 12 90 87 25		21.04	15.00	silty MUDSTONE with occasi gypsum. Weathering eviden strength and locally mottled fractures are horizontal to s closely spaced, planar smoo	ce as slightly reduced I discolouration. Bedding ub-horizontal, very				
CR	16.50-18.00	93 88 44	▼	18.59	17.45	clay infill. (Grade II). Medium strong thinly laminwith occasional very thin be	ated greyish green SILTSTONE ds of red mudstone. No	××××× ×××××× ××××××			

Remarks and Water Observations

18.00

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepage was encountered at 16.50m during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 5.00m, then by open-hole / driving casing from 5.00m to 12.00m (due to dense gravels). Then advanced to borehole base by rotary coring techniques, with a mist flush.

(continued next sheet)

Sheet 2 of 3

- 4. No core sample recovery from 12.00m to 13.50m and then 13.50m to 15.00m.
- 5. Rotary core run attempted at 12.00m, however no recovery possible due to coring in sands and gravels.
- 6. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	: ain Galliford	l Try					Boring diameter: 120 mm to 13.50m 100 mm to 21.00m	Casing diameter: 120 mm to 13.50m	Project No G17		
Logg	ed by: JP	Gr	ound	Level: 3	6.04 mAOE)	Date: 24/05/2017-30/05/2017	Location: 331983E - 446553N	Scale:	1:50	
Ref:	Core Data Depth (m)	TCR RGB	FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill	
CR	18.00-19.50	87 87 41	8		16.84	19.20	evidence of weathering. Fra sub-horizontal, closely space planar rough, clean.		X X X X X X X X X X X X X X X X X X X		
CR	19.50-21.00	90 89 17	12		10.04	13.20	Weak to medium strong rec silty MUDSTONE with occas gypsum. Weathering eviden strength and locally mottled fractures are horizontal to s closely spaced, planar smoo clay infill. (Grade II).	nce as slightly reduced I discolouration. Bedding Sub-horizontal, very			
C	21.00	50/45	mm		15.04	21.00	End of Borehole at 21.00 m				
	 	TCR		 							

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- $2. \ \ Groundwater\ see page\ was\ encountered\ at\ 16.50m\ during\ boring\ operations.$
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 5.00m, then by open-hole / driving casing from 5.00m to 12.00m (due to dense gravels). Then advanced to borehole base by rotary coring techniques, with a mist flush.

Sheet 3 of 3

- 4. No core sample recovery from 12.00m to 13.50m and then 13.50m to 15.00m.
- 5. Rotary core run attempted at 12.00m, however no recovery possible due to coring in sands and gravels.
- 6. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	SROUP					M1 J23a to J25 Ground Inve	estigation	Project No.: G17057 Scale: 1:50				
Client						Boring diameter:	Casing diameter:	Project No.:				
	in Galliford	l Try				120 mm to 14.00m 100 mm to 23.00m	120 mm to 14.00m	G17	057			
Logge	ed by: ss/ic	Ground	Level: 4	45.53 mAOI)	Date: 07/06/2017-12/06/2017	Location: 334505E - 447142N	Scale:	1:50			
Ref:	Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfi			
B1	0.30-0.40			45.38	0.15	MADE GROUND - Topsoil (so SILT).	oft brown sandy very organic					
				45.03	0.50			/ ***********************************	-			
B2	0.60-0.80					MADE GROUND - Brown and gravelly silty fine to coarse S fine to coarse siltstone and coarse s	AND. Gravel is angular					
S	1.20	N=11		44.33	1.20	MADE GROUND - Light grey	roadstone / sub-base (fine to	· ////////////////////////////////////				
В3	1.40-2.00					coarse SAND and angular fin		/ >>>>>				
S	2.00	N=11				MADE GROUND - Firm reddi	sh-brown slightly sandy		\===			
B4	2.10-3.00					slightly gravelly silty CLAY wi silstone cobble content. Gra	ith a low sub-angular vel is angular fine to					
						coarse mudstone and siltsto	ne.		} ===			
S	3.00	N=7						XXXX	}_==			
B5	3.30-4.00					noted as being locally da with a medium sub-angular			-			
55	3.30 4.00					with a medium sub-angular	sinstone copple content.					
								$\times\!\!\times\!\!\times\!\!\times$	\$ - =-			
S	4.00	N=20							}==			
									<u>}</u> -			
B6	4.50-5.00								<u>}==</u>			
									<u>}</u>			
S B7	5.00 5.00-5.50	N=36										
Б/	5.00-5.50								[==			
								XXXX	£===			
								\times	\$ -			
S D8	6.00 6.00-6.45	N=42						88888	}===			
D0	0.00 0.43							88888	 			
									{==			
								****	\$ -			
С	7.00	N=47		38.53	7.00	Dense reddish-brown gravel	ly fine to coarse SAND.	- YYYY	<u> </u>			
						Gravel is sub-rounded to rou	inded fine to coarse quartz					
						and chert. (Description base	d on returned arisings					
_						from open hole drilling).						
С	8.00	N=49										
С	9.00	N=44				(agatiacod na: + -h+)		CI	1 25 2			
	<u> </u>	1				(continued next sheet)		Sheet	1 of 3			

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 5.00m then by open-hole / driving casing from 5.00m to 14.00m, (due to dense gravels). Borehole then advanced to base using rotary coring techniques, with a mist flush
- 3. Groundwater entry recorded at 16.30m rising to 14.10m after 20 minutes.
- 4. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain	Galliford	Try				Boring diameter: 120 mm to 14.00m 100 mm to 23.00m	Casing diameter: 120 mm to 14.00m	Project No G170	
Logged	by: ss/iG	Groun	ıd Level: 4	5.53 mAOD)	Date: 07/06/2017-12/06/2017	Location: 334505E - 447142N	Scale:	1:50
	ples & In situ		1	1	D la			Lancad	D1-CII
	Depth (m)	SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
				36.03	9.50	Dense reddish-brown gravel Gravel is sub-rounded to rou and chert. (Description base from open hole drilling).	unded fine to coarse quartz		
С	10.50	N=50		24.02	11.50	Dense reddish-brown fine to sub-rounded to rounded fin GRAVEL with occasional qua based on returned arisings f becoming very dense be	e to coarse quartz and chert artz cobbles. (Description from open hole drilling).		
С	12.00	N=46		34.03	11.50	Stiff reddish-brown locally g gravelly CLAY. Gravel is sub- to coarse quartz, limestone (Description based on return drilling).	rounded to rounded fine and igneous lithologies.	* X X X X X X X X X X X X X X X X X X X	
CR 14	4.00-15.50	20 0 0						× × × × × × × × × × × × × × × × × × ×	
C CR 15	15.50 5.50-17.00	50/140 mn 23 0 0		30.03	15.50	Very stiff locally firm reddish rare gravel sized sub-angula (Grade IVa).			
C CR 17	17.00	N=Z 3 63 33 32		28.53	17.00	Stiff locally firm reddish bro interbedded with extremely MUDSTONE. (Grade III).			
		ER FL				(continued next sheet)		Chast	2 of 2
L		BER FL ROD FS				(continued next sheet)		Sheet	Z UI 3

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 5.00m then by open-hole / driving casing from 5.00m to 14.00m, (due to dense gravels). Borehole then advanced to base using rotary coring techniques, with a mist flush
- 3. Groundwater entry recorded at 16.30m rising to 14.10m after 20 minutes.
- 4. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

							B : 1: .		1	
Clien Costa	stain Galliford Try						Boring diameter: 120 mm to 14.00m 100 mm to 23.00m	Casing diameter: 120 mm to 14.00m	Project No G170	
Logg	ed by: ss/ic	G Gr	ound	Level: 4	15.53 mAO[)	Date: 07/06/2017-12/06/2017	Location: 334505E - 447142N	Scale:	1:50
Ref:	Core Data Depth (m)	TCR RES	FI	Water	Level (mAOD)	Depth (m)	Strata [Description	Legend	Backfill
CR CR CR	20.00 20.00-21.50 21.50-23.00	0 0 0 0 67 41 25 90 67 53	NI				Stiff locally firm reddish brow interbedded with extremely MUDSTONE. (Grade III). Stiff grey sandy SILT. Extremely weak grey silty fin fractures are horizontal, veriough, clean. Extremely weak reddish brow based on limited returned ardue to no core sample recovpossible to determine). Extremely weak reddish brow MUDSTONE recovered as fing gravel sized fragments. (Grade Stiff friable reddish brown CL Extremely weak thinly lamina MUDSTONE. Bedding fractur horizontal, medium to closely clean. (Grade II). Extremely weak locally very well sized fractures are horizon very closely spaced, smooth clean. Extremely weak locally very weak l	weak reddish-brown The SANDSTONE. Bedding by closely spaced, planar The SANDSTONE. (Description isings from rotary coring ery, weathering grade not ery, weathering grade not ery, weathering grade not ery, weathering grade not ery, weathering grade not ery, weathering grade not ery, weathering grade not ery, weathering grade not ery, weathering grade not ery, weathering grade not ery, weathering grade not ery, weathering grade it is a single planar sub-horizontal to grey, weak thinly laminated grey, weak thinly laminated ery, weak e		
		SER ROD	ĘĻ						Sheet	3 of 3

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 5.00m then by open-hole / driving casing from 5.00m to 14.00m, (due to dense gravels). Borehole then advanced to base using rotary coring techniques, with a mist
- 3. Groundwater entry recorded at 16.30m rising to 14.10m after 20 minutes.
- 4. Borehole backfilled with sodium bentonite (pellets), and surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	NOO						Wil 123a to 123 Ground lilve	stigation				
Client Costai	n Galliford	d Try					Boring diameter: 120 mm to 2.00m 92 mm to 12.00m	Casing diameter: 120 mm to 2.00m	Project No G170			
Logge	d by: PM/	ig Gro	ound	Level: 4	9.46 mAOD)	Date: 07/06/2017-12/06/2017	Location: 335371E - 447167N	Scale:	1:50		
Sa Ref:	mples & In sit Depth (m)	u Tests SPT	N	Water	Level (mAOD)	Depth (m)	Strata [Description	Legend	Backfill		
B1	0.50-1.00				49.16	0.30	MADE GROUND - Topsoil (so gravelly slightly clayey fine to is sub-rounded to rounded m Soft locally firm friable reddi	o medium SAND. Gravel nedium to coarse quartz). sh-brown mottled grey				
S D2	1.20 1.20-1.65	N=5	50		47.46	2.00	CLAY with frequent gravel size lithorelicts becoming very stiff below no sample recovery between	w 1.20m.				
CR	2.00-3.50	80 60 22	9		47.40	2.00	Extremely weak reddish brow locally weathered to gravel s fractures are horizontal to suvertical, closely spaced, plans undulating with local clay inf III).	ized fragments. Bedding ib-horizontal locally ar smooth to planar				
S	3.50	50/260	mNml 3 NI									
CR	3.50-5.00	87 53 53	8				44.45					
CR	5.00-6.50	100 89 87	6		44.46	5.00	Very stiff friable thinly lamir locally grey silty CLAY interbo extremely weak MUDSTONE	edded with bands of	xx- xx- xx- xx- xx-			
S	6.50	50/7	mm						xx			
CR	6.50-8.00	97 74 73	-						xx			
CR	8.00-9.50	98 59 43			41.26	8.20	Very stiff friable reddish brow CLAY with frequent gravel siz lithorelicts and occasional m	zed sub-angular mudstone	× - × - × - × - × - × - × - × - × - × -			
		SER ROD	FS				(continued next sheet)		Sheet	1 of 2		

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. No groundwater seepages were encountered during boring operations, however entries may have been masked due to drilling technique.
- 3. Borehole advanced using P60 (slope climbing) combination rig P60C, using dynamic sampling techniques from 1.20m to 2.00m then rotary coring techniques from 1.20m to the borehole base, with a mist flush.

4. Borehole backfilled with sodium bentonite (pellets) on completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

								8		
Client Costain Galliford Try							Boring diameter: 120 mm to 2.00m	Casing diameter: 120 mm to 2.00m	Project N	
Costa	in Gallitord	Try					92 mm to 12.00m	120 11111 to 2.0011	G17	057
Logge	ed by: PM/		und	Level: 4	9.46 mAOE)	Date: 07/06/2017-12/06/2017	Location: 335371E - 447167N	Scale:	1:50
Ref:	Core Data Depth (m)	TCR REB	FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
С	9.50	50/250	mm				to Grade IVa).		xx xx	*= *= *
CR	9.50-11.00	96 47 27	NI		39.46 39.21	10.00 10.25	Very weak thinly laminated fractures are horizontal, ver smooth, clean.		-x- x x x x x x x x x x x x x x x x x x x	×
С	11.00	50/165	mm				Very stiff friable reddish bro CLAY with frequent gravel s lithorelicts (Grade III to Gra	ized sub-angular mudstone	×	
CR	11.00-12.00	13 0							<u>~_~×</u> ×	
D3	12.00-12.30						End of Borehole at 12.00 m			

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. No groundwater seepages were encountered during boring operations, however entries may have been masked due to drilling technique.
- 3. Borehole advanced using P60 (slope climbing) combination rig P60C, using dynamic sampling techniques from 1.20m to 2.00m then rotary coring techniques from 1.20m to the borehole base, with a mist flush.

Sheet 2 of 2

4. Borehole backfilled with sodium bentonite (pellets) on completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

G	BROUP				-	M1 J23a to J25 Ground Investigation				
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 16.50m 100 mm to 22.50m	Casing diameter: 120 mm to 16.50m	Project N	lo.: 7057	
Logge	ed by: JP	Ground	Level: 3	37.05 mAOI)	Date: 03/05/2017-09/05/2017	Location: 329612E - 447034N	Scale:	1:50	
	Samples & In sit	1	Water	Level	Depth	Strata	Strata Description			
Ref:	Depth (m)	SPT N		36.85 36.65	0.20 0.40	MADE GROUND - Topsoil (s with frequent rootlets).		-		
B1 D2	0.60-0.70 1.00-1.10			36.25 (36.05 :		,	brown fine to coarse SAND and I fine to coarse quartz		7 7	
S D3	1.20	N=6			MADE GROUND - Stiff friab light grey silty CLAY with man of sub-angular granite road partings of sand and gravel.	any gravel sized fragments stone and pockets and				
S D4 D5	2.00 2.00-2.50 2.50-3.00	N=7				MADE GROUND - Roadston gravel.	e with pockets of sand and			
S D6	3.00 3.00-3.50	N=18				Stiff friable reddish brown a gravelly silty CLAY. Gravel is siltstone noted as being firm bet	s angular coarse			
D7 S D8	3.50-4.00 4.00 4.00-4.50	N=11								
D9	4.50-5.00									
S D10	5.00 5.00-5.50	N=19								
С	6.00	50/140mm		31.35	5.70	to sub-rounded fine to coar	ned arisings from open hole			
С	7.50	50/80mm								

Remarks and Water Observations

9.00

1. Hand dug starter pit to 1.20m, to check for services.

50/230mm

- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 6.00m, then by open hole / driving casing from 6.00m to 13.50m (due to dense gravels). Borehole advanced by rotary coring techniques to base, with a mist flush.

(continued next sheet)

Sheet 1 of 3

4. Borehole backfilled to ground level with sodium bentonite pellets upon completion.

(Window Sampler plus Rotary Core)

Site

C	ROUP				4	Site M1 J23a to J25 Ground Investigation				
Clien	t ain Galliford	d Try				Boring diameter: 120 mm to 16.50m 100 mm to 22.50m	Casing diameter: 120 mm to 16.50m	Project No		
Logg	ed by: JP	Ground	Level:	37.05 mAO[)	Date: 03/05/2017-09/05/2017	Location: 329612E - 447034N	Scale:	1:50	
Ref:	Samples & In sit	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill	
С	C 12.00 50/175mm C 13.50 50/23 mm			(MAOD)	(m)	Very dense brown fine to conto sub-rounded fine to coars (Description based on return drilling). becoming dense below	parse SAND and sub-angular se quartz GRAVEL. ned arisings from open hole			
C CR	13.50			23.55	13.50	Extremely weak reddish bro based on limited returned a sample recovery. No recove preventing identification of	ry of core samples			
С	15.00	50/23i mm								
CR	15.00-16.50	0 0 0								
C CR	16.50 16.50-18.00	50/20 mm 0 0 0		t s		Weak reddish brown MUDS thick veins of gypsum and o sandstone. No evidence of whorizontal, closely spaced, u rough and smooth, clean. (6)	ccasional beds of grey weathering. Fractures are Indulating and planar,			
ĺ		6								

Remarks and Water Observations

18.00

- 1. Hand dug starter pit to 1.20m, to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 6.00m, then by open hole / driving casing from 6.00m to 13.50m (due to dense gravels). Borehole advanced by rotary coring techniques to base, with a mist flush.

(continued next sheet)

Sheet 2 of 3

4. Borehole backfilled to ground level with sodium bentonite pellets upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

								1		
Client Costa	Client Costain Galliford Try						Boring diameter: 120 mm to 16.50m 100 mm to 22.50m	Casing diameter: 120 mm to 16.50m	Project No.	
Logg	ed by: JP	Gr	ound	Level: 3	7.05 mAOE)	Date: 03/05/2017-09/05/2017	Location: 329612E - 447034N	Scale:	1:50
	Core Data			Water	Level	Depth			Legend	Backfil
Ref:	Depth (m)	TCR RGB	FI	water	(mAOD)	(m)	Strata	Description	Legenu	Dackiii
CR	18.00-19.50	100 97 87	2				Weak reddish brown MUDS thick veins of gypsum and o sandstone. No evidence of v horizontal, closely spaced, u rough and smooth, clean. (6	ccasional beds of grey weathering. Fractures are ındulating and planar,		
С	19.50	50/40								
CR	19.50-21.00	87 87 60	2							
С	21.00	50/15	3 mm							
CR	21.00-22.50	100 97 90	3							
С	22.50	50/25	mm		14.55	22.50	End of Borehole at 22.50 m			

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m, to check for services.
- $2. \ \ No \ groundwater \ see pages \ were \ encountered \ during \ boring \ operations.$
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques from 1.20m to 6.00m, then by open hole / driving casing from 6.00m to 13.50m (due to dense gravels). Borehole advanced by rotary coring techniques to base, with a mist flush.

Sheet 3 of 3

4. Borehole backfilled to ground level with sodium bentonite pellets upon completion.

BOREHOLE RECORD - E3-A1

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

10						Wil 1230 to 123 Ground my	8		
Client Costa	in Galliford	Try				Boring diameter: 120 mm to 12.00m	Casing diameter: 120 mm to 11.00m	Project N G17	
Logge	ed by: PM	Ground	Level: 3	35.83 mAOI)	Date: 22/05/2017-23/05/2017	Location: 331084E - 446517N	Scale:	1:50
S Ref:	amples & In site	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfil
D1	0.40-0.60			35.63	0.20	MADE GROUND - Topsoil (br medium to coarse SAND wit		,	
				35.13	0.70	coarse SAND. Gravel is angu		<u></u>	-
B2 S	1.00-2.00 1.20	N=26		34.83	1.00	coarse granite, quartz and sa	andstone.		
В3	1.50-2.00			34.43	1.40	MADE GROUND - Reddish by SAND with a medium sub-ro content. Gravel is angular to coarse sandstone.		p.	-
S B4	2.00 2.00-3.00	N=19					_		
S B5	3.00 3.00-4.00	N=28				MADE GROUND - Firm reddi grey friable slightly sandy sli with frequent sand lenses. G sub-angular fine to coarse sa	Gravel is angular to		
S	4.00	N=49							
S	5.00	50/145mm							
S	6.00	50/105mm		29.83	6.00	Very dense reddish brown fi sub-angular to rounded qual (Description based on arising	rtz and sandstone GRAVEL.		
S	7.00	50/160mm				drilling).	gs recurred from open note		
S	8.00	50/220mm							
С	9.00	50/280mm							
					1	(continued next sheet)		Sheet	******

- 1. Hand dug starter pit to 1.20m to check for services.
- ${\bf 2.}\ \ No\ groundwater\ see pages\ were\ encountered\ during\ boring\ operations.$
- 3. Borehole advanced using using Commachio 205 combination rig GC01, using dynamic sampling techniques 1.20m to 4.00m and 11.00m to 12.00m, then by rotary open hole techniques from 4.00m to 11.00m with a mist flush.
- 4. Borehole backfilled with bentonite pellets to ground level upon completion.

BOREHOLE RECORD - E3-A1

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

						1011 1238 to 123 di odila iliv	estigation		
Clien	t ain Galliford	l Try				Boring diameter: 120 mm to 12.00m	Casing diameter: 120 mm to 11.00m	Project N G17	o.: '057
Logg	ed by: PM	Ground	Level:	35.83 mAOI)	Date: 22/05/2017-23/05/2017	Location: 331084E - 446517N	Scale:	1:50
Ref:	Samples & In sit		Water	Level	Depth (m)	Strata	Description	Legend	Backfill
С					()	Very dense reddish brown f sub-angular to rounded qua	ine to coarse SAND and		
C D6		N=17				becoming medium dens	se below 11.00m.		
В7	11.50-12.00			24.33	11.50 12.00	Soft grey slightly gravelly sa sub-angular fine to medium	ndy CLAY. Gravel is quartz.		

Remarks and Water Observations

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using using Commachio 205 combination rig GC01, using dynamic sampling techniques 1.20m to 4.00m and 11.00m to 12.00m, then by rotary open hole techniques from 4.00m to 11.00m with a mist flush.

Sheet 2 of 2

 ${\bf 4.} \ \ {\bf Borehole\ backfilled\ with\ benton ite\ pellets\ to\ ground\ level\ upon\ completion.}$

BOREHOLE RECORD - CPT01

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client	t ain Galliford	d Try				Boring diameter: 120 mm to 1.50m 100 mm to 6.45m	Casing diameter: 120 mm to 1.50m	Project No.	
Logg	ed by: ss	Ground	Level: 2	274.10 mAC	D	Date: 14/06/2017	Location: 447358E - 326274N	Scale:	1:50
Ref:	Samples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata D	Description	Legend	Backfill
				273.94	0.16	MADE GROUND - Macadam i	road surfacing.		
B1	0.30-0.50			273.40	0.70	MADE GROUND - Light brown medium to coarse limestone			
С	1.00	50/40mm				MADE GROUND - Very dense coarse limestone GRAVEL.	e light brown sandy angular		
С	2.00	50/95 m 65		272.10	2.00	Very weak to weak reddish b MUDSTONE in a clayey matri	ix. Locally sandy clay with		
CR	2.00-3.00	30 25				numerous gravel sized mudst	tone lithorelicts (Grade		
С	3.00	N= 8		271.10	3.00	Weak to moderately weak re MUDSTONE thickly interbedo Discontinuities are sub-horizo			
CR	3.00-4.50	83 37 33				smooth planar rough undulat			
С	4.50	50/9(mm							
CR	4.50-6.00	100 47 13							
С	6.00	50/25mm							
				267.65	6.45	End of Borehole at 6.45 m			
		TCR FI SCR RQD FS						Sheet	1 of 1

- 1. Borehole advanced through road surfacing using road coring attachment.
- 2. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 3.00m techniques, then advanced to the borehole base using rotary coring techniques, with a mist flush.
- 3. No groundwater seepages were encountered during drilling operations.
- 4. Borehole backfilled with sodium bentonite (pellets) upon completion and surface reinstated.

BOREHOLE RECORD - CPT02

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

Client Costa	lient ostain Galliford Try					Boring diameter: 120 mm to 5.00m 120 mm to 10.00m	Casing diameter: 120 mm to 5.00m	Project N G17	
Logge	ed by: PM	Ground	Level: 3	7.48 mAOD)	Date: 03/07/2017	Location: 328684E - 447304N	Scale:	1:50
Ref:	Samples & In site	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strat	a Description	Legend	Backfill
nei.	Depart (m)	31114		37.28 37.26	0.20 0.22		ous macadam (carriageway		
D1	0.60-1.00			37.18 36.88	0.30 0.60	MADE GROUND - Macadar	m.	//*****	
				36.58	0.90	MADE GROUND - Crushed	rock sub-base.	//****	
D2	1.30-1.50			36.18	1.30	MADE GROUND - Concrete	e.		
C B3	1.50 1.50-2.30	N=17				MADE GROUND - Sub-base	e.		
				35.68	1.80	MADE GROUND - Brown a coarse siltstone, sandstone	ngular to sub-rounded fine to e and quartzite GRAVEL.		
D4 C	2.30-2.40 2.50	N=25		35.18	2.30	MADE GROUND - Stiff red slightly gravelly CLAY with siltstone cobble content. C sub-rounded fine to coarse	a medium sub-rounded Gravel is sub-angular to		
С	3.50	50/295mm				MADE GROUND - Stiff red slightly gravelly CLAY. Grav siltstone and mudstone.			
D5	4.00-5.00					Medium dense brown me sub-angular to sub-rounde sandstone and quartzite G	ed fine to coarse siltstone		
С	4.50	50/285mm				becoming very dense			
С	5.00	50/255mm		32.48	5.00	End of Borehole at 5.00 m			

Remarks and Water Observations

- 1. Carriageway surfacing cored for borehole access.
- 2. No groundwater seepages were encountered during boring operations (entries may have been masked by water added to aid drilling operations).
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 2.50m, then by rotary open hole / driving casing to the borehole base, with a mist flush.

Sheet 1 of 1

4. Borehole backfilled with sodium bentonite pellets to 2.00m then to ground level with granular material by CGT.

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

Client						Boring diameter:	Casing diameter:	Project N	0.:
Costa	in Galliford	Try				120 mm to 10.00m	120 mm to 10.00m	G17	057
Logg	ed by: PM	Ground	Level:	33.49 mAOI)	Date: 04/07/2017	Location: 328421E - 447388N	Scale:	1:50
9	Samples & In sit	u Tests	Water	Level	Depth	61		Legend	Backfi
Ref:	Depth (m)	SPT N		(mAOD)	(m)	Str	ata Description	***********	XIN///XV//
				33.27	0.22	MADE GROUND - Macad	am.	_	
				32.89	0.60	MADE GROUND - Concre	te.		
D1	0.90-1.50			32.59	0.90	MADE GROUND - Reddis fine to coarse granite GR	h brown angular to sub-angular AAVEL (Sub-base).		
C D2	1.50 1.50-1.80	N=39		31.69	1.80	gravelly CLAY with a med	eddish brown mottled grey slightly dium sub-angular siltstone s sub-angular to sub-rounded nd mudstone.		
С	3.00	50/140mm							
В3	3.30-6.00								
С	4.50	50/130mm							
С	6.00	50/60mm							
B4	7.00-10.00								
С	7.50	N=44				becoming dense bet	ween 7 50m to 10 00m		
						becoming dense bet	ween 7.50m to 10.00m.		
С	9.00	N=43							
			1			(continued next sheet)		Sheet	1 of 2

- 1. Carriageway surfacing cored for borehole access.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 3.00m, then by open hole / driving casing (due to dense gravels) to the borehole base, with a mist flush.
- 4. Borehole backfilled with sodium bentonite pellets to ground level upon completion.

(Window Sampler)

Site

M1 J23a to J25 Ground Investigation

						WI 123a to 123 Ground Investigation			
Client Costain Galliford Try						Boring diameter: 120 mm to 10.00m	Casing diameter: 120 mm to 10.00m	Project N G17	o.: 7057
Logg	ged by: PM	Ground	Level: 3	33.49 mAOE)	Date: 04/07/2017	Location: 328421E - 447388N	Scale:	1:50
Ref:	Samples & In sit	u Tests SPT N	Water	Level (mAOD)	Depth	Strata	a Description	Legend	Backfill
C C	10.00			23.49	(m)	MADE GROUND - Brown m	nedium to coarse SAND and d fine to medium siltstone,		
		50/285mm		23.43		End of Borehole at 10.00 m			

Remarks and Water Observations

- 1. Carriageway surfacing cored for borehole access.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig GC01, using dynamic sampling techniques from 1.20m to 3.00m, then by open hole / driving casing (due to dense gravels) to the borehole base, with a mist flush.

Sheet 2 of 2

4. Borehole backfilled with sodium bentonite pellets to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Costain Galliford Try 120 mm to 32.50m 120 mm to 20.00m G17057 Logged by: IG Ground Level: 37.87 mAOD Date: 13/06/2017-19/06/2017 Location: 327569E - 447563N Scale: 1:50	Client		alliford Try				Boring diameter:	Casing diameter:	Project No	o.:
Samples & In situ Tests Water Level Depth Strata Description Legend Bad			d Try				120 mm to 32.50m	120 mm to 20.00m	G17	057
Name Name	Logge	ed by: IG	Ground	Level:	37.87 mAOE)	Date: 13/06/2017-19/06/2017	Location: 327569E - 447563N	Scale:	1:50
81			1	Water			Strata I	Description	Legend	Backfill
S 1.20 N=29 N=29 N=29 N=29 N=29 N=29 N=25 N=2	B1	0.10-0.40	3111				silty fine SAND with frequen	t rootlets. Gravel is		
S 2.00 2.40 30.00 35.47 2.40 2.40 35.47 2.40 2.40 30.00 3.00	D3	1.20-1.65	N=29		36.37	1.50	with frequent quartz cobble rounded fine to coarse quar mudstone.	s. Gravel is sub-angular to tz, sandstone and		
S 3.00	D5	2.00-2.45	N=25		25.47	2.40				
3.00-3.45 3.00-3.40 3.00	Dв	2.40-3.00			35.47	2.40	Firm reddish brown sandy C	LAY.		
S 4.00	D7	3.00-3.45	N=8		24.47		locally soft from 3.00m t	to 3.60m.		
S	D9	3.40-4.00			34.47	3.40	Firm friable reddish brown S	GILT.	$\times \times \times \times$	
D12 4.75-5.00 S 5.00-5.45 D14 5.00-5.30 D15 5.30-6.00 S 6.10 D16 6.10-6.50 CR 7.00-8.50 CR 7.00	D10	4.00-4.45	N=17						× × × × × × × × × × × × × × × × × × ×	
CR 7.00-8.50 74 42 42 Extremely weak reddish brown with some light grey MUDSTONE. Fractures are horizontal, close to medium spaced, undulating, striated, clean and very tight (All drilling induced). (Grade I). band of light grey SILTSTONE from 7.20m to 7.40m drilling induced non-intact zone from 7.25m to 7.35m band of light grey SILTSTONE from 7.80m to 8.20m drilling induced non-intact zone from 8.25m to	S D13 D14	5.00 5.00-5.45 5.00-5.30	N=10		33.12	4.75		eddish brown slightly sandy	****	
7.40m drilling induced non-intact zone from 7.25m to 7.35m band of light grey SILTSTONE from 7.80m to 8.20m drilling induced non-intact zone from 8.25m to	D16	6.10-6.50	74 42		31.77	6.10	MUDSTONE. Fractures are h spaced, undulating, striated,	orizontal, close to medium , clean and very tight		
c 8.50 N=36 29.37 8.50 drilling induced non-intact zone from 8.25m to	CR	7.00-8.50	55				7.40m drilling induced non-inta 7.35m.	act zone from 7.25m to		
	С	8.50	N=3 6		29.37	8.50	drilling induced non-inta	act zone from 8.25m to		
Tox FI (continued next sheet) Sheet 1 of 4							(continued next sheet)		Sheet	1 of 4

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepage was encountered at 14.50m during boring operations.
- 3. Borehole advanced using Borehole advanced using P60 (slope climbing) combination rig P60C, using dynamic sampling techniques through overburden then by rotary coring techniques in rock from 6.10m to base, with a mist flush.
- 4. Borehole backfilled with bentonite pellets to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client	+						Boring diameter:	Casing diameter:	Project N	o.:
	ain Galliford	l Try					120 mm to 32.50m	120 mm to 20.00m	G17	
Logg	ed by: IG	Gr	ound	Level: 3	37.87 mAOE)	Date: 13/06/2017-19/06/2017	Location: 327569E - 447563N	Scale:	1:50
	Core Data			Water	Level	Depth			Legend	Backfill
Ref:	Depth (m)	TCR SCR RQD	FI	vvatci	(mAOD)	(m)	Strata I	Description	Legena	Duckiiii
CR	8.50-10.00	95 0 0			28.27	9.60	Stiff reddish brown and occa CLAY. band of firm friable light		/××××××	
							9.15m to 9.30m. Extremely weak fissile light a	grov SILTSTONE	X X X X X X X X X X X X X X X X X X X	
							Latternery weak hissine light §	grey Sicistone.	××××××××××××××××××××××××××××××××××××××	
CR	10.00-11.50	90 50			27.27	10.60	band of very weak reddifrom 10.35m to 10.40m.	ish brown MUDSTONE noted	******	
		44					Extremely weak fissile reddingrey MUDSTONE. Fractures			
С	11.50	- 50/18	0mm				medium spaced, undulating, tight (Mostly being drilling in	, striated, clean and very		
							light grey only between	11.70m and 12.30m.		
CR	11.50-13.00	90 40 27								
		93								
CR	13.00-14.50	65 41					light grey only between	13.80m and 14.00m.		
	14.50	50/27	0	lacktriangle						
С	14.50	50/27	Umm				grading to very stiff CLA 15.05m.	Y between 14.50m and		
CR	14.50-16.00	91 45								
		44								
CR	16.00-17.50	80 59 46								
		40								
С	17.50	50/17	5mm				becoming very weak be	low 17.50m.		
		TCR SCR RQD	FI FS		<u> </u>		(continued next sheet)		Sheet	2 of 4

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepage was encountered at 14.50m during boring operations.
- 3. Borehole advanced using Borehole advanced using P60 (slope climbing) combination rig P60C, using dynamic sampling techniques through overburden then by rotary coring techniques in rock from 6.10m to base, with a mist flush.
- 4. Borehole backfilled with bentonite pellets to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Clien	t						Boring diameter:	Casing diameter:	Project N	0.:
	ain Galliford	l Try					120 mm to 32.50m	120 mm to 20.00m	G17	
							2.1			
Logg	ed by: IG		ouna	Level: 3	37.87 mAOE)	Date: 13/06/2017-19/06/2017	Location: 327569E - 447563N	Scale:	1:50
Ref:	Core Data Depth (m)	TCR SCR RQD	FI	Water	Level (mAOD)	Depth (m)	Strata I	Description	Legend	Backfill
CR	17.50-19.00	87	г		(IIIAOD)	(111)	Extremely weak fissile reddis			
Cit	17.50 15.00	30					grey MUDSTONE. Fractures			
		27								
							medium spaced, undulating,			
							tight (Mostly being drilling ir			
							sandy between 18.60m	and 19.00m.		
		97								
CR	19.00-20.50	60								
		47								
С	20.50	50/85	mm							
							numerous (drilling induc			
							between 20.5m and 23.50m			
		100								
CR	20.50-22.00	51								
CIV	20.30-22.00	23								
		20								-1-1
		100								
CR	22.00-23.50	75								
		47								
										-1-1
С	23.50	50/130	lmm							
C	23.30	30/130	,,,,,,,,				some (drilling induced) f	fractures noted between		
							23.50m and 25.00m.			
							20.00 44 20.00			
		100								-2-1
CR	23.50-25.00	63								
		55								
					1					
							sub-vertical fracture (na	turally occurring)		
					1		noted from 25.05m to 25.15			
		100					23.13			
CR	25.00-26.50	100								
CK	25.00-26.50	91 80								
		55								
С	26.50	50/65	mm							
		0.					30mm band of siltstone	noted at 26 80m		
		95 67					Somm band of shistone	noteu at 20.00111.		
CR	26.50-28.00	59								
	20.00		FI				(continued next sheet)		Shoot	3 of 4
	1	RQD	FI FS		l	1	(a series and a series of the color		JIIEEL	5 01 4

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. Groundwater seepage was encountered at 14.50m during boring operations.
- 3. Borehole advanced using Borehole advanced using P60 (slope climbing) combination rig P60C, using dynamic sampling techniques through overburden then by rotary coring techniques in rock from 6.10m to base, with a mist flush.
- 4. Borehole backfilled with bentonite pellets to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	Client Costain Galliford Try Logged by: IG Ground Level: 37.87 mAOD				Boring diameter: 120 mm to 32.50m	Casing diameter: 120 mm to 20.00m	Project No G17			
Logg	ed by: IG	(Ground	Level: 3	7.87 mAOD)	Date: 13/06/2017-19/06/2017	Location: 327569E - 447563N	Scale:	1:50
Ref:	Core Data Depth (m)	TCR REB	FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
CR	28.00-29.50	93 63 37				()	Extremely weak fissile reddis grey MUDSTONE. Fractures a medium spaced, undulating, tight (Mostly being drilling ir 70mm band of siltstone 50mm band of siltstone 30mm band of siltstone 50mm band of siltstone	are horizontal, close to striated, clean and very nduced). (Grade I). noted at 27.40m. noted at 27.75m. noted at 28.00m.		
С	29.50	50/	16 mm							
CR	29.50-31.00	83 53 49					sub-vertical fracture (na noted from 30.10m to 30.20			
CR	31.00-32.50	100 55 33					30mm band of siltstone	noted at 31.50m.		
C	32.50	50)	775mm		5.37	32.50	End of Borehole at 32.50 m			
		TCR SCR RQD							Sheet	4 of 4

- 1. Hand dug starter pit to 1.20m to check for services.
- ${\it 2. \ Groundwater \ seepage \ was \ encountered \ at \ 14.50m \ during \ boring \ operations.}$
- 3. Borehole advanced using Borehole advanced using P60 (slope climbing) combination rig P60C, using dynamic sampling techniques through overburden then by rotary coring techniques in rock from 6.10m to base, with a mist flush.
- 4. Borehole backfilled with bentonite pellets to ground level upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	d by: JP				Boring diameter: Casing diameter: 120 mm to 26.50m 120 mm to 14.50m			Project No G17	
- 1		Ground	Level: 3	88.76 mAOE)	Date: 19/07/2017-21/07/2017	Location: 447102E - 330395N	Scale:	1:50
	amples & In situ Depth (m)	Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
	Deptii (iii)	31111		(111/105)		MADE GROUND - Macadam			*******
				38.51 38.36	0.25 0.40	MADE GROUND - Concrete		<u> </u>	
D1	0.60-0.70	(0)							
S D2	1.00 1.10-1.20	140 kPa N=7 (0)		37.86	0.90	MADE GROUND - Light grey angular fine to coarse siltsto sub-base).			
D3 D4	1.20-1.60 1.60-2.00	(O) (O)				MADE GROUND - Stiff reddi light grey silty CLAY with ma			
s	2.00					fragments of siltstone.			===
D5	2.00-2.50	N=3 (0)							===
D6	2.50-3.00	(0)							
s	3.00	N=4							F==
D7	3.00-3.50	(0)							
D8	3.50-4.00	(0)		35.26	3.50	MADE GROUND - Soft brow			
S	4.00	N=22				speckles slightly gravelly slig (fine) SILT with occasional re			
D9	4.20-4.60	(0)		34.66	4.10	sub-angular to sub-rounded		/	===
						MADE GROUND - Firm redd slightly gravelly silty CLAY. G sub-rounded quartz, siltstor	Gravel is angular to		
S	5.00	N=12		33.86	4.90				===
D10	5.30-5.70	(0)				MADE GROUND - Stiff grey a slightly gravelly silty CLAY. G sub-rounded fine to coarse mudstone.			
		(2)				becoming reddish brow grey below 6.00m.	n with occasional light		
D11	6.40-6.90	(0)							
S	7.00	N=33							===
D12	7.30-7.50	(0)							
				31.26	7.50	MADE GROUND - Brown fin sub-angular to sub-rounded	fine to coarse quartz	-	
С	8.00	50/230mm				GRAVEL. (Determined from	open hole arisings only).		
С	9.00	50/155mm							EE
-	2.30	, , _ , _ , _ , , , , , , , , , , , , ,				(continued next sheet)		Sheet	1 of 3

- 1. Advanced through road construction using coring attachment, then hand dug starter pit to 1.20m, to check for services.
- 2. Set of three Hand Shear Vane (HSV) tests undertaken at 0.90m all reached maximum capacity of unit (140kPa), using the pilcon unit (HSV3) and the 19mm vane. Attempted HSV test at 1.20m, ground too hard for vane (19mm) to penetrate.
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden (to 7.50m) then by open-hole / driving casing from through dense coarse grained soils (to 14.00m), then rotary coring through rock to base (26.50m).
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.50m below surface, rapid setting concrete to 0.10m then surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try Logged by: JP Ground Level: 38.76 mAOD						Boring diameter: 120 mm to 26.50m	Casing diameter: 120 mm to 14.50m	Project N G17	
Logg	ed by: JP	Ground	Level:	38.76 mAOI	D	Date: 19/07/2017-21/07/2017	Location: 447102E - 330395N	Scale:	1:50
Ref:	Samples & In sit	tu Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
C	10.50 12.00	50/80mm		(MAOD)	(111)	MADE GROUND - Brown fin sub-angular to sub-rounded GRAVEL. (Determined from	e to coarse SAND and I fine to coarse quartz		
С	13.50	50/65mm		25.26	13.50	Stiff reddish brown slightly	gravelly silty CLAV	* * * * * * * * * * * * * * * * * * *	
C	14.50	50/160mm				Gravel is angular to sub-rou quartz, siltstone and mudst description determined froi only).	inded fine to coarse one. (no sample recovery,	**************************************	
				21.26	17.50	Extremely weak, locally ver MUDSTONE with many thin			

Remarks and Water Observations

- 1. Advanced through road construction using coring attachment, then hand dug starter pit to 1.20m, to check for services.
- 2. Set of three Hand Shear Vane (HSV) tests undertaken at 0.90m all reached maximum capacity of unit (140kPa), using the pilcon unit (HSV3) and the 19mm vane. Attempted HSV test at 1.20m, ground too hard for vane (19mm) to penetrate.

(continued next sheet)

Sheet 2 of 3

- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden (to 7.50m) then by open-hole / driving casing from through dense coarse grained soils (to 14.00m), then rotary coring through rock to base (26.50m).
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.50m below surface, rapid setting concrete to 0.10m then surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try							Boring diameter: 120 mm to 26.50m	Casing diameter: 120 mm to 14.50m	Project No	
							_			
Logg	ed by: JP		ound	Level: 3	8.76 mAOD	1	Date: 19/07/2017-21/07/2017	Location: 447102E - 330395N	Scale:	1:50
Ref:	Core Data Depth (m)	TCR REB	FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
CR	17.50-19.00	33 11 0					Discontinuities are horizonta planar with local clay infill. (
CR	19.00-20.50	84 40 25	_				sub-vertical frature note 19.75m. 15mm thick band of sub from 19.95m to 20.00m.			
CR	20.50-22.00	85 79 75			17.96	20.80	Weak locally very weak grey bands of gypsum (2-3mm). I sub-horizontal closely space	Discontinuities are	X X X X X X X X X X X X X X X X X X X	
CR	22.00-23.50	93 52 32			16.76	22.00	Weak locally very weak redo grading to mudstone (in ban occasional thin bands of gyp Discontinuities are sub-horiz smooth planar with local cla	sum (2-3mm). contal closely spaced	X X X X X X X X X X X X X X X X X X X	
CR	23.50-25.00	93 55 33			14.46 14.11	24.30 24.65	Weak light grey fine grained Weak locally very weak redo	SANDSTONE. No fractures.	XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXX	
		95			13.56	25.20	grading to mudstone (in ban occasional thin bands of gyp Discontinuities are sub-horiz smooth planar with local cla	nds up to 50mm) with sum (2-3mm). contal closely spaced	* * * * * * * * * * * * * * * * * * *	
CR	25.00-26.50	60 44			12.26	26.50	Weak light grey fine grained gypsum bands (10mm). Disc sub-horizontal closely space planar and clean. Band of very weak reddifrom 25.75m to 25.90m. End of Borehole at 26.50 m	ontinuities are d to medium spaced rough		
聚 長									Sheet	3 of 3

- 1. Advanced through road construction using coring attachment, then hand dug starter pit to 1.20m, to check for services.
- 2. Set of three Hand Shear Vane (HSV) tests undertaken at 0.90m all reached maximum capacity of unit (140kPa), using the pilcon unit (HSV3) and the 19mm vane. Attempted HSV test at 1.20m, ground too hard for vane (19mm) to penetrate.
- 3. Borehole advanced using Commachio 205 combination rig AR01, using dynamic sampling techniques through overburden (to 7.50m) then by open-hole / driving casing from through dense coarse grained soils (to 14.00m), then rotary coring through rock to base (26.50m).
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.50m below surface, rapid setting concrete to 0.10m then surface reinstated upon completion.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client	ient ostain Galliford Try			Boring diameter:	Casing diameter:	Project N	0.:		
Costa	in Galliford	Try				120 mm to 13.50m 100 mm to 21.50m	120 mm to 13.50m	G17	057
Logge	ed by: IG	Ground	Level:	33.80 mAOD)	Date: 09/10/2017-11/10/2017	Location: 446589E - 331987N	Scale:	1:50
Ref:	amples & In situ Depth (m)	Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
	, ,			33.65	0.15	MADE GROUND - Macadam.			
				33.30	0.50	MADE GROUND - Concrete.			
D1 S E2	0.85-1.00 1.00 1.00	N=18		32.95	0.85	MADE GROUND - Whitish gr sub-rounded fine to coarse ((sub-base).	rey sandy silty sub-angular to limestone GRAVEL		·
D3 B4 S D5 B6	2.00 2.00 2.00-2.45	N=17	•	31.50	2.30	MADE GROUND - Firm reddi slightly gravelly clayey SILT. to rounded fine to coarse sa quartz.	Gravel is sub-angular		
S D7	3.00 3.00-3.45	N=27		31.50	2.30	Firm locally stiff reddish brostlightly gravelly silty CLAY. Government of the coarse sand quartz.	ravel is sub-angular to	* * * * * * * * * * * * * * * * * * *	
D8 D9	3.50-3.90 3.90-4.45			29.90	3.90				
S	4.00	N=21		29.90	3.90	Medium dense dark brown g SAND. Gravel is sub-angular sandstone, mudstone and q	to rounded fine to coarse		
S D10 D11	6.00 6.00-6.45 6.00-7.00	N=12		27.70	6.10	Medium dense orangish bro coarse SAND. Gravel is sub-a coarse quartz, flint, mudstor	angular to rounded fine to	**************************************	
S D12 B13	7.00 7.00-7.45 7.00-8.00	N=10		26.80	7.00	Loose orangish brown silty f sub-angular to rounded fine mudstone and sandstone Gf	to coarse quartz, flint,		
S	9.00	N=34	1			(continued next sheet)			

Remarks and Water Observations

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 6.00m, then by open-hole driving casing from 6.00m to 13.50m (through the dense coarse grained soils). Borehole then advanced to 21.50m using rotary coring techniques with a mist flush.

(continued next sheet)

Sheet 1 of 3

- 3. Groundwater entry encountered at 2.00m (sealed off with casing) remaining level after 20 minutes.
- 4. SPT's at 5.00m and 8.00m not possible due to granular soils collapsing into the borehole and blowing up the casing.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

	GROUP			00		=	Site M1 J23a to J25 Ground Inv	estigation		
Client Costa	t ain Galliford	l Try					Boring diameter: 120 mm to 13.50m 100 mm to 21.50m	Casing diameter: 120 mm to 13.50m	Project No	
Logg	ed by: IG	Gro	und Le	evel: 3	3.80 mAOE)	Date: 09/10/2017-11/10/2017	Location: 446589E - 331987N	Scale:	1:50
	Samples & In sit			Water	Level	Depth	C++-	Description	Legend	Backfill
Ref:	Depth (m)	SPT N	N		(mAOD)	(m)		Description	و در از و و در اور	X///8V//8
S	S 12.00 50/225mm 21.					Remaining Detail: 9.00m - 9 dense below 9.00m.				
S D14				12.00	Stiff friable reddish brown S	ILT.	X X X X X X X X X X X X X X X X X X X			
CR	13.50-14.00	20							(×××× ××××	
D15	14.00-15.50	13 0 0			19.80	14.00	Extremely weak weathered bands recovered as gravel s	grey SILTSTONE with gypsum ized fragments (Grade II).	X X X X X X X X X X X X X X X X X X X	
CR	15.50-17.00	87 52	10		17.55	16.25	Weak reddish brown MUDS SILTSTONE with occasional a fractures are horizontal clos to undulating smooth and c	ely spaced, planar smooth		
С	17.00	36			17.40	16.40	Extremely weak reddish bro stiff sandy clay with frequer (Grade III).	wn MUDSTONE (recovered as nt mudstone lithorelicts)		
CR	17.00	97 69	m 8				Weak reddish brown MUDS SILTSTONE with occasional g fractures are horizontal clos to undulating smooth and c	ely spaced, planar smooth		

Remarks and Water Observations

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 6.00m, then by open-hole / driving casing from 6.00m to 13.50m (through the dense coarse grained soils). Borehole then advanced to 21.50m using rotary coring techniques with a mist flush

(continued next sheet)

Sheet 2 of 3

- 3. Groundwater entry encountered at 2.00m (sealed off with casing) remaining level after 20 minutes.
- 4. SPT's at 5.00m and 8.00m not possible due to granular soils collapsing into the borehole and blowing up the casing.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Ref. Depth (m) 28									6		
Dommto 21:50m Carrow Car	Clien	t						Boring diameter:	Casing diameter:	Project N	0.:
Depth Depth Depth Strata Description Legend Backling Backling Depth Strata Description Depth Dep			d Try						120 mm to 13.50m	G17	057
Ref: Depth (m)	Logg			round	Level: 3	3.80 mAOE)	Date: 09/10/2017-11/10/2017	Location: 446589E - 331987N	Scale:	1:50
Remaining Detail: 17.00m - 17.00m :	Ref:	1		FI	Water			Strata	Description	Legend	Backfill
CR 20.00-21.50 73 51 21.50 21.50 21.50 21.50 Weins. Bedding fractures are horizontal, medium spaced, planar smooth and clean. (Grade I). End of Borehole at 21.50 m	CR	18.50-20.00	100 85 80	3				to firm clay between 17.00n Detail 17.30m - 17.30m : at 17.30m bedding fractures are m 18.40m with frequent gypsum ve weathered to firm clay l 19.50m weathered to firm clay l 20.15m.	n to 17.10m with a 30mm gypsum band nedium spaced below eins below 18.80m. between 19.40m to between 20.00m to		
End of Borehole at 2.1.50 m	CR	20.00-21.50	73					veins. Bedding fractures are	horizontal, medium		
器 段 Sheet 3 of 3								End of Borenole at 21.30 III			
			SER RQD	ĘĘ.						Sheet	3 of 3

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 6.00m, then by open-hole / driving casing from 6.00m to 13.50m (through the dense coarse grained soils). Borehole then advanced to 21.50m using rotary coring techniques with a mist flush.
- 3. Groundwater entry encountered at 2.00m (sealed off with casing) remaining level after 20 minutes.
- 4. SPT's at 5.00m and 8.00m not possible due to granular soils collapsing into the borehole and blowing up the casing.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	The state of the s					1011 3230 to 323 Ground inves	Stigation		
Client Costa	in Galliford	Try				Boring diameter: 120 mm to 16.00m 100 mm to 21.00m	Casing diameter: 120 mm to 16.00m	Project N G17	o.: '057
Logge	ed by: IG	Ground	Level:	35.15 mAO[)	Date: 05/10/2017-09/10/2017	Location: 446981E - 332717N	Scale:	1:50
S Ref:	amples & In situ	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata D	Description	Legend	Backfill
iter.	Depti (iii)	31111		35.05	0.10	MADE GROUND - Bituminous	-		
				24.65	0.50	MADE GROUND - Concrete ro	oad construction.		
E1 D2 S	0.70 0.70-1.00 1.00	N=17		34.65 34.50	0.65	MADE GROUND - Light grey f	ine to coarse SAND and		
D3 D4 C	1.00-1.45 1.00-2.00 1.20	N=21				MADE GROUND - Firm reddis sandy SILT. Gravel is sub-angu	sh brown slightly gravelly		
C	1.20	N-ZI				coarse sandstone, siltstone, r			
S D5	2.00 2.00-2.45	N=24		33.05	2.10	MADE GROUND - Stiff reddisl silty CLAY. Gravel is sub-angu			
D6	CC				coarse quartz, mudstone, san	ndstone and siltstone.			
S D7 D8	3.00 3.00-3.45 3.00-4.00	N=19							
S D9 D10	4.00 4.00-4.45 4.00-5.00	N=20							
S D11 D12	5.00 5.00-5.45 5.00-6.00	N=18				siltstone cobble encounte	ered at 4.90m.		
S D13	6.00 6.00-6.45	N=37							
			_	28.15	7.00				
S	7.50	N=37		20.13	7.50	Soft orangish brown mottled silty CLAY.	light grey slightly sandy	×	
D14	7.50-7.95			27.35	7.80	Dense yellowish brown grave SAND. Gravel is sub-angular t quartz and mudstone.		X——X	
S	9.00	N=23						$\overset{\times}{\times}\overset{\wedge}{\times}\overset{\wedge}{\times}\overset{\times}{\times}$	
	3.00	14-23		1	1	 		X	: W//X//

Remarks and Water Observations

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core from 0.50m to 6.00m and 13.50m to 14.50m, and by open-hole / driving casing from 6.00m to 13.50m (through the dense coarse grained soils) then to 15.00m. Borehole then advanced from 15.00m to 21.00m using rotary coring techniques with a mist flush.

(continued next sheet)

Sheet 1 of 3

- 3. Groundwater entry encountered at 7.00m (sealed off with casing) remaining level after 20 minutes.
- 4. Groundwater entry encountered at 16.00m (not sealed) remaining level after 20 minutes.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costa	: ain Galliford	d Try				Boring diameter: 120 mm to 16.00m 100 mm to 21.00m	Casing diameter: 120 mm to 16.00m	Project No	
Logge	ed by: IG	Ground	Level: 3	35.15 mAOE)	Date: 05/10/2017-09/10/2017	Location: 446981E - 332717N	Scale:	1:50
Ref:	Samples & In sit	tu Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
D15	9.00-9.45	5				Remaining Detail : 9.00m - 9 medium dense below 9.00m	.00m : becoming	*	
S D16	10.50 10.50-10.95	N=23		25.35	9.80	Medium dense orangish bro coarse SAND. Gravel is sub-a coarse quartz, flint and mud	angular to rounded fine to		
S D17	12.00 12.00-12.45	50/155mm		23.65	11.50	Orangish brown gravelly silty Gravel is sub-angular to rour quartz, flint and mudstone becoming very dense be	nded fine to coarse		
S D18 D19	13.50 13.50-13.95 13.50-14.50	N=26		22.15	13.00	Firm friable reddish brown lo silty CLAY with frequent sand		X - X - X - X - X - X - X - X - X - X -	
S D20	14.50 14.50-14.95	N=47		20.65	14.50	Stiff locally firm friable grey	silty CLAY.	×	
С	15.00	50/35 m	1	20.15	15.00	Stiff friable grey locally redd	ish brown silty CLAY.	XX	
CR	15.00-16.50	73 56 50		19.80	15.35	Weak greenish grey fine SAN gypsum veins. Bedding fract spaced, undulating smooth a gypsum band (30mm) at	ures are horizontal closely and clean.		
<u> </u>	46.70	100 3	_	18.75 18.50	16.40 16.65	veins. Bedding fractures are spaced, planar smooth and o			
CR	16.50-18.00	66 59 30	-	17.60	17.55	weak greenish grey fine SAN veins (10mm to 50mm thick horizontal closely spaced, plinfill.). Bedding fractures are	(×××××××××××××××××××××××××××××××××××××	
С	18.00	50/20 m	1	17.15	18.00			******	

Remarks and Water Observations

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core from 0.50m to 6.00m and 13.50m to 14.50m, and by open-hole / driving casing from 6.00m to 13.50m (through the dense coarse grained soils) then to 15.00m. Borehole then advanced from 15.00m to 21.00m using rotary coring techniques with a mist flush.

(continued next sheet)

Sheet 2 of 3

- 3. Groundwater entry encountered at 7.00m (sealed off with casing) remaining level after 20 minutes.
- 4. Groundwater entry encountered at 16.00m (not sealed) remaining level after 20 minutes.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Clien Cost	stain Galliford Try						Boring diameter: 120 mm to 16.00m 100 mm to 21.00m	Casing diameter: 120 mm to 16.00m	Project No.	
Logg	ged by: IG	Gr	ound	Level: 3	35.15 mAOE)	Date: 05/10/2017-09/10/2017	Location: 446981E - 332717N	Scale:	1:50
Ref:	Core Data Depth (m)	TOR MGB	FI	Water	Level (mAOD)	Depth (m)	Strata D	Description	Legend	Backfill
CR	18.00-19.50	83 57 36	5		15.65	19.50	17.55m - 18.00m : Weak gree frequent gypsum veins. Bedo horizontal to sub-horizontal spaced, planar smooth with 18.00m - 19.50m : Weak redo MUDSTONE. Bedding fracture	ding fractures are , extremely closely clay infill. dish brown locally grey		
CR	19.50-21.00	100 65 57					spaced, undulating smooth a Grade II). Detail 18.15m - 18.15m :	nd clean. (Grade I locally		
С	21.00	50/3	Omm		14.35 14.15	20.80 21.00	Weak reddish brown MUDST veins. Bedding fractures are I sub-horizontal, closely space undulating rough, clean with (Grade I locally Grade III) locally weathered and refragments between 20.15m t	norizontal to d, planar smooth to n local gypsum infill. covered as gravel sized	(×××××)	
								gments and with Iding fractures are		
							End of Borehole at 21.00 m			
	33 FS								Sheet	3 of 3

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core from 0.50m to 6.00m and 13.50m to 14.50m, and by open-hole / driving casing from 6.00m to 13.50m (through the dense coarse grained soils) then to 15.00m. Borehole then advanced from 15.00m to 21.00m using rotary coring techniques with a mist flush.
- 3. Groundwater entry encountered at 7.00m (sealed off with casing) remaining level after 20 minutes.
- 4. Groundwater entry encountered at 16.00m (not sealed) remaining level after 20 minutes.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client	: ain Galliford	Try				Boring diameter: 120 mm to 13.00m	Casing diameter:	Project No G170	
Logge	ed by: IG	Ground	Level: 3	34.40 mAOE)	Date: 17/05/2017-13/06/2017	Location: 447040E - 332872N	Scale:	1:50
S	Samples & In sit		Water	Level	Depth	Strata	Legend	Backfill	
Ref: D1	0.30-0.40	SPT N		34.25 34.00	0.15 0.40		oft brown sandy gravelly SILT el is sub-angular to	/ /	
S D3	1.20 1.20-1.65	N=22		33.30	1.10	MADE GROUND - Brown gra Gravel is angular to sub-roun and limestone.		F	
B4 S	1.20-2.00	N=25				MADE GROUND - Firm reddi CLAY. Gravel is sub-angular t coarse limestone and quartz	to sub-rounded fine to		
D5 D6	2.00-2.45 2.00-3.00	MADE GROUND - Soft locally firm reddish brown mottle grey slightly sandy slightly gravelly CLAY. Gravel is sub-angular to sub-rounded fine to coarse mudstone, quartz and sandstone.					ravelly CLAY. Gravel is fine to coarse mudstone,		
S D7 B8	3.00 3.00-3.45 3.00-4.00	N=14				becoming firm below 1.	50m.		
S D10 D9 D11	4.00 4.00-4.30 4.00-4.45 4.30-5.00	N=22		30.40 30.10	4.00 4.30	Medium dense yellowish bro coarse SAND. Gravel is sub-a coarse quartz, flint and mud	angular to rounded fine to	/—————————————————————————————————————	
S D12	5.00 5.00-5.45	50/195mm		29.40	5.00	Firm dark brown mottled or frequent black organic mate	rial.		
D13	5.00-9.00					Very dense yellowish brown sub-angular to rounded fine mudstone, flint, sandstone (to coarse quartz, GRAVEL. (Description based		
С	6.00	N=48				on returned arisings from op becoming dense between			
С	7.50	50/285mm							
C 9.00 N=46									
C 9.00 N=46						(continued next sheet)		Sheet	1 of 2

- 1. Hand dug starter pit to 1.20m to check for services.
- ${\bf 2.}\ \ No\ groundwater\ see pages\ were\ encountered\ during\ boring\ operations.$
- 3. Borehole advanced using Commachio 205 combination rig AR01 (G. L to 10.50m) and GC01 (10.50m to 13.00m), using dynamic sampling techniques from 1.20m to 5.00m, then by open hole / driving casing to the borehole base, with a mist flush.
- 4. Borehole backfilled with sodium bentonite pellets to ground level upon completion.

(Window Sampler plus Rotary Core)

Sheet 2 of 2

Site

M1 J23a to J25 Ground Investigation

							· ·		
Client Costain Galliford Try						Boring diameter: 120 mm to 13.00m	Casing diameter: 120 mm to 3.00m	Project N G17	
Logg	ed by: ıG	Ground	Level: 3	34.40 mAOE)	Date: 17/05/2017-13/06/2017	Location: 447040E - 332872N	Scale:	1:50
	Samples & In sit Depth (m)	u Tests SPT N	Water	Level	Depth	Strata	Description	Legend	Backfill
Ref: D14	D14 9.00-10.50 C 10.50 N=48			(mAOD)	(m)	Remaining Detail : 9.00m - 9 dense below 9.00m.	•		
			Dense light brown fine to me based on returned arisings f						
C	13.00	50/135mm		21.40	13.00	End of Borehole at 13.00 m			

- 1. Hand dug starter pit to 1.20m to check for services.
- 2. No groundwater seepages were encountered during boring operations.
- 3. Borehole advanced using Commachio 205 combination rig AR01 (G. L to 10.50m) and GC01 (10.50m to 13.00m), using dynamic sampling techniques from 1.20m to 5.00m, then by open hole / driving casing to the borehole base, with a mist flush.
- 4. Borehole backfilled with sodium bentonite pellets to ground level upon completion.

(Window Sampler plus Rotary Core)

C	ROUP		00			Site M1 J23a to J25 Ground Inve	stigation		
Client Costa	: ain Galliford	l Try				Boring diameter: 120 mm to 16.00m 110 mm to 19.00m	Casing diameter: 120 mm to 16.00m	Project No	
Logg	ed by: JP	Ground	Level:			Date: 26/09/2017-28/09/2017	Location: 447173E - 333163N	Scale:	1:50
Ref:	Samples & In site	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata [Description	Legend	Backfill
	1 ()			, ,	0.20	MADE GROUND - Bituminous	s road construction.		
D1	0.50-0.80				0.50	MADE GROUND - Concrete ro	oad construction.		
E2 D3	0.80-0.90 0.90-1.20	140 kPa			0.80	MADE GROUND - Light grey fl angular fine to coarse siltstor			
D4 S D5	1.20-1.50 1.50 1.50-2.00	N=17			1.50	MADE GROUND - Very stiff re occasional light grey slightly is angular to sub-rounded fin mudstone and quartz.	gravelly CLAY . Gravel	/	
D6 S	2.00-2.50	N=50			2.70	MADE GROUND - Very stiff re light grey slightly gravelly silt angular fine to coarse siltstor	y CLAY. Gravel is		
						Very dense brown gravelly fir is sub-angular to sub-rounde mudstone and sandstone. (D returned arising from open h gravels too dense to dynamic	d fine to coarse quartz, rescription derived from nole drilling, as sands /		
S	4.50	N=20				becoming medium dense	e between 4.50m and 6.00m.		
S	6.00	50/245mm	\searrow						
С	7.50	N=41			7.50	Stiff locally firm friable reddis		××	
D7	8.00-8.50					occasional light grey silty CLA	AY.	XX	
С	8.00-8.50 8.50 N=18								

Remarks and Water Observations

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques through overburden then by open-hole / driving casing from 2.70m to 7.50m, through the dense coarse grained soils, then rotary coring to base.

(continued next sheet)

Sheet 1 of 3

- 3. Hand Shear Vane (HSV) test undertaken at 0.90m (in sample tube) gave apparent undrained shear strength of greater than 140 kPa, using the pilcon unit (HSV1A) and the 19mm vane. Attempted HSV tests at 1.40m and 2.50m, soils too stiff / friable.
- 4. Groundwater entry encountered at 6.00m during drilling, however minor flows may have been masked by mist flush.

9.00

- 5. Borehole backfilled with sodium bentonite (pellets) to 1.20m below surface then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	11.001					1011 1238 to 123 diodila liive	estigation		
Client Costain Galliford Try						Boring diameter: 120 mm to 16.00m 110 mm to 19.00m	Casing diameter: 120 mm to 16.00m	Project No	
Logg	ed by: JP	Ground	Level:			Date: 26/09/2017-28/09/2017	Location: 447173E - 333163N	Scale:	1:50
Ref:	Samples & In sit	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
С	9.50	50/120mm		(111105)	10.00	Stiff friable light grey silty Cl	AY.	×××	
CR	0				10.00	Extremely weak light grey sandy SILTSTONE. (Recovered as sandy Silt, sample scrubbed away, description based on limited recovery and arisings).			
D10							X X X X X X X X X X X X X X X X X X X		
CR	11.50-13.00	23 0 0						X X X X X X X X X X X X X X X X X X X	
C D11	13.00 13.00-14.50	50/95 mm			13.00		ONE with some thin bands of	******	
CR	13.00-14.50	5 0 0				siltstone. (Poor recovery, de limited recovery and arising:			
CR	14.50-16.00	17 0 0							
С	16.00	50/30 mm							
CR	16.00-17.50	40 2 0							
		TCR FI				(continued next sheet)		Sheet	2 of 3

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques through overburden then by open-hole / driving casing from 2.70m to 7.50m, through the dense coarse grained soils, then rotary coring to base.
- 3. Hand Shear Vane (HSV) test undertaken at 0.90m (in sample tube) gave apparent undrained shear strength of greater than 140 kPa, using the pilcon unit (HSV1A) and the 19mm vane. Attempted HSV tests at 1.40m and 2.50m, soils too stiff / friable.
- 4. Groundwater entry encountered at 6.00m during drilling, however minor flows may have been masked by mist flush.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.20m below surface then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

								J		
Client Costain Galliford Try							Boring diameter: 120 mm to 16.00m	Casing diameter: 120 mm to 16.00m	Project N	o.: '057
			ام مددد ما	Lavali			110 mm to 19.00m	Lacation, 4474705 0004500		
Logg	ed by: JP	ļ	ouna	Level:			Date: 26/09/2017-28/09/2017	Location: 447173E - 333163N	Scale:	1:50
Ref:	Core Data Depth (m)	TCR SCR RQD	FI	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
CR C	17.50-19.00	41 6 0				19.00	Very weak, locally weak fiss occasional light grey MUDS siltstone. (Poor recovery, de limited recovery and arising	FONE with some thin bands of escription based on		
	1	TCR	FI	1	1	1			1	

Remarks and Water Observations

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques through overburden then by open-hole / driving casing from 2.70m to 7.50m, through the dense coarse grained soils, then rotary coring to base.

Sheet 3 of 3

- 3. Hand Shear Vane (HSV) test undertaken at 0.90m (in sample tube) gave apparent undrained shear strength of greater than 140 kPa, using the pilcon unit (HSV1A) and the 19mm vane. Attempted HSV tests at 1.40m and 2.50m, soils too stiff / friable.
- 4. Groundwater entry encountered at 6.00m during drilling, however minor flows may have been masked by mist flush.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.20m below surface then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

(GROUP				-	M1 J23a to J25 Ground Inve	stigation		
Client Costa	: ain Galliford	Try				Boring diameter: 120 mm to 12.00m 100 mm to 30.00m	Casing diameter: 120 mm to 12.00m	Project No.	
Logg	ed by: IG	Ground	Level:	32.92 mAO[)	Date: 12/10/2017-17/10/2017	Location: 447231E - 333353N	Scale:	1:50
Ref:	Samples & In situ	Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata D	Description	Legend	Backfill
Nei.	Deptii (iii)	SFIN				MADE GROUND - Macadam.			19,5152
				32.77	0.15				
D2	0.60-1.00			32.42 32.32	0.50 0.60	MADE GROUND - Concrete.		<u> </u>	
E1 S	0.70 1.00	N=14		32.32	0.60	MADE GROUND - Black sandy fine to coarse limestone GRA			
D3 D4	1.00-1.45		•	31.42	1.50	MADE GROUND - Soft reddisl slightly gravelly sandy SILT. G sub-rounded fine to coarse m siltstone.	ravel is angular to		
S D5 D6 D7 S	2.00 2.00-2.45 2.00-2.40 2.40-2.50 2.50 2.50-2.95	N=34 N=43		30.52	2.40	MADE GROUND - Firm reddis silty CLAY. Gravel is sub-angu to coarse mudstone, siltstone becoming stiff below 2.00	lar to sub-rounded fine e and sandstone.		
S D9 D10	3.00 3.00-3.45 3.00-4.00	N=9		29.92	3.00	MADE GROUND - Dense oran to coarse SAND. Gravel is ang coarse quartz, sandstone, lim limestone cobble encount bouncing on the cobble).	gular to rounded fine to sestone and mudstone.		
S D11	4.00 4.00-4.45	N=14				Soft grey CLAY with occasiona	al organic matter.		
S D12 D13	4.50 4.50-4.95 4.50-5.50	N=18		28.42	4.50	Medium dense greyish brown coarse SAND. Gravel is sub-ar coarse flint, quartz and muds on returned arisings from ope	ngular to rounded fine to tone. (Description based		
S D14	6.00 6.00-6.45	N=21							
S D15 B16	7.50 7.50-7.95 7.50-8.50	N=8		25.42	7.50	Firm locally soft grey CLAY.			
	316 7.50-8.50					1			*////X///

Remarks and Water Observations

8.50

8.50-8.95 9.00

S

D17

1. Advanced through road construction using coring attachment (90 minutes).

24.92

23.92

8.00

9.00

2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 4.00m, 4.50m to 5.50m and 7.50m to 8.50m, then by open-hole / driving casing from 4.50m to 7.50m and 8.50m to 12.00m (through the dense coarse grained soils). Borehole then advanced from 12.00m to 30.00m using rotary coring techniques with a mist flush.

(continued next sheet)

sandstone lithorelicts.

Firm grey sandy SILT with frequent gravel sized

Sheet 1 of 4

- 3. Groundwater entry encountered at 2.00m (sealed off with casing) remaining level after 20 minutes.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

N=33

50/225mm

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						WIT 123a to 123 Ground lives	stigation		
Client Costain Galliford Try							Boring diameter: 120 mm to 12.00m 100 mm to 30.00m	Casing diameter: 120 mm to 12.00m	Project No	
Logg	ed by: IG	Gro	ound	Level:	32.92 mAOE)	Date: 12/10/2017-17/10/2017	Location: 447231E - 333353N	Scale:	1:50
Ref:	Samples & In sit	u Tests	N	Water	Level (mAOD)	Depth (m)	Strata Do	escription	Legend	Backfill
D18	9.00-9.45	50/270			22.42	10.50	Very dense whiteish grey silty (Description based on returne drilling).	fine to medium SAND.		
D19	10.50-10.95						Stiff friable reddish brown loc sandy SILT with occasional silt (Description based on returne drilling).	stone bands.		
S D20 D21	12.00 12.00-12.45 12.00-13.50	50/225	ōmm		20.92	12.00	Weak reddish brown MUDSTO	DNE. (Grade III).	× × × × ×	
CR	12.00-13.50	13 0 0								
					19.42 19.02	13.50 13.90	Reddish brown silty fine to co gravel sized mudstone lithore		x	
CR	13.50-15.00	47 0 0					Very weak reddish brown MU are horizontal to vertical, very planar smooth to stepped sm	closely spaced,		
С	15.00	50/35	mm		17.92 17.52	15.00 15.40	Very stiff friable reddish brow CLAY with occasional mudston lithorelicts (Grade III).		× × ×	
CR	15.00-16.50	47 9 9					Weak reddish brown MUDSTO horizontal to sub-vertical clos smooth and clean with local clocally Grade II).	ely spaced, planar		
CR	16.50-18.00	53 3 0	27		15.72 15.47	17.20 17.45	fragments (Grade III to II).	ONE recovered as gravel sized		
С	18.00	50/10!	mm		15.12	17.80	Weak reddish brown locally g	rey MUDSTONE. Bedding		
1	1	TCR	FI	1	l	I	(continued nout cheet)		CI .	~ . . .

Remarks and Water Observations

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 4.00m, 4.50m to 5.50m and 7.50m to 8.50m, then by open-hole / driving casing from 4.50m to 7.50m and 8.50m to 12.00m (through the dense coarse grained soils). Borehole then advanced from 12.00m to 30.00m using rotary coring techniques with a mist flush.

(continued next sheet)

Sheet 2 of 4

- 3. Groundwater entry encountered at 2.00m (sealed off with casing) remaining level after 20 minutes.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client										
Client							Boring diameter:	Casing diameter:	Project No	o.:
	ain Galliford	l Try					120 mm to 12.00m 100 mm to 30.00m	120 mm to 12.00m	G17	057
Logg	ed by: IG	Gr	ound	Level:	32.92 mAOE)	Date: 12/10/2017-17/10/2017	Location: 447231E - 333353N	Scale:	1:50
	Core Data			Water	Level	Depth	Stuata D		Legend	Backfill
Ref:	Depth (m)	TCR SCR RQD	FI		(mAOD)	(m)	Strata D	escription		
CR	18.00-19.50	50 43 17	_1_		14.17	18.75	17.45m - 17.80m : fractures a sub-horizontal locally vertica planar rough to planar smoo smooth, clean. (Grade I to Gr	l, very closely spaced, th, locally stepped		
		53	4		13.62	19.30	17.80m - 18.75m : Weak redo (recovered as slightly sandy S gravel sized mudstone lithore III).	SILT with occasional		
CR	19.50-21.00	9 12.02 20.30		Weak reddish brown MUDST sandy CLAY with occasional g lithorelicts) (Grade I locally III	ravel sized mudstone	<u> </u>				
С	21.00	50/65			11.52	21.40	Weak reddish brown locally g fractures are horizontal to su spaced, planar smooth to pla (Grade I to Grade II).	b-vertical, closely	××××	
CR	21.00-22.50	17 8	7		11.07	21.85	Stiff friable reddish brown loc sandy silty CLAY with frequen lithorelicts. (Grade III).		****	
CR	22.50-24.00	100 70	4		10.52	22.40	Weak reddish brown MUDST veins. Bedding fractures are h spaced, planar smooth to und with local clay infill.	norizontal, closely		
		66		•	9.27	23.65	Firm locally stiff reddish brow with frequent gravel sized mu bands (Grade III)			
C CR	24.00	100 60	ə[1][T]		8.92 8.52	24.40	Weak reddish brown locally g fractures are horizontal to ve planar smooth to planar roug clean.	rtical closely spaced,	×××××× ×××××× ××××××	
		51	5				Weak reddish brown locally g gypsum veins. Bedding fractu closely spaced, planar smootl gypsum infill. (Grade I locally	h to planar rough with		
CR	25.50-27.00	100 69 60	78		6.72 6.57	26.20 26.35	Weak reddish brown locally vinumerous gypsum veins. No	fractures present. (Grade	*****	
С	27.00	 50/25	5mm				Weak grey weathered SILTST silty sand.	ONE locally recovered as a		
TOR FI							(continued next sheet)		Shoct	2 of 4
	<u> </u>	SCR RQD	FS		<u> </u>		(continued next sheet)		Sheet	5 UI 4

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 4.00m, 4.50m to 5.50m and 7.50m to 8.50m, then by open-hole / driving casing from 4.50m to 7.50m and 8.50m to 12.00m (through the dense coarse grained soils). Borehole then advanced from 12.00m to 30.00m using rotary coring techniques with a mist flush.
- 3. Groundwater entry encountered at 2.00m (sealed off with casing) remaining level after 20 minutes.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Clent Costain Galinford Try Logged by: Is Ground Level: 32 92 moo: 100 mm to 30,00m 100 mm									56.84.6.1		
Care Data Water Level (ni) Depth (ni) Strata Description Legend Backfill			d Try					120 mm to 12.00m	_	-	
Ref. Depth (m)	Logg	ed by: ıG	Gı	round	Level: 3	32.92 mAO[)	Date: 12/10/2017-17/10/2017	Location: 447231E - 333353N	Scale:	1:50
27.00-28.50 Recovered as gravel sized fragments. Bedding fractures are horizontal to sub-horizontal, streeting by spaced, planar smooth to planar rough, clean. (Grade I locally II). 26.20m - 26.35m : Weak thinly laminated greenish grey SILTSTONE. 28.50-30.00 30.00	Ref:	1		EI	Water			Strata D	Description	Legend	Backfill
CR 28.50-30.00 77 10 53 10 2.92 30.00 2.92 3	CR	27.00-28.50	97 64 37	28				MUDSTONE with frequent gy recovered as gravel sized fra fractures are horizontal, close smooth to planar rough, clea 26.20m - 26.35m: Weak thin	ypsum veins and locally gments. Bedding ely spaced, planar n. (Grade I locally II).		
Suyadma 2.92 30.00 I locally ii). Detail 29.00m - 2.50m : fractures becoming closely spaced below 29.00m. fractures becoming closely spaced below 29.00m. End of Borehole at 30.00 m	CR	28.50-30.00	77	10				MUDSTONE with frequent gy are horizontal to sub-horizon	psum veins. Bedding fractures ital, extremely closely		
Sheet 4 of 4	C	30.00	50/3	Umm		2.92	30.00	I locally II). Detail 29.00m - 2.50m : fr closely spaced below 29.00m fractures becoming closel	ractures becoming		
			SER ROD	艮						Sheet	4 of 4

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 4.00m, 4.50m to 5.50m and 7.50m to 8.50m, then by open-hole / driving casing from 4.50m to 7.50m and 8.50m to 12.00m (through the dense coarse grained soils). Borehole then advanced from 12.00m to 30.00m using rotary coring techniques with a mist flush.
- 3. Groundwater entry encountered at 2.00m (sealed off with casing) remaining level after 20 minutes.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	ROUP				-	M1 J23a to J25 Ground Inve	stigation		
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 9.00m 110 mm to 16.50m	Casing diameter: 120 mm to 9.00m	Project N G17	o.: '057
Logge	ed by: JP	Ground	Level: 3	31.60 mAOI)	Date: 03/10/2017-04/10/2017	Location: 447286E - 333477N	Scale:	1:50
	Samples & In sit	1	Water	Level	Depth	Strata [Description	Legend	Backfil
tef:	Depth (m)	SPT N		(mAOD)	(m)	MADE GROUND - Bituminous			8
				31.40	0.20	MADE GROUND - Concrete re			
E1 S	0.60	N=9		31.10	0.95	MADE GROUND - Light grey for angular fine to coarse siltston			
E2 D3 B4	1.00 1.00-1.45 1.40-2.00 2.00 2.00-2.45	N=22				MADE GROUND - Firm reddis slightly gravelly silty CLAY. Graub-rounded fine to coarse s mudstone and quartz slight hydrocarbon odou ground level, (environmental	ravel is sub-angular to andstone, siltstone, r noted at 1.00m below		
D6	2.50-3.00					ground rever, (environmental	isample takenj.		
S D7	3.00 3.00-3.45	50/230mm		28.60	3.00	MADE GROUND - Very dense fine to coarse SAND. Gravel i			
D8	3.50-4.00			28.10	3.50	sub-rounded fine to coarse q sandstone.			
				27.60	4.00	MADE GROUND - Dark grey s fine to coarse quartz, mudsto	sandy angular to sub-rounded one and granite GRAVEL.		
S D9 D10	4.50 4.50-4.95 4.50-5.50	N=2				POSSIBLE MADE GROUND - L SAND.	oose grey silty fine to coarse.		
S D11	5.50 5.50-5.95	N=7							
B12	6.00-8.00			25.60	6.00	(Dense) orangish brown silty sub-angular to rounded fine and flint GRAVEL. (Density as excavation (slow)).	to coarse quartz, mudstone ssessed from ease of		
D13	9.00-9.45			22.60	9.00	unable to undertake SPT gravel 'blowing' up into casin			
		† †	1	1	İ			×	

Remarks and Water Observations

- 1. Advanced through road construction using road coring techniques.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques through overburden then by open-hole / driving casing from 3.00m to 9.00m, through the dense coarse grained soils, then rotary coring techniques to base.

(continued next sheet)

Sheet 1 of 2

- 3. Unable to undertake SPT at 7.50m as sand and gravel 'blowing' up into casing.
- 4. No groundwater entries were observed during drilling, however use of water flush may have masked minor inflows.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.20m below surface then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

C	ROUP					M1 J23a to J25 Ground Investigation				
Client Costa	t ain Galliford	l Try					Boring diameter: 120 mm to 9.00m 110 mm to 16.50m	Casing diameter: 120 mm to 9.00m	Project No.	
Logg	ed by: JP	Gr	ound	Level: 3	31.60 mAOD)	Date: 03/10/2017-04/10/2017	Location: 447286E - 333477N	Scale:	1:50
	Core Data	a TCR		Water	Level	Depth	Ctroto	Description	Legend	Backfill
Ref: D14	Depth (m) 9.00-10.50	i lili b	FI		(mAOD)	(m)		Description		X//XV//XV
D14	9.00-10.50						Stiff reddish brown friable si	Ity CLAY.		
CR	9.00-10.50	27 15 8			22.10	9.50	Very weak, locally weak thin reddish brown and occasion some bands of stiff reddish locally Grade III).	al light grey MUDSTONE with		
CR	10.50-12.00	40 11 7								
S	12.00	30/30	mm							
D15 D16	12.00-12.45 12.00-13.50								2	
D10	12.00-13.30	22								
CR	12.00-13.50	33 0 0								
CR	13.50-15.00	50 20 13								
		15								
С	15.00	50/85	mm							
CR	15.00-16.50	57 11 11								
С	16.50	50/22	0mm		15.10	16.50	End of Borehole at 16.50 m			

Remarks and Water Observations

- 1. Advanced through road construction using road coring techniques.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques through overburden then by open-hole / driving casing from 3.00m to 9.00m, through the dense coarse grained soils, then rotary coring techniques to base.

Sheet 2 of 2

- 3. Unable to undertake SPT at 7.50m as sand and gravel 'blowing' up into casing.
- 4. No groundwater entries were observed during drilling, however use of water flush may have masked minor inflows.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.20m below surface then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try						Boring diameter: 120 mm to 21.00m	Casing diameter: 120 mm to 4.50m	Project No	
Logge	ed by: IG	Ground	Level: 3	31.52 mAO[)	Date: 18/10/2017-20/10/2017	Location: 447272E - 333854N	Scale:	1:50
Ref:	amples & In site	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata D	Description	Legend	Backfill
				31.37	0.15	MADE GROUND - Bituminou	s road construction.		
				31.02	0.50	MADE GROUND - Concrete ro	oad construction.		
				30.82	0.70	MADE GROUND - Dark grey			
B2	0.90-1.50			30.62	0.90	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		/***********	
E1 C	1.00 1.20	N=21				\GRAVEL.			
						MADE GROUND - Dark grey l	imestone COBBLE.		
						Medium dense orangish-brov and sub-angular to sub-round mudstone sandstone and flin	ded fine to coarse quartz,		
S	3.00	N-28							
D3				3.10	Firm locally stiff reddish brow	vn slightly sandy CLAY.			
D4	3.10-3.75					,			
D5	3.75-4.00			27.77	3.75				
S	4.00	50/175mm				Firm grey slightly sandy silty gravel sized mudstone lithore		$\xrightarrow{\times}$	
D6	4.00-4.45			27.22	4.30			X-J-x	
D7	4.50-6.00			27.02	4.50	Extremely weak thinly lamina Bedding fractures are sub-ho		×××××	
						spaced, undulating smooth.	/ / /	\(\frac{1}{2}\times\fra	
						Stiff locally very stiff friable g frequent bands of extremely Mudstone.		X X X X X X X X X X X X X X X X X X X	
S D8	6.00 6.00-6.45	N=44						*****	
								(\$\f\)	
D9	6.60-7.50							$(\times \times $	
				24.52	7.00	Criff fair-late and the late	to CLAV with fire	*****	
						Stiff friable reddish brown sill bands of extremely weak thin		<u>x</u> <u>x</u>	
D10	7.50-9.00					siltstone.	,		
								×	
								XX	
								XX	
								××	
								XX	
С	9.00	- 50/75 mm	-	22.52	9.00		<u> </u>		
						(continued next sheet)		Sheet	1 of 2

- 1. Advanced through road construction by coring.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 1.00m, then by open-hole / driving casing to 4.50m (through the dense coarse grained soils), borehole then advanced from 4.50m to 18.00m using rotary coring techniques with a mist flush.
- 3. No groundwater recorded during drilling; however, minor flows may have been masked by drilling flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try							Boring diameter: 120 mm to 21.00m	Casing diameter: 120 mm to 4.50m	Project No	
Logg	ed by: IG	Gr	ound	Level: 3	1.52 mAOD)	Date: 18/10/2017-20/10/2017	Location: 447272E - 333854N	Scale:	1:50
	Core Data			Water	Level	Depth	Church Description		Legend	Backfill
Ref:	Depth (m)	TCR RGB	FI		(mAOD)	(m)	Strata I	Description		V///W///W
D11 CR	9.00-10.50 9.00-10.50	23 1 0					Extremely weak thinly lamir MUDSTONE. Bedding fractur sub-horizontal, closely space undulating rough, clean. (Gra	res are horizontal to ed, planar smooth to		
D12	10.50-12.00		=		21.02	10.50	Very stiff reddish brown slig frequent mudstone bands (li		××××> ××××	
CR	10.50-12.00	0 0 0							(* * * * * * * * * * * * * * * * * * *	
С	12.00	50/60	mm		19.52	12.00	Weak fissile thinly laminated		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
CR	12.00-13.50	0 0 0					with some thin (2mm) bands fractures are horizontal to su spaced, planar smooth to un (Grade I-II).	ub-horizontal, closely		
CR	13.50-15.00	93 63 50	-				band 50mm of gypsum r			
С	15.00	50/3	mm							
CR	15.00-16.50	73 30								
		0					band 50mm of gypsum r	ecorded at 15.80m.		
			-				band 50mm of gypsum r	ecorded at 16.40m.		
CR	16.50-18.00	47 7 7								
С	18.00	50/25	smm		13.52	18.00	5.4.6 Develot 1.40.00			
-							End of Borehole at 18.00 m		6.	0.15
BB FS				1				Sheet	2 of 2	

- 1. Advanced through road construction by coring.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 1.00m, then by open-hole / driving casing to 4.50m (through the dense coarse grained soils), borehole then advanced from 4.50m to 18.00m using rotary coring techniques with a mist flush.
- 3. No groundwater recorded during drilling; however, minor flows may have been masked by drilling flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	in O O i					WIT 123a to 123 Ground lives	Stigation		
Client Costa	in Galliford	l Try				Boring diameter: 120 mm to 9.00m 100 mm to 30.00m	Casing diameter: 120 mm to 9.00m	Project N G17	o.: '057
Logge	ed by: IG	Ground	Level: 3	37.86 mAOI)	Date: 23/10/2017-27/10/2017	Location: 447221E - 334141N	Scale:	1:50
S Ref:	amples & In sit	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata D	escription	Legend	Backfi
iter.	Deptii (iii)	31114		37.66	0.20	MADE GROUND - Macadam.	·		
				37.36	0.50	MADE GROUND - Concrete.			
E1 D2 S D3	0.80 0.80-1.20 1.00 1.00-1.45	N=17		37.16	0.70	MADE GROUND - Dark grey solutions sub-angular to sub-rounded for GRAVEL (sub-base).			
B4 S D5	2.00 2.00-2.45	N=17		25.74	2.15	MADE GROUND - Firm locally slightly gravelly silty CLAY. Gr sub-rounded fine to coarse si sandstone and quartz.	avel is sub-angular to		
D6 D7 D8	2.00-2.45 2.45-2.85 2.85-3.00			35.71 35.61 35.41 35.01	2.25 2.45 2.85	MADE GROUND - Firm dark y slightly gravelly SILT. Gravel is rounded fine to medium sand and quartz.			-
S D9 D10	3.00 3.00-3.45 3.00-4.00	N=17		34.86	3.00	MADE GROUND - Firm reddis silty CLAY. Gravel is sub-angu to medium mudstone, siltstor	lar to sub-rounded fine		
S D11 B12	4.00 4.00-4.45 4.50-6.00	50/260mm	•			MADE GROUND - Firm dark y gravelly sandy CLAY with rare slag. Gravel is sub-angular to quartz, mudstone and gypsur	gravel size fragments of rounded fine to medium	* * * * * * * * * * * * * * * * * * *	
				32.86	5.00	Firm yellowish brown slightly Gravel is sub-angular to roun- quartz and sandstone.		× × × ×	
S D13	6.00 6.00-6.20	N=28				Medium dense orangeish bro coarse SAND. Gravel is sub-ar coarse flint, quartz and sands becoming very dense bel	ngular to rounded fine to tone.		
D14	6.20-6.50			31.66	6.20	Medium dense orangeish bro sub-angular to rounded fine t sandstone and mudstone GRA	o coarse quartz, flint,	XX XX XX	
				30.86	7.00	Firm locally stiff grey slightly soccasional mudstone bands.	sandy silty CLAY with	X -	
S D15 D16	7.50 7.50-7.95 7.50-8.50	N=24				Firm locally stiff reddish brow CLAY.	n mottled grey silty	×	
S	8.50	N=23				occasional sand lenses be	elow 8.00m.		
D17	8.50-8.95							<u>x</u> _ <u>x</u> _ <u>x</u>	

Remarks and Water Observations

- 1. Advanced through road construction by coring.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 10.00m. Borehole then advanced to 30.00m using rotary coring techniques with a mist flush.

(continued next sheet)

Sheet 1 of 4

- 3. Groundwater was recorded at 4.20m during drilling.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client							Daving diameters		<u> </u>		
Client							Boring diameter: Casing diameter:		Project No.:		
Costa	in Galliford	l Try					120 mm to 9.00m 100 mm to 30.00m	120 mm to 9.00m	G170	057	
	ed by: IG		ound		37.86 mAOE	1	Date: 23/10/2017-27/10/2017	Location: 447221E - 334141N	Scale:	1:50	
Ref:	Depth (m)	u Tests SPT	· N	Water	Level (mAOD)	Depth (m)	Strata Description		Legend	Backfill	
D18	9.00-10.00				28.66	9.20	Firm locally stiff reddish brow CLAY.	wn mottled grey silty	× -× - ×		
S D19	9.70 9.70-10.15	N=4	45				Stiff reddish brown silty CLA' size mudstone lithorelics.	Y with frequent gravel	×x ×x ×x		
CR	10.00-11.50	30 3 0							x _ x _ x		
CD	11 50 12 00	53			26.51 25.66	11.35	Extremely weak thinly laming MUDSTONE. Bedding fractur closely spaced rough planar and clay coated (Grade I local recovered as firm silty cl	es are horizontal very and rough stepped clean ally Grade III).			
CR	11.50-13.00	0			25.00	12.20	gravel size lithorelics from 12	1.40m to 11.55m.	×xx		
С	13.00	50/260	θmm		25.11	12.75	Stiff friable reddish brown sil mudstone bands.	Ity CLAY with frequent			
CR	13.00-14.50	60 23 13					Extremely weak thinly laming MUDSTONE. Bedding fractur closely spaced rough planar and clay coated (Grade I).	es are horizontal very			
			-		23.81 23.61	14.05 14.25	Extremely weak thinly lamina Bedding fractures are horizo planar clay coated (Grade I).				
CR	14.50-16.00	30 1 0					Extremely weak thinly laming MUDSTONE. Bedding fractur vertical very closely spaced splanar and smooth stepped (I locally Grade II) recovered as sandy clayer.	res are horizontal and smooth planar to rough clean and clay coated (Grade			
С	16.00	- 50/13!	5mm					mudstone gravel from 14.80m			
CR	16.00-17.50	27 8 0						mudstone gravel from 15.60m			
							recovered as angular to coarse mudstone gravel fron				
			FI FS				(continued next sheet)		Sheet	2 of 4	

- 1. Advanced through road construction by coring.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 10.00m. Borehole then advanced to 30.00m using rotary coring techniques with a mist flush.
- 3. Groundwater was recorded at 4.20m during drilling.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try							Boring diameter: 120 mm to 9.00m 100 mm to 30.00m	Casing diameter: 120 mm to 9.00m	Project No	
Logg	ed by: IG	Gr	ound	Level: 3	37.86 mAOD)	Date: 23/10/2017-27/10/2017	Location: 447221E - 334141N	Scale:	1:50
Ref:	Core Data	TCR SCR RQD	FI	Water	Level (mAOD)	Depth	Strata D	Strata Description		
CR S	Depth (m) 17.50-19.00 19.00	47 3 0			19.21	(m) 18.65	Extremely weak thinly lamina MUDSTONE. Bedding fracture vertical very closely spaced so planar and smooth stepped collocally Grade II).	ited fissile reddish brown es are horizontal and mooth planar to rough	 XXX XX	
CR	19.00-20.50	60 23 21			18.26	19.60	Stiff friable reddish brown silt mudstone bands and gravel s Weak locally extremely weak reddish brown locally grey M gypyum mineralisation. Bedd horizontal, sub-vertical and w	ize mudstone lithorelics. thinly laminated fissile UDSTONE with occasional ing fractures are	× × ×	
CR	20.50-22.00	67 12 12					closely spaced smooth planar undulating clean and gypsum Grade II).	to rough planar and rough		
С	22.00	- 50/2!	5mm							
CR	22.00-23.50	93 53 36			15.21 14.46	22.65	Weak thinly laminated thinly and grey MUDSTONE with oc mineralisation. Bedding fracti vertical closely spaced smoot and clean (Grade I).	casional gypsum ures are horizontal and		
CR	23.50-25.00	100 67 53					Weak thinly laminated reddis frequent gypsum mineralisati horizontal, sub-horizontal and smooth planar to rough plana and gypsum filled (Grade I).	ion. Bedding fractures are d vertical closely spaced		
С	25.00	- 50/2() mm							
CR	25.00-26.50	93 57 42								
CR	26.50-28.00	90 60 33	FS				(continued next sheet)		Sheet	3 of 4

- 1. Advanced through road construction by coring.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 10.00m. Borehole then advanced to 30.00m using rotary coring techniques with a mist flush.
- 3. Groundwater was recorded at 4.20m during drilling.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	Client Costain Galliford Try						Boring diameter: 120 mm to 9.00m 100 mm to 30.00m	Casing diameter: 120 mm to 9.00m	Project No G17	
Logg	ed by: ıG	Gr	ound	Level: 3	37.86 mAO[)	Date: 23/10/2017-27/10/2017	Location: 447221E - 334141N	Scale:	1:50
	Core Dat			Water	Level	Depth	Chroto F	No contention	Legend	Backfill
Ref:	Depth (m)	TCR RGB	FI		(mAOD)	(m)		Description		X//XV//XX
C CR	28.00 28.00-28.50	30/2 100 40 22	-mm				Weak thinly laminated reddis frequent gypsum mineralisat horizontal, sub-horizontal and smooth planar to rough plana and gypsum filled (Grade I).	ion. Bedding fractures are d vertical closely spaced		
CR	28.50-30.00	80 29 17					recovered as angular to s coarse mudstone gravel from			
С	30.00	50/1	5mm		7.86	30.00	End of Borehole at 30.00 m			*******
		SER ROD	艮			_			Sheet	4 of 4
						•				

- 1. Advanced through road construction by coring.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 10.00m. Borehole then advanced to 30.00m using rotary coring techniques with a mist flush.
- 3. Groundwater was recorded at 4.20m during drilling.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	Client Costain Galliford Try						Boring diameter: 120 mm to 13.50m 110 mm to 18.00m	Casing diameter: 120 mm to 13.50m	Project No G17	
Name	Logg	ed by: JP	Ground	Level: 4	12.35 mAOE)	Date: 26/09/2017	Location: 447215E - 334330N	Scale:	1:50
MADE GROUND - Concrete road construction. MADE GROUND - Light grey fine to coarse SAND and angular fine to coarse siltstone GRAVEL. (Roadstone). MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAY. Gravel is angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAY. Gravel is angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAY. Gravel is angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAY. Gravel is angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAY. Gravel is angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAY. Gravel is angular fine to coarse salts one angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAY. Gravel is angular fine to coarse salts one angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAY. Gravel is angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coarse salts one angular fine to coa				Water			Strata	Description	Legend	Backfill
MADE GROUND - Concrete road construction. MADE GROUND - Concrete road construction. MADE GROUND - Light grey fine to coarse SAND and angular fine to coarse siltstone GRAVEL. (Roadstone). MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAV. Gravel is angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAV. Gravel is angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAV. Gravel is angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly silty CLAV. Gravel is angular fine to coarse siltstone and mudstone. MADE GROUND - Very stiff reddish brown and occasional light grey slightly gravelly slightly gravely slightly gravelly slightly gravely slig					42 10	0.25	MADE GROUND - Bituminou	us road construction.		
MADE GROUND - Light grey fine to coarse SAND and angular fine to coarse siltstone GRAVEL. (Roadstone). MADE GROUND - Light grey fine to coarse siltstone GRAVEL. (Roadstone). MADE GROUND - Usy tiff reddish brown and occasional light grey slightly gravelly silty CLAY. Gravel is angular fine to coarse siltstone and mudstone. S 2.00 140 kPa N=18 S 3.00 N=24 S 3.00 N=24 S 4.00 N=18 S 5.00 N=30 D 5.00-5.60 N=27 Stiff friable dark brown slightly gravelly clayey SILT. Gravel is sub-angular to sub-rounded fine to coarse sub-angular to sub-rounded fine to coarse sub-angular to sub-rounded fine to coarse sand and sub-angular to sub-rounded fine to coarse quartz. Medium dense orangish-brown fine to coarse sand and sub-angular to sub-rounded fine to coarse quartz. GRAVEL. (Description derived from returned arising from open hole drilling, as sands / gravels too dense to dynamic sample).	D1	0.60.0.80					MADE GROUND - Concrete	road construction.		
1.20-1.60	DI	0.60-0.80	140 kPa		41.45	0.90				
160-2.00 140 kPa N=18 2.00 140 kPa N=18 15 2.00-2.50 N=24 becoming stiff below 3.00m. 15 4.00 16 3.00-3.50 N=18 17 3.50-4.00 N=18 N=27 N=27 N=27 N=27 N=27 N=27 N=27 Stiff friable dark brown slightly gravelly clayey SILT. Gravel is sub-angular to sub-rounded fine to coarse quartz. Medium dense orangish-brown fine to coarse QAND and sub-angular to sub-rounded fine to coarse quartz. GRAVEL. (Description derived from returned arising from open hole drilling, as sands / gravels too dense to dynamic sample).										
D4 2.00-2.50 D5 2.50-3.00 D6 3.00-3.50 D7 3.50-4.00 D8 4.20-4.60 D9 5.00-5.60 D10 5.80-6.00 S 6.00 N=27 D10 5.80-6.00 S 6.00 N=27 D10 5.80-6.00 S 6.00 N=27 D10 5.80-6.00 S 6.00 N=27 D10 5.80-6.00 S 6.00 N=27 D10 5.80-6.00 S 6.00 N=27 D10 5.80-6.00 S 6.00 N=27 D10 5.80-6.00 S 6.00 N=27 D10 6.00 N=27 D10 6.00 N=27 D10 6.00 S 5.75 Stiff friable dark brown slightly gravelly clayey SILT. Gravel is sub-angular to sub-rounded fine to coarse SAND and sub-angular to sub-rounded fine to coarse quartz. Medium dense orangish-brown fine to coarse SAND and sub-angular to sub-rounded fine to coarse quartz GRAVEL. (Description derived from returned arising from open hole drilling, as sands / gravels too dense to dynamic sample).	D3	1.60-2.00								
S 3.00 N=24 D7 3.50-4.00 S 4.00 N=18 D8 4.20-4.60 D10 5.80-6.00 S 6.00 N=27 Stiff friable dark brown slightly gravelly clayey SILT. Gravel is sub-angular to sub-rounded fine to coarse quartz. Medium dense orangish-brown fine to coarse SAND and sub-angular to sub-rounded fine to coarse quartz. GRAVEL. (Description derived from returned arising from open hole drilling, as sands / gravels too dense to dynamic sample).			140 kPa N=18							
D6 3.00-3.50 D7 3.50-4.00 S 4.00 N=18 D8 4.20-4.60 S 5.00 S 5.00 N=27 D10 5.80-6.00 S 6.00 N=27 Stiff friable dark brown slightly gravelly clayey SILT. Gravel is sub-angular to sub-rounded fine to coarse quartz. Medium dense orangish-brown fine to coarse SAND and sub-angular to sub-rounded fine to coarse quartz GRAVEL. (Description derived from returned arising from open hole drilling, as sands / gravels too dense to dynamic sample).	D5	2.50-3.00								
S 4.00 N=18 S 5.00 N=30 D9 5.00-5.60 N=27 Stiff friable dark brown slightly gravelly clayey SILT. Gravel is sub-angular to sub-rounded fine to coarse quartz. Medium dense orangish-brown fine to coarse SAND and sub-angular to sub-rounded fine to coarse quartz GRAVEL. (Description derived from returned arising from open hole drilling, as sands / gravels too dense to dynamic sample).			N=24				becoming stiff below 3.	00m.		
S 5.00 N=30 D10 5.80-6.00 S 6.00 N=27 Stiff friable dark brown slightly gravelly clayey SILT. Gravel is sub-angular to sub-rounded fine to coarse quartz. Medium dense orangish-brown fine to coarse SAND and sub-angular to sub-rounded fine to coarse quartz GRAVEL. (Description derived from returned arising from open hole drilling, as sands / gravels too dense to dynamic sample).	D7	3.50-4.00								
D10 5.80-6.00 S S S S S S S S S S S S S S S S S S			N=18							
Stiff friable dark brown slightly gravelly clayey SILT. Gravel is sub-angular to sub-rounded fine to coarse quartz. Medium dense orangish-brown fine to coarse SAND and sub-angular to sub-rounded fine to coarse quartz GRAVEL. (Description derived from returned arising from open hole drilling, as sands / gravels too dense to dynamic sample).			N=30							
sub-angular to sub-rounded fine to coarse quartz GRAVEL. (Description derived from returned arising from open hole drilling, as sands / gravels too dense to dynamic sample).			N=27				SILT. Gravel is sub-angular to		<u> </u>	
	С	7.50	50/155mm				sub-angular to sub-rounded GRAVEL. (Description derive from open hole drilling, as s to dynamic sample).	fine to coarse quartz ed from returned arising ands / gravels too dense		
C 9.00 N=46 33.35 9.00	С	9.00	N=46		33.35	9.00			. ()	

Remarks and Water Observations

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Hand Shear Vane (HSV) test undertaken at 1.00m gave apparent undrained shear strength of greater than 140 kPa, using the pilcon unit (HSV1A) and the 19mm vane.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques through overburden then by open-hole / driving casing from 6.00m to 9.00m, through the dense coarse grained soils, then rotary coring to base.

(continued next sheet)

Sheet 1 of 2

- 4. HSV test undertaken at 1.90m gave apparent undrained shear strength of >140kPa. Soils too stiff / friable for HSV at 3.00m and 4.00m.
- 5. No groundwater recorded during drilling; however, minor flows may have been masked by drilling flush.
- 6. Borehole backfilled with sodium bentonite (pellets) to 1.20m below surface then rapid setting concrete to surface upon completion.

(Window Sampler plus Rotary Core)

Site

GROUP						M1 J23a to J25 Ground	Investigation		
Client Costa	t ain Galliford	d Try				Boring diameter: 120 mm to 13.50m 110 mm to 18.00m	Casing diameter: 120 mm to 13.50m	Project N G17	
Logg	ed by: JP	Ground	Level: 4	12.35 mAO[)	Date: 26/09/2017	Location: 447215E - 334330N	Scale:	1:50
Ref:	Samples & In sit Depth (m)	u Tests SPT N	Water	Level (mAOD)	Depth (m)	Str	rata Description	Legend	Backfill
Nei.	Depth (III)	3111		(IIIAO)	(III)	Stiff reddish brown sligh		X x - x - x - x - x - x - x - x - x	
S D11	10.50 10.50-12.45	N=3						X—————————————————————————————————————	
CR	10.50-12.00	53						^	
CR C	13.50	0 0 50/11 mm		29.55	12.80	Stiff friable reddish brov very weak mudstone ba	wn silty CLAY with occasional ands.	× - × - ×	
CR	13.50-15.00	27 0 0						xx x xx x xx x xx	
				27.45 27.35	14.90 15.00	Very stiff grey sandy SIL	T	Ž YX X	
CR	15.00-16.50	23 0 0				Stiff locally very stiff fria slightly sandy slightly gr sub-angular to sub-roun	able reddish brown avelly silty CLAY. Gravel is nded fine to coarse siltstone.	* * * * * * * * * * * * * * * * * * *	
S D12	16.50 16.50	N= 3						X X X X X X X X X X X X X X X X X X X	
CR	16.50-18.00	5 0		24.17	47.55			* · · · · · · · · · · · · · · · · · · ·	

Remarks and Water Observations

1. Advanced through road construction using coring attachment (90 minutes).

24.45

24.35

- 2. Hand Shear Vane (HSV) test undertaken at 1.00m gave apparent undrained shear strength of greater than 140 kPa, using the pilcon unit (HSV1A) and the 19mm vane.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques through overburden then by open-hole / driving casing from 6.00m to 9.00m, through the dense coarse grained soils, then rotary coring to base.

(continued next sheet)

Sheet 2 of 2

- 4. HSV test undertaken at 1.90m gave apparent undrained shear strength of >140kPa. Soils too stiff / friable for HSV at 3.00m and 4.00m.
- 5. No groundwater recorded during drilling; however, minor flows may have been masked by drilling flush.

17.90

18.00

6. Borehole backfilled with sodium bentonite (pellets) to 1.20m below surface then rapid setting concrete to surface upon completion.

(Window Sampler plus Rotary Core)

Sheet 2+ of 2

Site

G	ROUP					M1 J23a to J25 Ground Inves	stigation		
Client Costa	t ain Galliford	l Try				Boring diameter: 120 mm to 13.50m 110 mm to 18.00m	Casing diameter: 120 mm to 13.50m	Project No G17	
Logg	ed by: JP	Ground	Level: 4	2.35 mAOD)	Date: 26/09/2017	Location: 447215E - 334330N	Scale:	1:50
Ref:	Core Data Depth (m)	TOR FI	Water	Level (mAOD)	Depth (m)	Strata D	escription	Legend	Backfill
						Extremely weak thinly lamina SILTSTONE. (Recovered as silt gravel sized fragments). End of Borehole at 18.00 m	y sandy fine to coarse		

- 1. Advanced through road construction using coring attachment (90 minutes).
- 2. Hand Shear Vane (HSV) test undertaken at 1.00m gave apparent undrained shear strength of greater than 140 kPa, using the pilcon unit (HSV1A) and the 19mm vane.
- 3. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques through overburden then by open-hole / driving casing from 6.00m to 9.00m, through the dense coarse grained soils, then rotary coring to base.
- 4. HSV test undertaken at 1.90m gave apparent undrained shear strength of >140kPa. Soils too stiff / friable for HSV at 3.00m and 4.00m.
- 5. No groundwater recorded during drilling; however, minor flows may have been masked by drilling flush.
- 6. Borehole backfilled with sodium bentonite (pellets) to 1.20m below surface then rapid setting concrete to surface upon completion.

(Window Sampler)

Sheet 1 of 1

Site

M1 J23a to J25 Ground Investigation

Chool					WIT J23a to J23 Ground live	stigation		
Client Costain Galliford Try					Boring diameter: 100 mm to 2.65m	Casing diameter:	Project N G17	o.: '057
Logged by: IG	Ground	Level: 4	5.50 mAOD)	Date: 30/10/2017	Location: 447138E - 334940N	Scale:	1:50
Samples & In sit	tu Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata [Description	Legend	Backfil
ner. Deptir (iii)	31114		45.35	0.15	MADE GROUND - Macadam.	·		
			45.10	0.40 0.50	MADE GROUND - Concrete.			
D1 0.80 D2 0.85-1.20 S 1.20	N=2		45.00 44.65	0.85	MADE GROUND - Whiteish g \\sub-rounded fine to medium \(\(\)(sub-base\).	rey sandy silty sub-angular to limestone GRAVEL		
D3 1.20-1.65 D4 1.50-2.00	N-Z		44.00	1.50	MADE GROUND - Reddish br rounded fine to coarse flint, limestone GRAVEL.		G 	
S 2.00 D5 2.00-2.45 D6 2.00-2.65	N=0		42.06	2.54	MADE GROUND - Orangeish SAND and sub-angular to rou flint, mudstone, sandstone G	unded fine to coarse quartz,		
			42.86 42.85	2.64 2.65	MADE GROUND - Soft reddis gravelly slightly sandy silty C to sub-rounded fine to coars	LAY. Gravel is angular		
					MADE GROUND - Concrete. End of Borehole at 2.65 m			

- 1. Advanced through road construction by coring.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 2.65m.
- 3. A concrete obstruction was encountered at 2.65m. Borehole was terminated and relocated to G322A.
- 4. No groundwater recorded during drilling.
- 5. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 6. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try						Boring diameter: 120 mm to 21.00m	Casing diameter: 120 mm to 6.00m	Project No	
Logge	ed by: IG	Ground	Level: 4	5.56 mAOD)	Date: 30/10/2017-01/11/2017	Location: 447135E - 334939N	Scale:	1:50
S Ref:	amples & In situ Depth (m)	Tests SPT N	Water	Level (mAOD)	Depth (m)	Strata	Description	Legend	Backfill
nei.	Берит (ті)	3F1 N		(IIIAOD)	(111)	MADE GROUND - Topsoil.			
				45.21	0.35		sub-angular to sub-rounded	-	
B1	0.60-0.70			44.86	0.70	fine to coarse limestone GRA			
D2 D3 S	1.00-1.45 1.00-2.00 1.20	N=17		44.56	1.00	MADE GROUND - Firm reddi CLAY.	sh brown slightly sandy silty		
3	1.20	14-17		43.91	1.65	MADE GROUND - Firm orang	eish brown sandy SILT.		
S D4 D5	2.00 2.00-2.45 2.00-2.50	N=22				MADE GROUND - Stiff orang slightly sandy silty CLAY. Gra sub-rounded fine to coarse s mudstone.	vel is sub-angular to		
D6	3 00 N=13 ▼ 42.66 2.90		— sandy silty CLAV				sh brown mottled grey slightly		
S D7 D8	3.00 3.00-3.45 3.00-4.00	N=12		42.56	3.00	Firm grey SILT with frequent lithorelics.	gravel size siltstone	×××	
S	4.00	N=17				Firm reddish brown mottled frequent gravel size mudston		<u>xx</u>	
D10 D9 S D11 D12	4.00-5.00 4.00-4.45 5.00 5.00-5.45 5.00-6.00	N=20						X	
S D13	6.00 6.00-6.45	N=4				becoming locally stiff wirmudstone bands below 5.80		×××	
CR	6.00-7.50	44 25 20						~	
CR	7.50-9.00	30 13 13						X	
S	9.00	49/26 mm TCR FI SCR RQD FS		36.56	9.00	(continued next sheet)		Sheet :	1 of 2

- 1. Hand excavated service pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 6.00m. Borehole then advanced to 21.00m using rotary coring techniques with a mist flush.
- 3. Groundwater recorded at 3.00m during drilling; however minor flows may have been masked by mist flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try							Boring diameter: Casing diameter: 120 mm to 21.00m 120 mm to 6.00m		Project No G170	
Logge	ed by: IG	Gr	ound	Level: 4	5.56 mAOD)	Date: 30/10/2017-01/11/2017	17-01/11/2017 Location: 447135E - 334939N		1:50
Ref:	Core Data Depth (m)	TCR REB	FI	Water	Level (mAOD)	Depth (m)	Strata I	Description	Legend	Backfill
D14	9.00-9.45	73 33 33	-				Stiff friable reddish brown si mudstone bands.	Ity CLAY with occasional	x	
CR	10.50-12.00	27 0 0							× - × - × - × - × - × - × - × - × - × -	
S	12.00	50/220	(mm		33.81 33.61	11.75 11.95	Extremely weak thinly laming (recovered as soft gravelly clangular to sub-rounded fine (Grade III).	layey SILT. Gravel is	×××××× × – × – × – × – × – × – × – × – ×	
CR	12.00-13.50	67 27 27	-				Stiff friable reddish brown si mudstone bands.	lty CLAY with occasional	× × × × × × × × × × × × × × × × × × ×	
CR	13.50-15.00	73 9 9			31.66 31.46	13.90 14.10	Extremely weak thinly laming (recovered as angular to sub siltstone GRAVEL) (Grade II).	-angular fine to coarse		
С	15.00	50/45	mm		30.56	15.00	Stiff friable reddish brown si mudstone bands.	lty CLAY with frequent		
		33			30.06	15.50	Weak thinly laminated green (recovered as silty CLAY with mudstone lithorelics) (Grade	h frequent gravel size		
CR	15.00-16.50	3 0	-				Weak locally extremely weal brown MUDSTONE. Bedding sub-vertical close to medium rough planar clean and clay from 16.45m to 16.65m angular to sub-angular fine t	fractures are horizontal to n spaced smooth planar to coated (Grade I). recovered as sandy		
CR	16.50-18.00	27 0 0					(Grade II).			
С	18.00	50/80	mm			<u> </u>				
		SER ROD	퇁				(continued next sheet)		Sheet	2 of 3

- 1. Hand excavated service pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 6.00m. Borehole then advanced to 21.00m using rotary coring techniques with a mist flush.
- 3. Groundwater recorded at 3.00m during drilling; however minor flows may have been masked by mist flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

	Client Costain Galliford Try				Boring diameter: 120 mm to 21.00m	Casing diameter: 120 mm to 6.00m	Project No.			
Logg	ged by: IG	G	round	Level: 4	15.56 mAO[)	Date: 30/10/2017-01/11/2017	Location: 447135E - 334939N	Scale:	1:50
Ref:	Core Dat	a TCR	FI	Water	Level (mAOD)	Depth (m)	Strata I	Description	Legend	Backfill
CR	18.00-19.50	37 0 0					Weak locally extremely weal brown MUDSTONE. Bedding sub-vertical close to medium rough planar clean and clay	fractures are horizontal to spaced smooth planar to		
CR C	19.50-21.00	73 43 27			24.56	21.00	from 19.95m to 20.00m sub-rounded fine to coarse r from 20.25m to 20.35m sub-angular to sub-rounded GRAVEL (Grade II).	nudstone GRAVEL (Grade II). recovered as sandy		
							End of Borehole at 21.00 m			
		SER ROD	F§.						Sheet	3 of 2
	<u> </u>	RQD	F5						Jileet	2012

- 1. Hand excavated service pit to 1.20m, to check for services.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 6.00m. Borehole then advanced to 21.00m using rotary coring techniques with a mist flush.
- 3. Groundwater recorded at 3.00m during drilling; however minor flows may have been masked by mist flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Client Costain Galliford Try							Boring diameter: Casing diameter: Proceedings of the control of th		Project No	
Logge	ed by: IG	Gro	ound	Level:			Date: 02/11/2017	Location: -	Scale:	1:50
S Ref:	amples & In sit Depth (m)	u Tests SPT	N	Water	Level (mAOD)	Depth (m)	Strata D	Legend	Backfill	
TICI.	Depart (III)	311			(111/105)	0.15	MADE GROUND - Macadam.	·		
						0.40	MADE GROUND - Concrete.	/		
D1	0.60-1.00					0.60		andy silty sub angular to		
E2 S D3	0.80 1.00 1.00-1.45	N=2	27	7 1.00		1.00	MADE GROUND - Dark grey s sub-rounded fine to medium (sub-base).		× × × × ×	X/\X/\\
D4 S	1.20-1.60 1.60	50785	1			1.50	Reddish brown locally yellow		(X X X X X X X X X X X X X X X X X X X	
D5 D6	1.60-2.05 1.60-3.00	50/85	m			1.80	\\fine SAND. Gravel is angular t \\coarse siltstone and sandstor		(XXXXX)	
		21					Stiff reddish brown locally gre	ey SILT.	××××××× ××××××××	
CR	1.60-3.00	0					Stiff grey SILT with frequent s	siltstone lithorelics.	××××××× ×××××××	
						3.35	Extremely weak thinly lamina (recovered as grey sub-angula coarse siltstone gravel).		X X X X X X X X X X X X X X X X X X X	
CR	3.00-4.50	73 29 33				3.33	Weak locally extremely weak laminated reddish brown MU brown silty CLAY with freque lithorelics. Bedding fractures sub-horizontal closely spaced	IDSTONE and stiff reddish nt gravel size mudstone are horizontal and		
С	4.50	50/150	mm				planar and smooth stepped c (Grade I locally Grade II and C recovered as angular to s coarse mudstone GRAVEL fro recovered as slightly grav	Grade III) ub-rounded fine to m 3.55m to 3.70m (Grade II).		
CR	4.50-6.00	21 16					silty CLAY with frequent mud 4.00m to 4.30m (Grade III).			
		30								
CR	6.00-7.50	0 0								
С	7.50	50/220	mm							
CR	7.50-9.00	63 20 20								
		TCR SCR RQD	FI FS				(continued next sheet)		Sheet	1 of 2

- 1. Advanced through road construction by coring.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 1.60m. Borehole then advanced to 12.00m using rotary coring techniques with a mist flush.
- 3. No groundwater recorded during drilling; however, minor flows may have been masked by mist flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

(Window Sampler plus Rotary Core)

Site

M1 J23a to J25 Ground Investigation

Clien	t ain Galliford	l Try					Boring diameter: 120 mm to 12.00m	Casing diameter: 120 mm to 1.50m	Project N	
	ed by: 1G		ound	Level:			Date: 02/44/2017	Location: -	Scale:	1:50
LUgg			ound	Levei.	I	1	Date: 02/11/2017	Location		1
Ref:	Core Date Depth (m)	TCR	FI	Water	Level (mAOD)	Depth (m)	Strat	a Description	Legend	Backfill
CR	9.00-10.50	27 2 0						- 9.40m : recovered as ed fine to coarse mudstone 40m (Grade II).		
C CR	10.50	73 36 33				10.50	brown MUDSTONE. Beddi sub-horizontal and vertica	rough planar, smooth stepped		
C	12.00	50/9				12.00	End of Borehole at 12.00 m			
		TCR SCR	FI FS						Chast	2 of 2
		TCR SCR RQD	FS						Sneet	2 of 2

- 1. Advanced through road construction by coring.
- 2. Borehole advanced using Commachio 205 combination rig NH01, using dynamic sampling techniques below the core to 1.60m. Borehole then advanced to 12.00m using rotary coring techniques with a mist flush.
- 3. No groundwater recorded during drilling; however, minor flows may have been masked by mist flush.
- 4. Borehole backfilled with sodium bentonite (pellets) to 1.00m below surface, then rapid setting concrete to surface upon completion.
- 5. All arisings removed and work area cleaned.

Appendix H Summary of Cross Carriageway Ducts Locations

H.1: Technologies CCD Locations

H.2: Lighting Columns CCD Locations

H.3: Technologies CCD Ground Model

H.1 - Technologies CCD Locations

SMP Reference	Chainage	Carriageway	Length (m)	Depth (m bgl)	Easting (from)	Northing (from)	Easting (to)	Northing (to)
T-CCD-1	181961	A-B	37	2	446835	324433	446872	324431
T-CCD-2	181853	K	13	2	446693	324327	446682	324333
T-CCD-3	182115	K	16	2	446817	324596	446829	324591
T-CCD-4	182194	A-B	38	2	446857	324667	446895	324662
T-CCD-5	182290	М	40	2	446990	324742	447030	324734
T-CCD-6	182658	L	26	2	446999	325111	447025	325108
T-CCD-7	182828	A-B	49	2	447010	325284	447057	325271
T-CCD-8	183296	A-B	44	2	447148	325732	447190	325719
T-CCD-9	183844	A-B	44	2	447309	326256	447352	326243
T-CCD-10	184372	A-B	45	2	447448	326763	447492	326754
T-CCD-11	184931	A-B	37	2	447519	327314	447556	327312
T-CCD-12	184931	М	17	2	447556	327312	447574	327310
T-CCD-13	184931	J	18	2	447502	327310	447519	327314
T-CCD-14	185100	M	16	2	447596	327486	447610	327478
T-CCD-15	185370	K	16	2	447471	327755	447457	327761
T-CCD-16	185500	A-B	40	2	447495	327878	447535	327884
T-CCD-17	186057	A-B	43	2	447378	328420	447420	328431
T-CCD-18	186165	L	11	2	447388	328534	447398	328539
T-CCD-19	186255	A-B	45	2	447321	328607	447364	328621
T-CCD-20	186618	A-B	37	2	447211	328954	447246	328966
T-CCD-21	186618	L	19	2	447246	328966	447263	328972
T-CCD-22	186836	A-B	47	2	447145	329161	447189	329176
T-CCD-23	186842	K	16	2	447127	329161	447112	329162
T-CCD-24	187499	A-B	37	2	446938	329792	446972	329803
T-CCD-26	188510	A-B	37	2	446622	330751	446657	330762
T-CCD-27	188870	A-B	36	2	446515	331097	446550	331105
T-CCD-28	189303	A-B	36	2	446473	331531	446509	331530
T-CCD-29	189769	A-B	38	2	446555	331993	446591	331983
T-CCD-30	190258	A-B	37	2	446763	332441	446794	332423
T-CCD-31	190633	A-B	37	2	446966	332755	446996	332735
T-CCD-32	191068	A-B	37	2	447163	333137	447198	333126
T-CCD-33	191629	A-B	37	2	447270	333679	447306	333679
T-CCD-34	191963	A-B	37	2	447250	334009	447285	334015
T-CCD-35	192344	A-B	38	2	447162	334379	447199	334387
T-CCD-36	192950	A-B	44	2	447140	334988	447184	334984
T-CCD-37	193342	A-B	37	2	447173	335375	447210	335375
T-CCD-38	193342	M	21	2	447210	335375	447231	335375
T-CCD-41	182027	M	11	2	446920	324494	446931	324490
T-CCD-42	185755	M	9	2	447499	328204	447478	328201
T-CCD-43	193485	M	14	2	447226	335521	447241	335521
T-CCD-45	185905	L	90	2	447484	328289	447492	328378
T-CCD-46	186835	K	14	2	446965	328957	446961	328971

Note: Locations where existing CCDs are to be reused are not included

H.2 -Lighting Columns CCD Locations

SMP Reference	Chainage	Carriageway	Length (m)	Depth (m bgl)	Easting (from)	Northing (from)	Easting (to)	Northing (to)
L-CCD-1	181880	K	19	2	446687	324360	446705	324351
L-CCD-2	182130	J	17	2	446789	324609	446807	324610
L-CCD-3	182180	K	13	2	446834	324657	446847	324654
L-CCD-4	182740	L	13	2	447022	325185	447036	325182
L-CCD-5	182815	A-B	47	2	447052	325259	447005	325272
L-CCD-6	184012	A-B	46	2	447402	326402	447357	326416
L-CCD-7	185100	M	18	2	447590	327482	447609	327477
L-CCD-8	185101	A-B	39	2	447519	327482	447559	327483
L-CCD-9	185102	J	20	2	447477	327469	447494	327482
L-CCD-10	185365	L	19	2	447580	327755	447600	327761
L-CCD-11	185445	K	17	2	447459	327828	447478	327827
L-CCD-12	185750	В	16	2	447505	328151	447488	328149
L-CCD-13	186180	В	11	2	447398	328550	447386	328545
L-CCD-14	186440	L	11	2	447322	328816	447327	328806
L-CCD-15	186628	A-B	41	2	447245	328975	447205	328961
L-CCD-16	186860	K	14	2	447126	329185	447112	329185
L-CCD-17	187640	A-B	39	2	446929	329936	446891	329924
L-CCD-18	192502	A-B	39	2	447175	334541	447134	334536
L-CCD-19	192970	A-B	46	2	447141	335004	447185	335002
L-CCD-20	193380	M	24	2	447237	335411	447211	335411
L-CCD-21	193705	K	18	2	447142	335740	447161	335740
L-CCD-22	-	K	14	2	446942	328950	446939	328965
L-CCD-23	186628	L	19	2	447263	328981	447245	328975

H.3 - Technologies CCD Ground Models

SMP Reference	Chainage	Carriageway	Earthwork	Proposed Earthwork Height (m)	Proposed Slope Gradient (°)	Proposed Verge Width (m)	Proposed Earthwork Solution	Anticipated Geology
T-CCD-1	181961	NB (M1)	At Grade	1	11	2	No Solution Required	Mercia Mudstone (fine grained)
1-000-1	101901	SB (M1)	Embankment	7.5	14	4	No Solution Required	Mercia Mudstone (fine grained)
T-CCD-2	181853	NB (A42 west)	Embankment	As existing	As existing	As existing	As existing	Embankment Fill (fine grained)
1-000-2	101033	NB (A42 east)	Embankment	As existing	As existing	As existing	As existing	Embankment Fill (fine grained)
T-CCD-3	182115	NB (A42 west)	Embankment	6.4	18	3.8	No Solution Required	Embankment Fill (fine grained)
1-000-0	102110	NB (A42 east)	Embankment	2.8	51	3.8	No Solution Required	Embankment Fill (fine grained)
T-CCD-4	182194	NB (M1)	At Grade	0.6	21	3.8	Full Regrade 1:2.5	Mercia Mudstone (fine grained)
1-000-4	102104	SB (M1)	Cutting	6.8	18	3.8	Full Regrade 1:3	Mercia Mudstone (fine grained)
T-CCD-5	182290	SB (A42west)	Cutting	As existing	As existing	As existing	As existing	Mercia Mudstone (fine grained)
1-000-0	102250	SB (A42east)	Cutting	As existing	As existing	As existing	As existing	Mercia Mudstone (fine grained)
T-CCD-6	182658	SB (M1 offslip west)	At Grade	0.5	2	3.4	No Solution Required	Mercia Mudstone (fine grained)
1-000-0	102030	SB (M1 offslip east)	Cutting	5	3	2.8	<500mm Fill	Mercia Mudstone (fine grained)
T-CCD-7	182828	NB (M1 onslip west)	Cutting	4.8	27	3.4	Full Regrade 1:2.5	Mercia Mudstone (fine grained)
1-CCD-7	102020	SB (M1 offslip east)	At Grade	0	0	4	No Solution Required	Mercia Mudstone (fine grained)
T-CCD-8	183296	NB (M1)	Embankment	3.8	27	4.7	Granular Wedge at Embankment Crest 1:2	Embankment Fill (fine grained)
1-CCD-0	103290	SB (M1)	Embankment	5.9	27	4.6	Granular Wedge at Embankment Crest 1:2	Embankment Fill (fine grained)
T-CCD-9	183844	NB (M1)	Cutting	Unknown (>10.8)	18	3.8	Partial Regrade 1:3	Mercia Mudstone (fine grained)
1-000-9		SB (M1)	Cutting	Unknown (>10.5)	-	4.6	Sheet Pile Retaining Wall	Mercia Mudstone (fine grained)
T-CCD-10	184372	NB (M1)	At Grade	1.5	-	4.8	Sheet Pile Retaining Wall	Embankment Fill (fine grained)
1		SB (M1)	Cutting	3.2	18	4.2	<500mm cut	Mercia Mudstone (fine grained)
T-CCD-11	184931	NB (M1)	At Grade	0.7	18	3.2	<500mm Fill	Embankment Fill (fine grained)
1-CCD-11	104931	SB (M1)	At Grade	0.7	18	3.2	<500mm Fill	Embankment Fill (fine grained)
T-CCD-12	184931	SB (M1 onslip west)	Embankment	4.4	27	4	Full Regrade 1:2	Embankment Fill (fine grained)
T-CCD-13	184931	NB (M1 offslip east)	Embankment	As existing	As existing	As existing	As existing	Embankment Fill (fine grained)
T-CCD-14	185100	SB (M1 onslip west)	Embankment	As existing	As existing	As existing	As existing	Embankment Fill (fine grained)
1-CCD-14	103100	SB (M1 onslip east)	Embankment	As existing	As existing	As existing	As existing	Embankment Fill (fine grained)
T-CCD-15	185370	NB (M1 onslip west)	Embankment	As existing	As existing	As existing	As existing	Glaciofluvial Deposits (coarse grained) of approximately 4m thickness, underlain by weathered Mercia Mudstone (fine grained)
1-00D-13	165570	NB (M1 onslip east)	Embankment	As existing	As existing	As existing	As existing	Glaciofluvial Deposits (coarse grained) of approximately 4m thickness, underlain by weathered Mercia Mudstone (fine grained)
T CCD 46	195500	NB (M1)	Cutting	3.5	18	4.8	<500mm Cut	Glaciofluvial Deposits or Head Deposits (both coarse grained) of approximately 2m thickness, underlain by weathered Mercia Mudstone (fine grained)
T-CCD-16	185500	SB (M1)	Cutting	3.1	18	4	Full Regrade 1:3	Glaciofluvial Deposits or Head Deposits (both coarse grained) of approximately 2m thickness, underlain by weathered Mercia Mudstone (fine grained)
		NB (M1 onslip west)	Embankment	2.6	-	3	Sheet Pile Retaining Wall	Embankment Fill (fine grained)
T-CCD-17	186057	SB (M1)	Embankment	3	27	4	Granular Wedge At Embankment Crest 1:2	Embankment Fill (fine grained)

SMP Reference	Chainage	Carriageway	Earthwork	Proposed Earthwork Height (m)	Proposed Slope Gradient (°)	Proposed Verge Width (m)	Proposed Earthwork Solution	Anticipated Geology
T-CCD-18	186165	SB (M1 offslip west)	Embankment	2.7	27	0	Sheet Pile Retaining Wall	Embankment Fill (fine grained)
1-000-10	100100	SB (M1 offslip east)	At Grade	0	0	0.8	Granular Wedge At Embankment Crest 1:2	Embankment Fill (fine grained)
T-CCD-19	186255	NB (M1)	At Grade	1.4	18	4	Sheet Pile Retaining Wall	Embankment Fill (fine grained)
1-CCD-19	100233	SB (M1 offslip east)	Embankment	2.6	27	4	Full Regrade 1:2	Embankment Fill (fine grained)
T 00D 00	100010	NB (M1)	Cutting	1.8	27	6.4	No Solution Required	Mercia Mudstone (fine grained)
T-CCD-20	186618	SB (M1)	At Grade	0	0	4	<500mm Cut	Embankment Fill (fine grained)
T-CCD-21	186618	SB (M1 offslip east)	At Grade	0	0	3	No Solution Required	Embankment Fill (fine grained)
T-CCD-22	186836	NB (M1)	At Grade	0	0	5.6	No Solution Required	Embankment Fill (fine grained)
1-CCD-22	180830	SB (M1 offslip east)	Embankment	5.4	-	3.7	Full Height Embankment Widening 1:2	Embankment Fill (fine grained)
T-CCD-23	186842	NB (M1 onslip west)	Embankment	4.6	30	3.3	Full Height Embankment Widening 1:2	Embankment Fill (fine grained)
		NB (M1 onslip east)	Embankment	5	60	2.3	No Solution Required	Embankment Fill (fine grained)
		NB (M1)	Embankment	3.1	22	4	No Solution Required	Embankment Fill (fine grained)
T-CCD-24	187499	SB (M1)	Embankment	4.4	18	4	Granular Wedge At Embankment Crest 1:2	Embankment Fill (fine grained)
T-CCD-26	188510	NB (M1)	Embankment	8.8	27	3.9	No Solution Required	Embankment Fill (fine grained)
. 002 20		SB (M1)	Embankment	8.2	-	5.4	Sheet Pile Retaining Wall	Embankment Fill (fine grained)
T-CCD-27	188870	NB (M1)	Embankment	6	-	5.1	No Solution Used	Embankment Fill (fine grained)
T-CCD-28	189303	SB (M1) NB (M1)	Embankment Embankment	5.3	22	1.5	<500mm Fill No Solution Required	Embankment Fill (fine grained) Embankment Fill (fine grained)
		SB (M1)	Embankment	4.5	-	6.9	Sheet Pile Retaining Wall	Embankment Fill (fine grained)
T-CCD-29	189769	NB (M1)	Embankment	4.3	-	3	<500mm Fill	Embankment Fill (fine grained)
		SB (M1)	Embankment	4	-	9.4	Sheet Pile Retaining Wall	Embankment Fill (fine grained)
		NB (M1)	Embankment	8.9	22	3	No Solution Required	Embankment Fill (fine grained)
T-CCD-30	190258	SB (M1)	Embankment	9.2	27	3.9	Granular Wedge At Embankment Crest 1:2	Embankment Fill (fine grained)
T-CCD-31	190633	NB (M1)	Embankment	6.6	18	3	<500mm Fill	Embankment Fill (fine grained)
1-000-31	190033	SB (M1)	Embankment	6.3	27	9.3	<500mm Fill	Embankment Fill (fine grained)
T CCD 22	191068	NB (M1)	At Grade	1.2	18	3.9	<500mm Fill	Embankment Fill (fine grained)
T-CCD-32	191000	SB (M1)	Embankment	3.2	27	1.8	<500mm Fill	Embankment Fill (fine grained)

SMP Reference	Chainage	Carriageway	Earthwork	Proposed Earthwork Height (m)	Proposed Slope Gradient (°)	Proposed Verge Width (m)	Proposed Earthwork Solution	Anticipated Geology		
T-CCD-33	191629	NB (M1)	Cutting	5.7	20	2.9	<500mm Cut	Glaciofluvial Deposits (coarse grained) of approximately 2.5m thickness, underlain by weathered Mercia Mudstone (fine grained)		
1 002 00	101020	SB (M1)	Cutting	3.1	12	2.2	<500mm Fill	Glaciofluvial Deposits (coarse grained) of approximately 2.5m thickness, underlain by weathered Mercia Mudstone (fine grained)		
T-CCD-34	191963	NB (M1)	At Grade	0	0	5.8	No Solution Required	Glaciofluvial Deposits (coarse grained) of approximately 4.5m thickness, underlain by weathered Mercia Mudstone (fine grained)		
1-005-04	101000	SB (M1)	Cutting	2	33	6.9	No Solution Required	Glaciofluvial Deposits (coarse grained) of approximately 4.5m thickness, underlain by weathered Mercia Mudstone (fine grained)		
		NB (M1)	Embankment	7	27	4	Granular Wedge at Embankment Crest 1:2	Embankment Fill (fine grained)		
T-CCD-35	192344	SB (M1)	Embankment	7	-	8.7	Sheet Pile Retaining Wall	Embankment Fill (fine grained)		
T-CCD-36	192950	NB (M1)	At Grade	0.2	6	3.2	<500mm Fill	Mercia Mudstone (fine grained)		
1-000-00	102000	SB (M1)	Cutting	2.8	12	3.2	No Solution Required	Mercia Mudstone (fine grained)		
T-CCD-37	193342	NB (M1)	Cutting	2.1	13	8.7	Sheet Pile Retaining Wall	Mercia Mudstone (fine grained)		
1 000 01		SB (M1)	Cutting	2	13	4	Sheet Pile Retaining Wall (plastic)	Mercia Mudstone (fine grained)		
T-CCD-38	193342	SB (M1 onslip east)	Cutting	6.1	18	3.8	<500mm Fill	Mercia Mudstone (fine grained)		
T-CCD-41	182027	SB (A42 onslip west)	At Grade	As existing	As existing	As existing	As existing	Embankment Fill (fine grained)		
1-000-41	102021	SB (A42 onslip east)	Bund	As existing	As existing	As existing	As existing	Embankment Fill (fine grained)		
T-CCD-42	185755	SB (M1 onslip west)	At Grade	0	-	0.5	No Solution Required	Embankment Fill (fine grained) 0.5m thick underlain by Glaciofluvial Deposits (coarse grained) approximately 2.5-3.0m thick, underlain by weathered Mercia Mudstone (fine grained)		
1-000-42	165755	103733	185755	SB (M1 onslip east)	At Grade	0	2	11	<500mm Fill	Embankment Fill (fine grained) 0.5m thick underlain by Glaciofluvial Deposits (coarse grained) approximately 2.5-3.0m thick, underlain by weathered Mercia Mudstone (fine grained)
T CCD 42	102495	SB (M1 onslip (west)	Embankment	5.8	23	3.5	No Solution Required	Embankment Fill (fine grained)		
T-CCD-43	193485	SB (M1 onslip east)	At Grade	0.9	10	1.4	No Solution Required	Embankment Fill (fine grained)		
T 005 15	185905	SB (M1 onslip west)	Embankment	4.6	27	4	Granular Wedge At Embankment Crest 1:2	Giacionuviai Deposits (coarse grained) approximately 4m thick, underlain by weathered Mercia Mudstone (fine grained)		
T-CCD-45		SB (M1 onslip east)	Embankment	As existing	As existing	As existing	No Solution Required	Glaciofluvial Deposits (coarse grained) approximately 4m thick		
T 005 16	400005	NB (M1 onslip west)	At Grade	As existing	As existing	As existing	No Solution Required	Embankment Fill (fine grained)		
T-CCD-46	186835	NB (M1 onslip east)	Embankment	As existing	As existing	As existing	No Solution Required	Embankment Fill (fine grained)		

Note: Locations where existing CCDs are to be reused are not included

Appendix I Photographs

I.1 - List of Photographs - As-Built, Typical Solutions

S/N	List
1	Sheet Pile Wall at SB192520
2	Gantry G 311SB, Sheet Pile Wall at SB188790
3	Gantry G 318, Sheet Pile Wall at NB 191750
4	Gantry G 309 and Sheet Pile Wall at SB188970
5	ERA at SB1887800
6	Gantry 308 and ERA at SB 1887780
7	Sheet Pile Wall at SB188380
8	Embankment Widening at SB 186890
9	Gabion Walls at SB 193460

Sheet Pile Wall at SB192520

Gantry G 311SB, Sheet Pile Wall at SB188790

Gantry G 318, Sheet Pile Wall at NB 191750

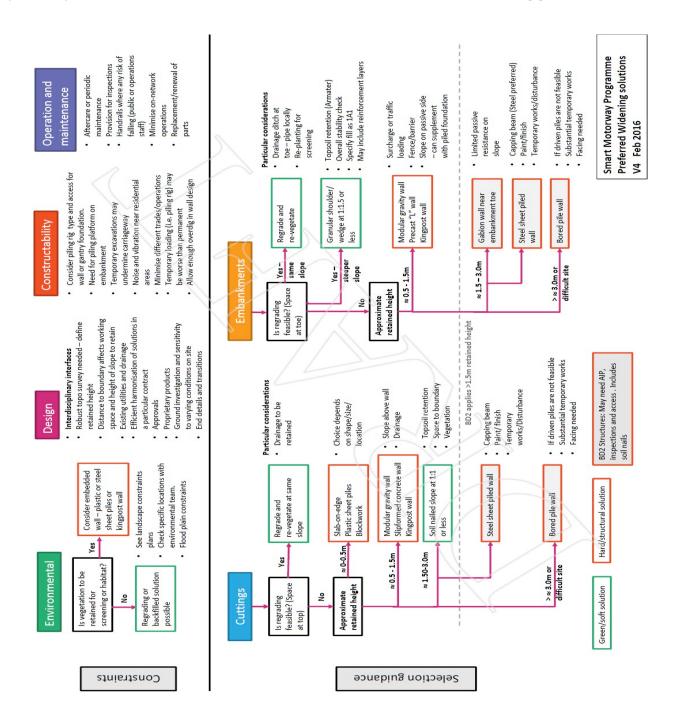
Gantry G 309 and Sheet Pile Wall at SB188970

ERA at SB1887800

Gantry 308 and ERA at SB 1887780

Sheet Pile Wall at SB188380

Embankment Widening at SB 186890


Gabion Walls at SB 193460

Appendix J Preferred Widening Solutions Decision Flow Chart

Ref AmeyArup, "Smart Motorways Programme M1 J23a-25, Gantries and ERAs Lateral Solutions Options Report, Document Ref HA549342-AMAR-SGT-SWI-RP-CB-000001, March 2016 [3]

Contact name

Amey Arup Joint Venture

Amey International Design Hub 5^{th} Floor The Colmore Building 20 Colmore Circus Birmingham B4 6AT

 Email:
 IDH.Reception@amey.co.uk

 Telephone:
 0121 212 5000

 Fax:
 0121 236 1160

See Bookmarks for contents of this report.	

NEAR M1 J23A TO J25

COMBINED PSSR-GIR-GDR

GDMS:48534

Date: 28/03/24

Document Control

Document Number:	HE614830-WSP-HGT-P015_AL_ALLGENR-RP-GE-0003
Rev Number:	P03
Date:	28/03/24
Document Status:	S5
Client Ref Number (PIN):	HE614830
PCF Stage:	PCF 5

Revision History

Revision	Date	Description	Ву	Check	Review	Approved
P03	28/03/24	SUITABLE FOR ACCEPTANCE	DAB	AKO	GBE	PCO
P02	27/02/24	SUITABLE FOR ACCEPTANCE	DAB	AKO	GBE	GMC
P01	19/01/24	SUITABLE FOR ACCEPTANCE	DAB	AKO	GBE	PCO

Required Approvals

Name	Signature	Title	Date of Issue	Version

Definitions and Abbreviations

Term	Definition
BGS	British Geological Survey
CBR	California Bearing Ratio
CCTV	Closed Circuit Television
EA	Emergency Area
GDMS	Geotechnical and Drainage Management System
GDS	Geotechnical Design Statement
LIDAR	Light Detection and Ranging
mAOD	Metres Above Ordnance Datum
mbgl	Metres Below Ground Level
MP	Marker Post
NEAR	National Emergency Area Retrofit
NGR	National Grid Reference
PRS	Place of Relative Safety
UXO	Unexploded Ordnance
PPL	Potential Pollution Linkage
CSM	Conceptual Site Model
DEFRA	Department for Environment, Food and Rural Affairs
LCRM	Land Contamination Risk Management
GQRA	Generic Quantitative Risk Assessment
GAC	Generic Assessment Criteria
C4SL	Category 4 Screening Level
CIEH	Chartered Institute of Environmental Health
LQM	Land Quality Management Ltd
S4UL	Suitable for Use Levels
CL:AIRE	Contaminated Land: Applications in Real Environments.
AGAC	Acute Generic Assessment Criteria
SoBRA	Society of Brownfield Risk Assessment
DoWCoP	Definition of Waste: Code of Practice
CEMP	Construction Environmental Management Plan
PPE	Personal Protective Equipment
WEL	Workplace Exposure Limit
MMP	Materials Management Plan

Contents:

1	Introduction9
1.1	Background9
1.2	Objectives9
1.3	Site location description9
1.4	Proposed works9
2	Sources of information, desk study, site reconaissance, site description and review of findings
2.1	British Geological Survey (BGS)12
2.1.	1 Maps12
2.1.	2 Memoirs
2.1.	3 Made Ground 12
2.1.	4 Superficial geology12
2.1.	5 Bedrock geology12
2.1.	6 Boreholes12
2.2	Environment Agency13
2.2.	1 Hydrogeology 13
2.2.	2 Hydrology13
2.2.	3 Landfills 13
2.3	Coal Authority- Engineering and Mining Assessment 13
2.4	GDMS13
2.4.	1 Reports
2.4.	2 Geotechnical Asset Database
2.4.	3 Structures
2.4.	4 Historical Land Use21
2.5	Department for the Environment, Food and Rural Affairs 22
2.6	Utilities
2.7	Unexploded Ordnance (UXO)23
2.8	Potential Sources of Contamination23
2.9 Asses	Preliminary Conceptual Site Model (CSM) and Risk sment
3	Site Reconnaissance
4	Ground conditions27
5	Preliminary Engineering Assessment 28
5.1	Earthworks
5.2	Retaining Structures
	<u> </u>
5.3	Minor structures

7		Fiel	ld and Laboratory Studies	30
7. St	-		omorphological/Geological Mapping and Topograp	
7.	2	Gro	ound Investigations	30
	7.2.	1	Description Of Fieldwork	30
	7.2.	2	Results of In Situ Tests	30
7.	3	Dra	inage Studies	30
7.	4	Ged	ophysical Surveys	30
7.	5	Exi	sting Test Pile Results	30
7.	6	Oth	er Field Work	31
7.	7	Lab	oratory Investigation	31
	7.7.	1	Description of Tests	31
	7.7.	2	Geoenvironmental Tests	31
8		Gro	ound Summary	33
8.	1	Ove	erview	33
	8.1.	1	EA NB-187/8	
	8.1.	2	EA NB-190/2, SVD-1 and MIDAS-1	
	8.1.	3	EA NB-192/0 and SVD-2	35
	8.1.	4	EA SB-193/4, CCTV-1 and SVD-5	36
	8.1.	5	EA SB-187/7 and SVD-4	
	8.1.	6	EA SB-185/1 and SVD-3	
	8.1.	-	MS4 Gantry at NB-190/5	
8.	2	Der	ived Geotechnical Parameters	38
9		Eng	gineering Assessment	40
10			otechnical Design	
10).1	Gro	ound Model and Geotechnical Data Sheets (GDS)	41
10).2	Soi	I Slope Design	42
	10.2	2.1	General Assumptions	42
	10.2	2.2	Cuttings	44
	10.2	2.3	Embankments	46
	10.2	2.4	Results	49
10).3	Em	bedded Retaining Wall	49
	10.3	3.1	General	49
	10.3	3.2	Geometry	
	10.3	3.3	Design Section	
	10.3	3.4	Loading	
	10.3		Ground Condition	
	10.3		Drainage	
	10.3	3.7	Design Working Life	51
	10.3	3.8	Geotechnical Design Method	51

	10.	3.9	Design Outcome	52
	10.4	High	way Structures	54
	10.	4.1	MS4 Gantry	54
	10.	4.2	CCTV Mast Foundation	54
	10.	4.3	SVD Foundation	55
	10.	4.4	MIDAS Foundation	56
	10.	4.5	Summary	56
	11	Spec	cial Geotechnical Measures	57
	12	Pave	ment design, subgrade and capping	58
	13	Asse	essment of Potential Contamination	60
	13.1	Intro	duction	60
	13.2	Visu	al and Olfactory Contamination	60
	13.3	Hum	an Health Assessment	60
	13.	3.1	Methodology	60
	13.	3.2	Soil Data Assessment – Acute Exposure	61
	13.	3.3	Soil Data Assessment - Chronic Exposure	61
	13.4	Cont	rolled Waters Assessment	61
	13.5	Grou	ınd Gas	61
	13.6	Upda	ated CSM and Risk Assessment	61
	13.7	Cond	clusions and Recommendations	63
	14	Grou	ınd Treatment	64
	15	Spec	eification Appendices	65
	16	Instr	umentation and Monitoring	66
	16.1	Pile t	testing requirements	66
	16.2	Supe	ervision	66
	17	Main	tenance and Repair Statement	67
	18	Geot	echnical Risk Register	68
	19	Refe	rences	82
Annexes:	Annex		Geotechnical Data Sheets – Earthworks, Sheet Pile Wall and MS4 Gantry	84
	Annex		Geotechnical Datasheets – Minor ctures	120
	Annex	С	SLIDE Output	155
	Annex	_	MS4 Cantilever Gantry Geotechnical gn Report	176
	Annex	_	General Arrangement Drawings of the bosed Locations	177
	Annex		GDMS Maps - Site location plan,	

	Ged	perficial geology, Bedrock geology, otechnical asset data base, Flood maps (All racted from GDMS)	178
	Annex G	Geological Long Sections	212
	Annex H Dra	Earthwork and Highway Structure wings	213
	Annex I Met	Contaminated Land Risk Assessment chodology	214
	Annex J	Ground Investigation Factual Report	216
	Annex K	Contaminated Land Screening Tables	217
	Annex L	ZETICA UXO Bomb Risk Maps	222
	Annex M	Series 600 Specification	228
	Annex N	Series 1600 Specification	229
List of Tables:	Table 1 Sur	mmary of Proposed Works	10
	Table 2 Sur	mmary of landfill sites	13
	Table 3 Sch	neme related GDMS reports	13
	Table 4 GD	MS Condition Sets	15
	Table 5 His	torical mapping review	22
	Table 6 Util	ities identified closest to each site	22
	Table 7 Pre	eliminary CSM and Risk Assessment	25
		tic Load Testing Undertaken for M1 J23a-25 Lane Running Scheme	31
	Table 9 Geo	penvironmental Testing	32
	Table 10 De	erived Geotechnical Parameters	38
	Table 11 'G	reen' Category Emergency Areas	41
	Table 12 Mi	inor Structures	41
		naracteristic Geotechnical Parameters for the pe stability analysis	43
		artial factors on actions used in the slope bility analysis	43
		artial factors on geotechnical parameters d in the slope stability analysis	43
		esign Stability Models used in the design of tings	45
		esign Stability Models used in the design of	48

Table 18 Slope Stability Analysis Summary	49
Table 19 Summary of proposed King Sheet Pile Wall at EA-SB-193/4	53
Table 20 Loading on Plunge Pile Foundations	54
Table 21 Loading on Pad Foundations	56
Table 22 Loading on Planted Foundations	56
Table 23 Summary of proposed foundations for Minor Structures	56
Table 24 Design CBR Values	58
Table 25 Boreholes Conducted for respective EA site	60
Table 26 Updated CSM and Risk Assessment	62
Table 27 Specification Document References	65
Table 28 Potential severity of harm occurring	6 8
Table 29 Risk classification	6 8
Table 30 Geotechnical Risk Register	69
Table 31 Definitions of Hazard Levels	214
Table 32 Definitions of Likelihood Levels	214
Table 33 Risk Matrix	215
Table 34 Definitions of Risk Levels	215

1 INTRODUCTION

1.1 Background

Following the smart motorways evidence stocktake and action plan, published by the UK Government in March 2020, a new standard for the spacing of Emergency Areas was published by National Highways. National Highways has instructed SMP Alliance to retrofit this standard onto existing "All Lane Running" Smart Motorways.

An Emergency Area (EA), as defined in GD301, includes:

- 1. Motorway Service Areas (MSAs),
- 2. Emergency Areas,
- 3. A new or existing hard shoulder that is a minimum of 3 metres wide and minimum 100 metres long with suitable Emergency Roadside Telephone (ERT).

For the purposes of continuity, EA will apply to all of the above throughout this document.

This report deals with geotechnical aspects of one of the National Emergency Area Retrofit (NEAR) schemes located in National Highways Area 7: M1 Junction 23a-25 Smart Motorway. The scope of the project entails design of the following infrastructure between junctions 23a and 25 along the M1 motorway:

- 1. Six Emergency Areas (EA),
- 2. One MS4 Cantilever Gantry,
- 3. One Closed Circuit Television (CCTV) mast,
- 4. Five Stopped Vehicle Detection (SVD) systems.
- 5. One Motorway Incident Detection and Automatic Signalling (MIDAS) mast.

The M1 J23a to 25 scheme (M1 J23a-25) works have been defined as a Geotechnical Category 2 as per the requirements of National Highways Standard CD 622 (Design Manual for Roads and Bridges – Managing Geotechnical Risk) [20] and guidance given in BS EN 1997-1 [12].

1.2 Objectives

This report has been prepared in accordance with the Smart Motorway Programme Design Guide Annex E3.11 [25] and Design Manual for Roads and Bridges CD 622 Managing Geotechnical Risk [20]. This report combines the elements of CD 622 i.e., Preliminary Sources Study Report (PSSR), Geotechnical Investigation Report (GIR) and Geotechnical Design Report (GDR) as agreed with National Highways in the scheme specific Statement of Intent (GDMS No. 47380) [5].

1.3 Site location description

The scheme extends between Junction 23a (Donington Park Junction: NGR 446895, 324788) and 25 (Sandiacre Interchange: NGR 447194, 335613) of the M1 for a length of 11.6 km approximately as shown in Annex E. Of the proposed six EAs, three are located along the northbound carriageway and three along the southbound carriageway, of which two are intra-junction. M1 Junction 23a is located where the M1 and A42 connect, situated approximately 1km south of East Midlands Airport. The M1 then proceeds northwards to Junction 24 at the northern extent of Kegworth, providing access to the A50 for northbound M1 traffic. After approximately 1.25km, Junction 24a allows access to the M1 from eastbound traffic of the A50 and provides access to the A50 from southbound M1 traffic. The M1 continues north for 7km to Junction 25, known as Sandiacre Interchange, where the M1 and the A52 connect. Junction 25 marks the northern extent of this scheme. Road levels generally fall from J23a to J25, from approximately 77m AOD to 47m AOD.

1.4 Proposed works

Summary of the proposed infrastructure works involved in this scheme are presented in Table 1. The proposed works are classified as geotechnical category 2 as defined in BS EN 1997:2004 + A1:2013 [12] and CD622 [20]. The co-ordinates listed in Table 1 for each proposed EAs, CCTV, MS4 Gantry, SVDs and MIDAS are their respective midpoints with respect to the extent of the proposed infrastructure. A detailed plan view of the proposed structures from GDMS extract is shown in Figure 19-15 of Annex F.

Table 1 Summary of Proposed Works

Name	Marker Post	Туре	Direction	Existing Earthwork Type	Easting	Northing
M1-J23a-J25-EA-NB-187/8	187/8	EA	NB	Embankment	446861.0	330029.0
M1-J23a-J25-EA-NB-190/2	190/2	EA	NB	Embankment	446685.0	332308.0
M1-J23a-J25-EA-NB-192/0	192/0	EA	NB	Cutting to at grade	447256.0	333972.0
M1-J23a-J25-EA-SB-193/4	193/4	EA	SB	Cutting	447211.0	335436.0
M1-J23a-J25-EA-SB-187/7	187/7	EA	SB	Embankment	446911.0	329995.0
M1-J23a-J25-EA-SB-185/1	185/1	EA	SB	Cutting	447559.0	327409.0
MS4-NB-190/5	190/5	Gantry	NB	Embankment	446884.0	332633.0
ссти	193/3B+43	CCTV	SB	Cutting	447212.2	335401
SVD	190/2A+34	SVD	NB	Embankment	446717.53	332368.9
SVD	192/0A+19	SVD	NB	Cutting to at grade	447245.11	334008.2
SVD	185/0B+05	SVD	SB	Cutting	447558.61	327347.5
SVD	187/7B+70	SVD	SB	Embankment	446892.57	330048.9
SVD	193/3B+45	SVD	SB	Cutting	447212.3	335403.3
MIDAS	190/5A+61	MIDAS	NB	Embankment	446889.0	332642.0

For programme purposes, including to facilitate geotechnical certification, the construction has been split into Advanced Works and Main Works. The Main Works comprise the construction of the infrastructure such as the EA's, VMS gantry, CCTVs, SVDs and MIDAS infrastructure as detailed in Section 1.1.

Advanced Works comprise the following:

- Installation of NRTS interrupter power & technology ducting and cabling local to each EA.
 There is no trenching works associated with this. All ducting in the verge is to be surface mounted upon wooden stakes or the fence line.
- Vegetation clearance at each EA
- GPR surveys and trial holes to identify existing services and subsequent identification, cutting and removal from the footprint.
- Preparatory works for TM arrangements, typically around merge and di-verge nosing's with amendments to chevrons
- Testing of electrical circuits and general dilapidation surveys of the existing network

Once TM access has been gained, there will be the setup of the welfare and parking area at each EA location using a standardised general layout as illustrated in Figure 1-1, which is being utilised across the NEAR programme. Of particular note, which will be requiring of geotechnical considerations, is an assessment of the appropriateness of the exact location of the welfare area including site cabin, and any provision for off road parking and the planned areas for material storage – all of which is likely to introduce some loads to the verge. It is possible that such areas are in a location where there is limited space due to either an embankment crest or cutting toe. Consideration to the proximity of any existing earthwork defects on GDMS would be prudent to avoid any unintended exacerbation of an area where the slope is already in an 'at risk' situation.

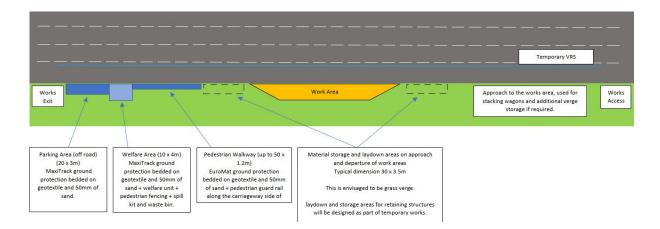


Figure 1-1: Plan showing planned Advance Works

Geotechnically relevant Advanced Works, for example those which have the potential to impact the road user or extend beyond the National Highways boundary are being considered within the scope of this report. At the time of writing the requirement for Temporary Works had not been determined by the Contractor. The Contractor has confirmed that all Temporary Works will be subject to design based on site-specific conditions.

At the time of writing this report the identification, evaluation and management of the geotechnical risks associated with the Advanced Works so that the residual risks are at tolerable levels has been captured in the scheme Geotechnical Risk Register.

2 SOURCES OF INFORMATION, DESK STUDY, SITE RECONAISSANCE, SITE DESCRIPTION AND REVIEW OF FINDINGS

2.1 British Geological Survey (BGS)

2.1.1 Maps

- 1:50,000 and 1:625,000 Scale Geology via BGS Geoindex (2021) [22]. https://mapapps2.bgs.ac.uk/geoindex/home.html#;
- Sheet No. 141 Loughborough Soild and Drift Geology, 1:50,000 Scale (2001) https://largeimages.bgs.ac.uk/iip/mapsportal.html?id=1001634.

2.1.2 Memoirs

Geology of the country between Loughborough, Burton and Derby: sheet description of the 1:50,000 series sheet 141 (2001). https://pubs.bgs.ac.uk/publications.html?pubID=B06078

2.1.3 Made Ground

The BGS GeoIndex [22] and published geological maps indicate large extents of Made Ground along the M1 J23a-25. This is likely to be associated with construction of the motorway, its associated infrastructure and residential construction in its proximity. The embankments shown on GDMS and descriptions from available boreholes indicate that the embankments are typically constructed of reworked locally won bedrock materials.

2.1.4 Superficial geology

Superficial deposits relevant to the scheme are shown on Figure 19-21 of Annex E. Along the route of the M1 motorway which is followed by Made Ground, Alluvium and River Terrace Deposits which were observed occasionally along the proposed alignment. The presence of Alluvium deposits is associated due to the river Trent in the vicinity. Fluvial incision and floodplain abandonment has resulted in the formation of River Terrace Deposits that flank the river.

2.1.5 Bedrock geology

Geological formations relevant to the scheme are shown on Figure 19-22 of Annex E. Along the extent of the scheme, Mudstones, Siltstones, and Sandstone of various formations namely Gunthorpe member, Diseworth Sandstone, Tarporley Siltstone formation, Helsby Sandstone formation, Edwalton Member, Arden Sandstone formation, Branscombe Mudstone formation and Cotgrave Sandstone member, as indicated in Figure 19-22. Gunthorpe member can be found to be present at both the scheme start and end i.e, J23a and J25. The Edwalton Member is observed to dominate the scheme towards the Northern side.

2.1.6 Boreholes

A review of the BGS Geoindex (2022) [22] has identified approximately 453 boreholes in and around the length of the alignment within the study area as shown in Figure 19-23, Figure 19-24, Figure 19-25, Figure 19-26, Figure 19-27 and Figure 19-28. The BGS does not have current contact details for all confidential boreholes deposited with them and the quality of the data is uncertain as no preview is allowed. Therefore, acquisition of these confidential borehole records will not be progressed. Despite the large number of available boreholes, it should be noted that there is no more than one at or near each of the proposed intervention sites from the existing boreholes online in lieu of that ground investigation has been carried out and factual report has been provided to fill that gap in information. The following previous ground investigation reports were also taken into consideration for the derivation of ground models:

• Smart Motorway Programme M1 Junction 23a – 25, Ground Investigation Report, Amey Arup JV, 2013, GDMS No:28929 [2]

2.2 Environment Agency

2.2.1 Hydrogeology

A review of the Environment Agency's Aquifer Designation Map identifies the M1 (J23a-25) bedrock and superficial geology as Secondary B and Secondary A aquifers respectively. The site does not lie within a groundwater Source Protection Zone.

2.2.2 Hydrology

A review of the Environment Agency (EA) website (https://flood-map-for-planning.service.gov.uk/) indicates:

- Flood Zones 2 & 3, associated with the River Trent catchment, covers most of the study area;
- Flood Zones 2 & 3, associated with River Erewash catchment, are present towards the northern end of J25 approximately 800m East of the study area.

 Flood zones are shown on Figure 19-29.

2.2.3 Landfills

One landfill site is identified in the area adjacent to the proposed works (Figure 19-35). Details of the landfill site and their waste type is detailed in Table 2.

Table 2 Summary of landfill sites

Landfill Site Name	Site reference	Location		
Hemington Gravel Pit	EAHLD28397	Adjacent to the carriageway – approximate MP187/3 to 188/3	Industrial	

2.3 Coal Authority- Engineering and Mining Assessment

A review of the Coal Authority interactive viewer [27] identified no areas where the scheme boundary encroached into the Coalfield Consultation Area. All the geotechnical interventions proposed for the scheme fall outside the Coalfield Consultation Area. There is also no recorded history of mining disturbance affecting the motorway in or near this location.

From the available information and the proposed CCTV location being in the verge of a cutting, the risk from mine workings was deemed insignificant and purchase of further Coal Authority records considered unnecessary.

2.4 GDMS

2.4.1 Reports

Table 3 lists the reports considered most relevant to the scheme. These have been selected after a review of the reports identified in the scheme-specific Statement of Intent and further interrogation of GDMS [21].

Table 3 Scheme related GDMS reports

GDMS No.	Scheme Title	Туре	Publication Date	Author
19183	M1 Widening Junctions 21 – 30 [1]	Preliminary Sources Study Report	Nov-2004	Arup
28929	Smart Motorways Programme M1 Junction 23a to 25 [2]	Ground Investigation Report	Feb-2016	Amey Arup JV
29152	Smart Motorways Programme M1 Junction 23a to 25 [3]	Geotechnical Design Report	Jun-2017	Amey Arup JV

GDMS No.	Scheme Title	Туре	Publication Date	Author
30523	Super Midland M1 J23a-25 [4]	Feedback Report	2018	Amey Arup

2.4.2 Geotechnical Asset Database

The geotechnical assets, inventory items, condition sets and items have been downloaded from GDMS [21] and are shown in Annex E . Condition set 641780 has been identified as closest to the proposed location EA-SB-185/1, which is 5m westwards from the centre of the EA. The rest of proposed works do not encounter any existing condition sets at or near to the proposed locations. Table 4 summarises the condition sets observed at the proposed EA locations.

Table 4 GDMS Condition Sets

					Та	ble 4 GDMS	Condition Sets			
Proposed EA location	Nationa E	l Grid N	SI No.	Defect (Class)	Location	Within EA or Distance from centre of EA	Description	Remediated Slopes in Earthwork	Remarks	Last Inspection Date of Corresponding Earthwork
M1-J23a- J25-EA- NB-187/8	446854	330037	1	None observed	-	-	None observed	N/A	-	27/01/2021
M1-J23a- J25-EA- NB-190/2	446687	332312	1	Class 1D	Near MP 190/0, on the southbound carriageway (opposite side of EA)	120m Southeast	Poorly backfilled excavation behind acoustic barrier - approximately 20m long, max depth 0.3m, max width 0.1m. Foundation to barrier exposed in part.	N/A	Condition ID: 641448, Feature Grade: 3	13/01/2021
MS4-NB-	446960	222502	1	Class 1D	Near MP 190/0, on the southbound carriageway (opposite side of EA)	450m South	Poorly backfilled excavation behind acoustic barrier - approximately 20m long, max depth 0.3m, max width 0.1m. Foundation to barrier exposed in part.	N/A	Condition ID: 641448, Feature Grade: 3	13/01/2021
190/5	446860	332593	2	Not classified	Between MP 190/9 and just beyond MP 191/4, to the northbound carriageway (same side of EA)	390m North	Acoustic barrier	N/A	Set ID 171357	16/04/2021

Proposed EA	EA		SI No.	Defect (Class)	Location	Within EA or Distance from	Description	Remediated Slopes in	Remarks	Last Inspection Date of
location	E	N	NO.	(Class)		centre of EA		Earthwork		Corresponding Earthwork
M1-J23a- J25-EA- NB-192/0	447255	333980	1	None observed	-	-	None observed	N/A	-	13/01/2021
			1	Not classified	Near MP 193/5, within the interchange, but close to the northbound carriageway of M1	90m Northwest	Drainage (standing water on the ditch) and vegetation (excessive vegetation on the slope), can't inspect.	N/A	Set ID 478474	11/12/2019
M1-J23a- J25-EA- SB-193/4	447209	335466	2	Not classified	Near MP 193/5, within the interchange, but close to the northbound carriageway of M1	113m Northwest	Desiccation cracks at the crest for a length of 31m.	N/A	Set ID 478460	11/12/2019
			3	Not classified	Between MP 193/5 and MP 193/6, approximately 50m away from the northbound carriageway of M1	160m Northwest	Hydrophilic vegetation and high moisture content	N/A	Set ID 411654	09/02/2023
			4	Not classified	Between MP 193/5 and MP 193/6, approximately	170m Northwest	Hydrophilic vegetation and high moisture content	N/A	Set ID 411653	09/02/2023

Proposed EA location	Nation E	al Grid N	SI No.	Defect (Class)	Location	Within EA or Distance from centre of EA	Description	Remediated Slopes in Earthwork	Remarks	Last Inspection Date of Corresponding Earthwork
					100m away from the northbound carriageway of M1					
			5	Not classified	Between MP 193/5 and MP 193/6, but along A52	220m Northwest	Hydrophilic vegetation and high moisture content	N/A	Set ID 411642	09/02/2023
			6	Class 3	Between MP 193/5 and MP 193/6, but along A53	320m Northwest	-	Retaining wall/concrete slabs 0.5m high. Not seen 2019 due to dense brambles	Set ID 478760	10/02/2023
			7	Not classified	70m from MP 193/5B. i.e., 70m to the west of the southbound carriageway of M1, within the interchange	150m Northeast	Drainage (standing water on the ditch) and vegetation (excessive vegetation on the slope), can't inspect.	N/A	Set ID 478469	11/12/2019
			8	Not classified	Between MP 193/5B and MP 193/6B, approximately 40m from the southbound carriageway of	200m Northeast	Drainage (standing water on the ditch)	N/A	Set ID 411662	09/02/2023

Proposed EA location	Nationa E	al Grid N	SI No.	Defect (Class)	Location	Within EA or Distance from centre of EA	Description	Remediated Slopes in Earthwork	Remarks	Last Inspection Date of Corresponding Earthwork
					M1, within interchange					
			9	Not classified	Near MP 193/6B, approximately 40m from the southbound carriageway, within interchange	225m Northeast	Hydrophilic vegetation	N/A	Set ID 478466	09/02/2023
			10	Class 3	Between MP 193/6B and MP 193/7, along Bostock's Lane	270m Northeast	-	Defect repaired with retaining wall 1 to 1.5m tall with guard rail along top	Set ID 218586	09/02/2023
			11	Class 1A	Between MP 193/6B and MP 193/7, along Bostock's Lane	360m Northeast	Multiple piles of debris at crest of slope. One pile held up by makeshift wooden pallet retaining wall.	N/A	Set ID 653673	09/02/2023
			12	Class 1D	Near MP 193/7, same side of EA	300m North	Slip in mid-slope, back scar has max height of 0.2m and is approximately 22m long. The cutting is also desiccated.	N/A	Set ID 142025	27/01/2021

Proposed EA	Nationa	National Grid		Defect	Location	Within EA or Distance	Description	Remediated Slopes in	Remarks	Last Inspection Date of
location	E	N	No.	(Class)	Location	from centre of EA	Description	Earthwork	Remarks	Corresponding Earthwork
			13	Class 1D	Near MP 193/8B, same side of EA	375m North	Comms retaining wall failure/collapse, not repaired by SMP (present 2021)	N/A	Set ID 535991	27/01/2021
M1-J23a- J25-EA- SB-187/7	446908	330003	1	None observed	-	-	None observed	N/A	-	27/01/2021
			1	Class 2	Between MP 185/0B and MP 185/1B, same side of EA	5m west	Poorly backfilled area of cutting, 8m wide and 8m up slope from toe	N/A	Set ID 641780	28/01/2021
M4 1222			2	Class 1D	Between MP 185/0A and MP 185/1A, opposite side of EA	39m Southwest	Incipient shallow slope failure, approximately 11m wide, step 0.2m high	N/A	Set ID 641747	28/01/2021
M1-J23a- J25-EA- SB-185/1	447559	327407	3	Class 1D	Between MP 185/0A and MP 185/1A, opposite side of EA	39m Southwest	Soil slips in mid-slope, back scar approximately 0.5m high, 9m wide. Desiccation cracking in upper slope.	N/A	Set ID 641748	28/01/2021
			4	Class 1A	Near MP 185/0M, same side of EA, on the slip road next to the main carriage way	77m Southeast	Large embankment failure, full height of embankment and approximately 16.8m long. Back scar is at the crest of the embankment and is 2m high from crest	N/A	Set ID 642019	15/03/2023

Proposed EA	Nationa	National Grid SI Defect Location Within EA or Distance Description		Description	Remediated Slopes in	Remarks	Last Inspection narks Date of				
location	E	N	No.	(Class)		from centre of EA	entre of			Corresponding Earthwork	
							to top of slope bulge and 3.3m off the back of VRS.				
			5	Class 2	Near MP 184/9B, same side of EA	140m Southeast	Poorly backfilled excavation, no topsoil, and slight seepage	N/A	Set ID 642034	28/01/2021	
			6	Not classified	240m to the west of MP 185/3B, along A453	380m Northeast	Drainage (toe). Some ponding and burrows in place within ditch	N/A	Set ID 614079	10/01/2019	
			7	Class 1D	260m to the west of MP 185/3B, along A454	400m Northeast	Minor soil slips and subsidence at crest over ~10m long, 3m wide section. Displace ~0.5m vertical	N/A	Set ID 614080	10/01/2019	

2.4.3 Structures

The Structures Management Information System structures dataset has been interrogated. Within the study area there are approximately 63 No. structures. The structures consist of:

- 29 No. Bridges and Large Culverts;
- 4 No. Masts:
- 3 No. Retaining Walls;
- 25 No. Signs/Signal Gantries;
- 2 No. Small Span Structures.

The proposed works do not interfere with the existing highway structures.

2.4.4 Historical Land Use

A high-level review of the available historical mapping on GDMS [21] was undertaken along with review of existing PSSR-19183 [1]. The findings are summarised in Table 5.Prior to the construction of the M1 in the early 1970s, the land use of the area was largely rural. Little change has taken place up to Junction 23A except the development of the motorway itself. East Midlands Airport was opened in 1965 on the site of a former Royal Air Force base (Castle Donington). At this time, road access to the airport was from Kegworth village crossing the M1 on an overbridge. Junction 24 was constructed just to the east of Lockington with an exit to the recently improved Derby-Loughborough Road (A6). By 1972, improvements had taken place to the airport access and the Ashby Road diverted around its extended site. The A453 from Nottingham had also been completed as far as Junction 24. By 1982, the A453 link had been built south from Junction 24 to give direct access from the motorway to East Midlands Airport. By 1992, Junction 23A had been completed in its present-day configuration with direct access to East Midlands Airport and slip roads connecting to the newly opened A42/M42.

Junction 24A was opened in 1999 connecting the A50 Derby Southern bypass with the M1 at CH 186+800. Continuing north to Sawley, the motorway route passes over the "Sawley and Weston Railway" at CH 187+ 300. From 1921, a major water main (the "Derwent main") ran parallel and west of the motorway from Sawley to the Warren Lane Bridge at CH 186+800 where a pumping station is still located. By 1972, extensive gravel pits had been developed on both sides of the motorway near Lockington Grounds Fann but were almost entirely infilled by 1995.

The River Trent floodplain was predominantly rural with fields and meadows, and evidence of oxbow lakes and abandoned channels. The M1 was constructed across this area on embankments and viaducts. Between 1971 and 2000, the villages of Sawley and Long Eaten underwent expansion with residential areas extending towards the eastern boundary of the motorway. By 1983, a major reservoir and waterworks (Church Wilne Reservoir) were completed to the west of the motorway just south of the Derby-Nottingham railway. A flood protection lagoon/nature reserve is also shown on the 1983 mapping near the west side of the motorway embankment (CH 191 +500).

Passing north out of the flood plain, the area remains rural. The Derby Canal is shown on the earliest (1889) mapping and crosses the M1 at CH 192+900. The canal was disused by 1973, and partly in filled beneath the motorway and through Long Eaton. Just to the north, a brickyard is shown, disused by 1901. The brickpit is shown as a pond on the line of the motorway, until the construction of the M1, but presumably it was infilled at this time. A small number of properties were demolished to construct the motorway between the settlements of Sandiacre and Risley. Junction 25 gave access to the A52 Derby-Nottingham Road. A slip road to the southeast of the junction was constructed giving access to a motel and hotel completed by 1983.

The historical land uses identified have no adverse impact on the proposed works.

Table 5 Historical mapping review

Year	Observations
Pre 1900	The area is mostly rural
Pre 1910	No significant change
Pre 1920	No significant change
Pre 1930	No significant change
Pre 1940	No significant change
Pre 1950	No significant change
Pre 1960	No significant change
Pre 1970	M1 is present in current configuration J24A not yet constructed. Extension of Swaley and Long Eaton towards the eastern boundary of motorway
Pre 1980	Extension of Swaley and Long Eaton towards the eastern boundary of motorway
Pre 1990	J23A completed in the current day configuration, Extension of Swaley and Long Eaton towards the eastern boundary of motorway
Pre 2000	J24A opened in 1999, Residential and commercial development along the motorway at the existing settlements

2.5 Department for the Environment, Food and Rural Affairs

Searches for statutory undertaker's plant have been undertaken by the project and a composite utilities plan [26] produced. The existing utilities closest to the proposed works are summarised in Table 6. All available utility data will be added to the pre-construction information as required by the Construction Design and Management Regulations (2015). Risks associated with existing services and potential mitigation measures are captured in the scheme designers risk assessment and on the drawings which clearly communicate the residual risk.

Table 6 Utilities identified closest to each site

Proposed work	Marker Post	Utility type	Proximity to works	Drawing reference
M1-J23a-J25-EA- NB-187/8	187/8	BT (Telecom/Cable) – Underground	Within footprint	HE614830-WSP-GEN- P015_AL_ALLGENR-M2-CH-
		TELENT - Underground		0004
M1-J23a-J25-EA- NB-190/2	190/2	BT (Telecom/Cable) – Underground	Within footprint	HE614830-WSP-GEN- P015_AL_ALLGENR-M2-CH- 0004
		BT (Telecom/Cable) – Underground	Within footprint	
M1-J23a-J25-EA- NB-192/0	192/0	TELENT - Underground	Within footprint	HE614830-WSP-GEN- P015_AL_ALLGENR-M2-CH-
		Western Power Distribution – Electricity Overhead	About 13m west	0004

Proposed work	Marker Post	Utility type	Proximity to works	Drawing reference
M1-J23a-J25-EA- SB-193/4		TELENT - Underground	Within footprint	HE614830-WSP-GEN-
	193/4	Western Power Distribution – Electricity Underground	About 36m Southeast	P015_AL_ALLGENR-M2-CH- 0004
M1-J23a-J25-EA- SB-187/7	187/7	TELENT - Underground	Within footprint	HE614830-WSP-GEN- P015_AL_ALLGENR-M2-CH- 0004
M1-J23a-J25-EA- SB-185/1		TELENT - Underground	Within footprint	HE614830-WSP-GEN-
	185/1	Western Power Distribution – Electricity Underground	about 35m north	P015_AL_ALLGENR-M2-CH- 0004
MS4-NB-190/5	190/5	BT (Telecom/Cable) – Underground	Within footprint	HE614830-WSP-GEN- P015_AL_ALLGENR-M2-CH- 0004

2.6 Utilities

Statutory undertaker searches were undertaken by the project and a composite utilities plan [26] was produced. All available utility data will be added to the pre-construction information as required by the Construction Design and Management Regulations (2015). Risks associated with existing services and potential mitigation measures are captured in the scheme designers risk assessment and on the drawings which clearly communicate the residual risk.

2.7 Unexploded Ordnance (UXO)

The Zetica UXO Ltd regional risk map [28] shows most of the site has a low risk of UXO. No abandoned bombs or UXO finds were identified in the study area. Considering the indicated hazards and the existing motorway construction no further assessment of UXO was deemed necessary.

2.8 Potential Sources of Contamination

In addition to the historical landfill detailed in sub-section 2.2.3, there are two potential off-site sources of contamination within 100m of the proposed EAs and associated structures. These are:

- A historical brick works with associated tramway and tanks, located 30m south of EA-SB-193/4.
- Historical refuse heaps (location of Hemington Gravel Pit historical landfill) located 25m west and 25m east of EA-NB-187/8 and EA-SB-187/7, respectively.

In addition to the above off-site sources, potential on-site sources of contamination could include:

- Contaminated Made Ground and Fill associated with the motorway construction and embankments.
- Fuel and chemical spillages associated with road traffic accidents/incidents.

2.9 Preliminary Conceptual Site Model (CSM) and Risk Assessment

Based on the information in the preceding subsections, a preliminary Conceptual Site Model (CSM) has been developed, and Potential Pollutant Linkages (PPLs) have been identified by a preliminary

risk assessment. The PPLs are summarised in Table 7. The risk is based on a consideration of the following:

- The likelihood of an event (probability considers both the presence of the hazard and receptor and the integrity of the pathway); and,
- The severity of the potential consequence (considers both the potential severity of the hazard and the sensitivity of the receptor).

Further information on the risk assessment methodology is provided in Annex I.

Table 7 Preliminary CSM and Risk Assessment

Source	Identified Contaminant	Pathways to Receptor	Receptor	Consequenc e	Likelihood	Risk	Comments
On-site sources of contamination, comprising: - Motorway construction (contaminated Made Ground and Embankment Fill). - Motorway fuel/chemical spills.	Heavy metals, inorganics, polycyclic aromatic hydrocarbons, petroleum hydrocarbons, volatile and semi-volatile organic compounds, asbestos etc.	Leaching and vertical migration of soil contaminants and/or contaminated perched groundwater.	Groundwater: - Secondary A aquifers (superficial deposits) Secondary B aquifers (Edwalton Member and Gunthorpe Member).	Mild	Unlikely	Very Low	Post-construction, the scheme will primarily comprise hardstanding with limited soft landscaping, therefore leaching of soil contaminants and vertical migration to groundwater is unlikely. During construction, the installation of pile foundations could create preferential pathways for leachable soil contaminants and/or contaminated perched groundwater to enter the aquifers. However, historical ground investigation records within the vicinity (<100m) of the proposed EAs and associated structures do not indicate the presence of widespread visual/olfactory contamination.
Off-site sources of contamination, comprising: - Historical landfill (Hemington Gravel Pit) - Historical refuse heaps Historical brick works	Ground gas and vapours.	Inhalation of ground gas/vapours in excavations and confined spaces.	Construction and future maintenance workers.	Severe	Unlikely	Modera te/low	Exposure of construction / maintenance workers to ground gas/vapours is possible within excavations and confined spaces. However, historical ground investigation records within the vicinity (<100m) of the proposed EAs and associated structures do not indicate any widespread sources of ground gas or vapours, such as organic/putrescible materials/wastes or odours.
Off-site sources of contamination, comprising: - Historical landfill (Hemington Gravel Pit).	Landfill gas.	Inhalation of landfill gas in excavations and confined spaces. Explosion.	Construction and future maintenance workers.	Severe	Low	Modera te	Exposure of construction / maintenance workers to landfill gas is possible within excavations and confined spaces at EA-NB-187/8 and EA-SB-187/7, located within the immediate vicinity (25m) of Hemington Gravel Pit historical landfill.

3 SITE RECONNAISSANCE

Location-specific ground investigation (GI) was carried out between 2nd May and 4th July 2023 at specific areas of interest to determine the geotechnical and geo-environmental information of the substrata. The areas of interest were determined based on the availability of historical substrata information in the proximity of the proposed infrastructure elements. The ground investigation data has been recorded with the proposed field and laboratory tests in the factual report produced by Strata Geotechnics (part of Van Elle) included as Annex J. Along with ground investigation, LiDAR and topographical survey data has also been referred to in the preparation and analysis of the earthwork sections at the specific areas of interest. Cross sections at the proposed EA locations have been developed utilising both LiDAR and topographic data, the worst-case geometry has been considered for final analysis.

4 GROUND CONDITIONS

In addition to publicly available records held by the British Geological Survey, reference has been made to the existing ground investigation data obtained for the M1 J23a - 25 Smart Motorways Programme, which is included in the Ground Investigation Report (GDMS No. 28929) produced by Amey Arup JV in February 2016. The ground conditions and laboratory testing data from this report along with the data from the 2023 ground investigation has been considered in the following assessment. Based on the available ground investigation, the geological conditions along the scheme have been summarised in a series of long sections, which are included in Annex G. The locations of the proposed EAs and their accompanying minor structures have been identified on these sections.

During both Ground Investigations (2016 & 2023), extensive deposits of Made Ground were encountered. Made Ground comprising Engineering Fill associated with the construction of the motorway (road construction materials and embankments) is expected to be present. The composition of the Made Ground is expected to be variable, comprising both granular and cohesive soils. Underlying the Made Ground in several locations, very stiff to occasionally soft cohesive superficial deposits were encountered and in other areas loose to medium dense granular superficial deposits were encountered.

No groundwater strikes were encountered during the ground investigation performed in 2023.

5 PRELIMINARY ENGINEERING ASSESSMENT

The following preliminary engineering assessment forms part of the Preliminary Sources Study Report. These assessments are developed further in the GDR section of the report.

5.1 Earthworks

All the earthwork interventions, both on embankments and in cuttings, will involve regrading of the existing slopes to 1(V):2(H) or 1(V):2.5(H) except one case where retention measure has been adopted. Thus, none of the earthworks will require reinforcement. Slope stability analysis will be undertaken to demonstrate long term stability of earthworks.

Embankments are to be constructed with acceptable engineered fill in accordance with the scheme-specific Series 600. No soft or compressible materials were identified during the 2023 ground investigation, but when localised soft spots are encountered, these should be excavated and replaced with good quality fill material. Standard details will be produced for the earthworks interventions. Annex H shows typical sections of the proposed regrades for this scheme.

5.2 Retaining Structures

Where the proposed EAs cannot be constructed with simple regrades to existing slopes, then retaining structures will be required. There are standard details employed on the Smart Motorway Programme and these include options for slab on edge, modular block walls, and king sheet piles. Detailed geotechnical design will be required for one location where a retention measure in the form of King Sheet Pile Wall has been adopted.

5.3 Minor structures

Posts for signs, CCTV, MIDAS, or gantry bases will be required and shall be designed in accordance with CD 354- Design of minor structures.

In addition to foundations, the drainage of the structures will require to be assessed. For example, the position of Comms chambers will be reviewed to advise on drainage strategy. If feasible soakaway drainage is preferred but this will be assessed against the risk to the earthwork asset or if shallow groundwater has been recorded locally.

6 COMPARISON OF PROJECT OPTIONS AND RISKS

The Overarching SMP design philosophy, which has largely carried through to SMA and NEAR, is "Design Once, use often". This requires creation of a suite of design solutions that can be applied to the likely conditions that will be encountered on site. Each design solution contains a degree of conservatism and has to cover a specific range of conditions. For the NEAR programme the Intervention Decision tree for embankment and cutting respectively show which approach should be selected. The Decision tree was attached in the scheme specific SOI [5] for further information.

7 FIELD AND LABORATORY STUDIES

The scheme-specific ground investigation factual report produced by Strata Geotechnics (2023) is the main reference for the field and laboratory data. The ground conditions and laboratory testing data from this report have been considered in the following assessment. In addition to publicly available records held by the British Geological Survey, reference has been made to previous ground investigation data obtained for the M1 J23a - 25 NEAR scheme in the Ground Investigation Report (GDMS No. 28929) produced by Amey Arup JV in February 2016. The geotechnical parameters derived as part of the M1 J23a - 25 Smart Motorways Programme which is taken from the factual report produced by Strata Geotechnics have been validated using the Ground Investigation Report (GDMS No. 28929) available.

7.1 Geomorphological/Geological Mapping and Topographic Survey

Geomorphological or geological mapping has not been undertaken specifically for this scheme. Reference should be made to Table 4 for information on the current condition of earthwork assets on the scheme. In summary, although minor geomorphological features are present in this section of the network, they are considered not to impose a risk to the proposed scheme and are not planned to be addressed.

7.2 Ground Investigations

A specific ground investigation has been undertaken for the current works. A large existing data set from the previous Managed Motorway works covering Junction 23a to 25 is also available and has been used in conjunction with other historical exploratory hole data accessed via the British Geological Survey and GDMS. The location of the boreholes is identified on the geological long sections provided in Annex G. These boreholes are reasonably sufficient given the proximity and the data filling in the gaps of the ground investigation report [2]. The AGS file for the corresponding ground investigation data can be accessed at this link here: G230600 - 2023-09-04 1020 - AGS to accompany Report Rev 002.ags

7.2.1 Description Of Fieldwork

The ground investigation data available from the Strata Geotechnics factual report (2023) comprises the following:

- 7no. Dynamic (windowless) sample boreholes to a maximum depth of 10m bgl;
- 3no. Window Sample boreholes with rotary follow-on to a maximum depth of 20m bgl.

As noted above, the full dataset, including the new boreholes undertaken between Junction 23a and 25, have been used in the following assessment.

7.2.2 Results of In Situ Tests

Standard Penetration Tests

A total of 94 Standard Penetration Tests (SPT) were undertaken within the boreholes (2023) to determine the in-situ relative density of the ground encountered.

7.3 Drainage Studies

None undertaken.

7.4 Geophysical Surveys

None undertaken.

7.5 Existing Test Pile Results

Working Pile load tests were undertaken at eight gantry base locations constructed as part of the original 'all lane running' (ALR) scheme. This information is recorded in the M1 J23a - 25 Geotechnical Feedback Report (GDMS No. 30523) and summarised below.

Table 8 Static Load Testing Undertaken for M1 J23a-25 All Lane Running Scheme

	Statio Load Tooting Ondortano	Results	J
Gantry	Load (kN)	Maximum	Residual
	Load (KN)	Displacement (mm)	Displacement (mm)
G:202	Working Load – 849	0.62	0.36
	Max.Test Load –1273.5	1.15	0.69
G:203	Working Load – 713	0.24	0.14
	Max.Test Load –1069.5	0.4	0.2
G:301 P2	Working Load – 1539	1.29	0.64
	Max.Test Load –2308.5	2.43	1.17
G:301	Working Load – 1539	1.12	0.49
	Max.Test Load –2308.5	2.22	1.19
G:303	Working Load – 1033	1.2	0.36
	Max.Test Load –1549.5	1.87	0.64
G:311	Working Load – 590	0.23	0.03
	Max.Test Load –885	0.42	0.11
G:313	Working Load – 412	0.69	0.2
	Max.Test Load –618	1.1	0.37
G:315	Working Load – 1222	0.54	0.13
	Max.Test Load –1833	0.84	0.2
Working Load	 Specified Working Load 		
Max.Test Load	 Design Verification Load 		

Other Field Work

None undertaken.

7.6

7.7 **Laboratory Investigation**

7.7.1 **Description of Tests**

The following geotechnical laboratory testing is available:

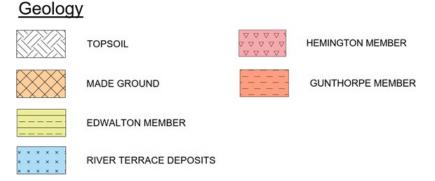
Geotechnical Test	Test Method	Number of Test Results	
Moisture Content	BS1377: Part 2: 1990; Clause 3	31	
Liquid / plastic limits	BS1377: Part 2: 1990	51	
Particle Size Distribution	BS1377: Part 2: 1990; Clause 9	57	
Determination of dry density/moisture content relationship (2.5kg hammer)	BS1377: Part 4: 1990	40	
Small Shear Box	BS1377: Part 7: 1990; Clause 4	9	
Large Shear Box	BS1377: Part 7: 1990; Clause 4	1	
Point Load Index	ISRM 1985	7	
Uniaxial Compressive Strength	ISRM, Part 2 1981	1	
Consolidated Undrained triaxial total strength (QUT)	BS1377: Part 7: 1990	1	

7.7.2 **Geoenvironmental Tests**

Geoenvironmental sampling and testing was undertaken during the 2023 Strata Geotechnics ground investigation at six EA locations as detailed in Table 9 below. Only testing of soils were undertaken; no leachate testing or testing of water samples were undertaken.

Table 9 Geoenvironmental Testing

	Sample	Strata		Testing	g (Soils)		
Borehole	depth (mbgl)		Asbestos	Inorganics	Metals	TPH	VOCs
	0.5	Made ground	Y	Y	Υ	Υ	Υ
BH1877N	1.0	Hemington Member		Y	Υ		
	1.5	Hemington Member		Y	Y	Y	Y
BH1877S	1.8	Hemington Member		Y	Y	Y	Y
BH1896S	1.7	Hemington Member		Y	Y		
BH1912S	1.0	Edwalton Member		Y	Y	Y	Y
BH1920N	0.3	Made ground	Y	Y	Y	Y	Y
	0.4	Made ground	Y	Y	Y	Y	Y
BH1933S	1.0	Made ground	Y	Y	Y	Y	Y
	1.3	Gunthorpe Member		Y	Y		


TPH – Total Petroleum Hydrocarbons VOCs – Volatile Organic Carbons

8 GROUND SUMMARY

8.1 Overview

Based on the ground investigation and historical reports, the geological conditions along the scheme have been summarised in a series of long sections which are included in Annex G. The locations of the individual EAs have been identified on these long sections. The following subsections provide a summary of the ground conditions at each EA and accompanying minor structures using extracts from the geological long sections Annex G. Detailed Geotechnical Data Sheets (GDS) summarising the ground model, characteristic values of geotechnical parameters, risks are included in Annex A and Annex B.

A legend for the geological cross sections is included below.

8.1.1 EA NB-187/8

The approximate location of the EA is shown in the Figure 8-1 which also notes the existing exploratory holes and the GI borehole performed in 2023. An extract of the geological long section indicating the approximate location of the EA is also provided below in Figure 8-2.

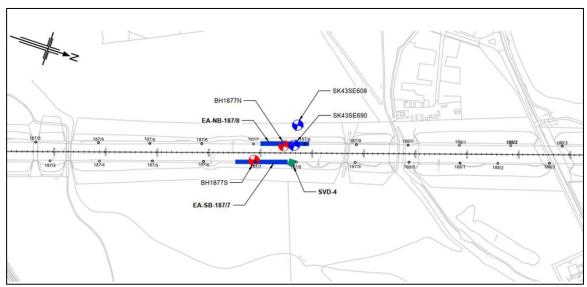


Figure 8-1: Location of EA NB-187/8

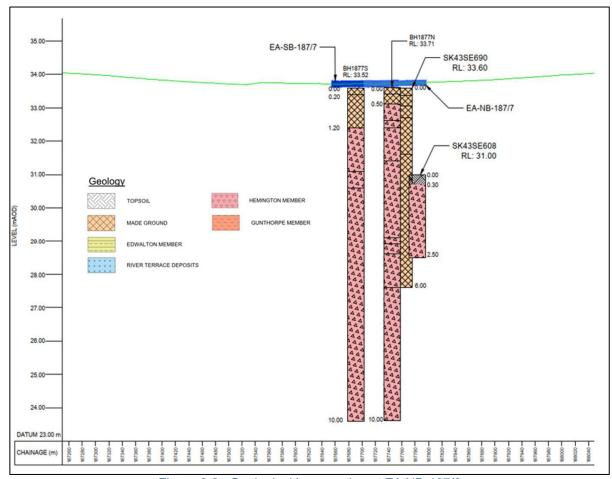
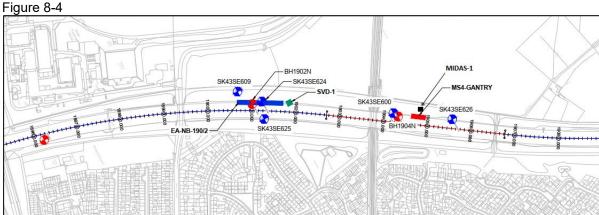



Figure 8-2: Geological long section at EA NB-187/8

There is a difference observed between the strata depicted in the boreholes from the GFR [4] and the 2023 ground investigation data. From the long section in Figure 8-2, field descriptions of Made Ground from the GFR [4] and of the Hemington Member from the 2023 GI data are the same, but these have been classified differently. GDMS [21] depicts superficial data in this region as Hemington Member which is more in line with the 2023 GI data. Therefore, the strata recorded as Made Ground in borehole SK43SE690 is considered an incorrect classification.

8.1.2 EA NB-190/2, SVD-1 and MIDAS-1

The approximate locations of the EA, SVD and MIDAS are noted in Figure 8-3 which also notes the existing exploratory holes and the GI borehole performed in 2023. An extract of the geological long section indicating the approximate location of the EA, SVD and MIDAS is also provided below in

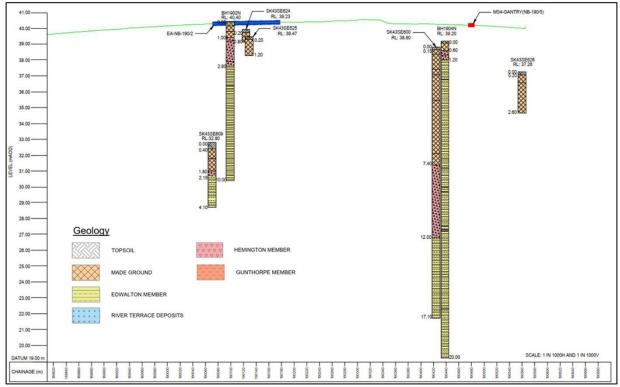


Figure 8-3: Location of EA NB-190/2, SVD-1 and MIDAS-1

Figure 8-4: Geological long section at EA NB-190/2

On similar lines of section 8.1.1, there is a difference observed between the strata depicted in the boreholes from the GFR [4] and the 2023 GI data. From the long section in Figure 8-4, field descriptions of Made Ground from the GFR [4] and of the Edwalton Member from the 2023 GI data are the same, but these have been identified differently. GDMS [21] depicts superficial data in this region as Hemington Member and bedrock data as Edwalton Member, which is more in line with the 2023 GI data. Therefore, the strata recorded as Made Ground in borehole SK43SE600 is considered an incorrect classification.

8.1.3 EA NB-192/0 and SVD-2

The approximate location of the EA and SVD is noted in Figure 8-5 which also notes the existing exploratory holes and the GI borehole performed in 2023. An extract of the geological long section indicating the approximate `of the EA and SVD is also provided below in Figure 8-6.

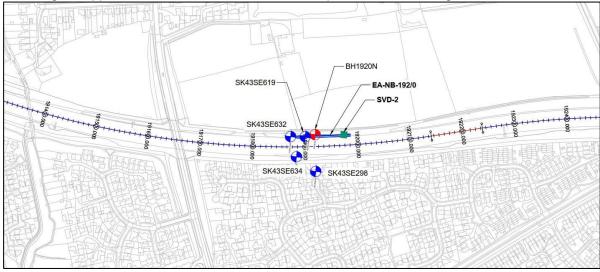


Figure 8-5: Location of EA NB-192/0 and SVD-2

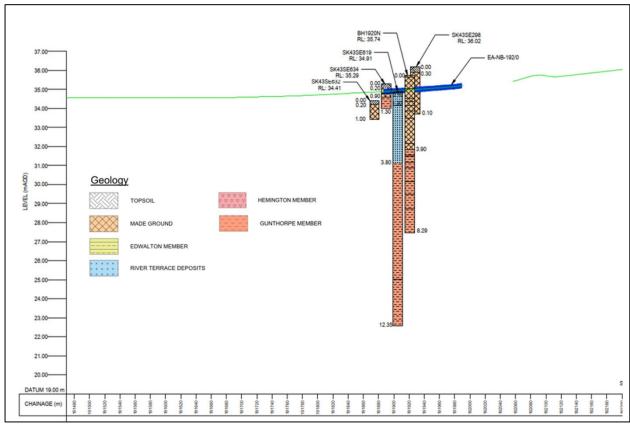


Figure 8-6: Geological long section at EA NB-192/0

8.1.4 EA SB-193/4, CCTV-1 and SVD-5

The approximate location of the EA, CCTV and SVD is noted in Figure 8-7 which also notes the existing exploratory holes and the GI borehole performed in 2023. An extract of the geological long section indicating the approximate location of the EA is shown below in Figure 8-8.

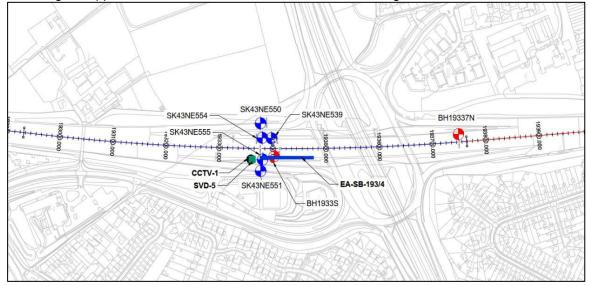


Figure 8-7: Location of EA SB-193/4 and SVD-5

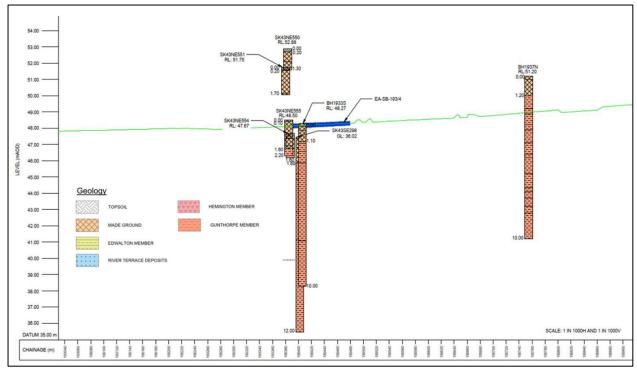


Figure 8-8: Geological long section at EA SB-193/4

8.1.5 EA SB-187/7 and SVD-4

Refer section 8.1.1 for extract of the geological long section indicating the approximate location of the EA and SVD as these are on the southbound carriageway at similar project chainages.

8.1.6 EA SB-185/1 and SVD-3

The approximate location of the EA and SVD is noted in the Figure 8-9 which also notes the existing exploratory holes and the GI borehole performed in 2023. An extract of the geological long section indicating the approximate location of the EA and SVD is also provided below in Figure 8-10.

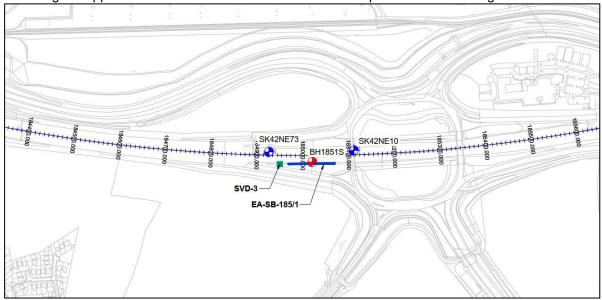


Figure 8-9: Location of EA SB-185/1 and SVD-3

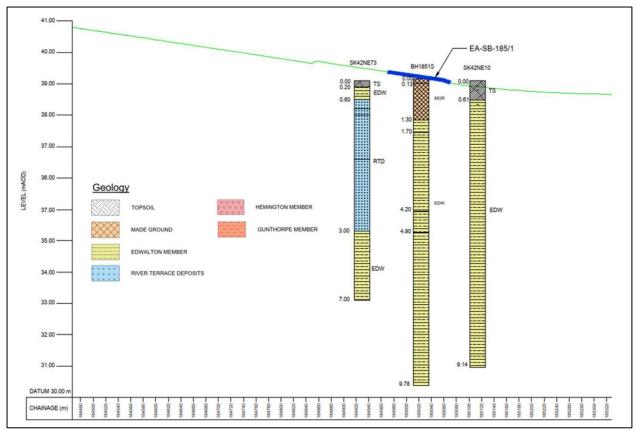


Figure 8-10: Geological long section at EA SB-185/1

8.1.7 MS4 Gantry at NB-190/5

Refer section 8.1.2 for extract of the geological long section indicating the approximate location of the MS4 Gantry.

8.2 Derived Geotechnical Parameters

Characteristic values of unit weights, effective soil parameters and undrained shear strengths have been derived based on scheme-specific ground investigation and the 2017 geotechnical design report for the M1 J23a-25 Smart Motorway upgrade (GDMS report 29152), assuming a moderately conservative approach. A summary of geotechnical parameters is presented in Table 10. Details of characteristic values of geotechnical parameters for each site are provided within the Geotechnical Datasheet in Annex A and Annex B.

Table 10 Derived Geotechnical Parameters

Material (Geological Unit)	Bulk Unit Weight γ (kN/m³)	Effective Angle of Shearing Resistance Φ' (˚)	Effective Cohesion c' (kPa)	Undrained Shear Strength C _u (kPa)
Embankment fill (Class 1A)	20	36	0	-
Made Ground (Granular)	19	30	0	-
Made Ground (Cohesive)	19	27	0	100
Hemington Member (Granular)	19-19.5	30	0	-
Hemington Member (Cohesive)	19	27	0	105

Material (Geological Unit)	Bulk Unit Weight γ (kN/m³)	Effective Angle of Shearing Resistance φ' (˚)	Effective Cohesion c' (kPa)	Undrained Shear Strength C _u (kPa)	
Edwalton Member (Granular)	20	33	0	-	
Edwalton Member (Cohesive)	19-20	26-27	0-2	50-167	
Gunthorpe Member (Cohesive)	19-20	26-27	0-2	130-192	

9 ENGINEERING ASSESSMENT

This document comprises a combined Preliminary Sources Study Report, Ground Investigation Report and Geotechnical Design Report for all sites and minor structures. The strategy for geotechnical works is outlined in the scheme Statement of Intent https://example.com/he614830-WSP-HGT-P015 AL ALLGENR-RP-CE-0001.pdf (GDMS No. 47380). On this scheme, the majority of EAs are anticipated to be formed by regrading the existing earthwork slopes, either steepening cuttings or widening embankments. At the time of originating this report, all the EAs categorised under 'green' are anticipated to comprise regrades.

It is proposed to use a series of site-specific ground models to assess the various EAs and minor structures across the scheme. In practice this will mean a moderately conservative ground model is adopted. A detailed geotechnical design of the proposed infrastructure is discussed in the following section. As mentioned in section 7.2 the ground investigation is reasonable sufficient in all aspects of the design considerations.

10 GEOTECHNICAL DESIGN

The following sections comprise the Geotechnical Design Report for the 'Six EA' sites and one MS4 Cantilever Gantry. A summary of these sites and their proposed interventions for EAs and Minor structures are provided in Table 11 and Table 12 respectively. The General Arrangement Drawings of the proposed locations are attached in Annex E of this document.

Table 11 'Green' Category Emergency Areas

Structure Ref.	Structure Type	GDMS Earthwork ID	Earthwork Type	Geotech- nical Solution	Max. Retained Height (m) / Regrade Gradient
M1-J23a-J25-EA-NB- 187/8	EA	24434	Embankment	Regrade	1V: 2H
M1-J23a-J25-EA-NB- 190/2	EA	24420	Embankment	Regrade	1V: 2H
M1-J23a-J25-EA-NB- 192/0	EA	22235	Cutting to at grade	Regrade	1V: 2.5H
M1-J23a-J25-EA-SB- 193/4	EA	22232	Cutting	King Sheet Pile Wall	2.0
M1-J23a-J25-EA-SB- 187/7	EA	24555	Embankment	Regrade	1V: 2H
M1-J23a-25-EA-SB- 185/1	EA	42059	Cutting	Regrade	1V: 2H
MS4 Buildout EA-E3-A2- 190/5	Gantry	24388	Embankment	Helical Piles for foundation	1V: 2H*
* The regrade angle is subje	cted to the in	stallation loca	tion of the Helica	l Piles	

Table 12 Minor Structures

Structure Ref.	Structure Type	Earthwork Type	Geotechnical Solution	Foundation Sizes
CCTV SB-193/4	CCTV	Cutting	Planted Foundation	600mm diameter, 3.9m depth
SVD-1 NB-190/2	SVD	Embankment	Pad Foundation	0.9m x 0.9m x0.6m
SVD-2 NB-192/0	SVD	Cutting to At Grade	Pad Foundation	0.9m x 0.9m x0.6m
SVD-3 SB-185/1	SVD	Cutting	Pad Foundation	0.9m x 0.9m x 0.6m
SVD-4 SB-187/7	SVD	Embankment	Pad Foundation	0.9m x 0.9m x0.6m
SVD-5 SB-193/4	SVD	Cutting	Pad Foundation	0.9m x 0.9m x0.6m
MIDAS-1 NB-190/2	MIDAS	Embankment	Planted Foundation	168mm diameter 3.1m depth

10.1 Ground Model and Geotechnical Data Sheets (GDS)

Geotechnical design of the scheme has been progressed in accordance with the Smart Motorways Design Guide, Appendix E3.03. The use of prescriptive measures is maximised using suitably conservative parameter values drawn from the ground investigation undertaken and existing information, as listed in Section 8.2. The details for each design element are summarised in the relevant GDS, which are presented in Annex A for earthworks, retaining wall & MS4 gantry, and Annex B for minor structures.

10.2 Soil Slope Design

10.2.1 General Assumptions

Generic cutting and embankment widening designs have been undertaken for soil slopes. First, the slopes geometry and ground conditions have been reviewed at each EA location, and next, five (5No.) Design Stability Models have been created assigning them to a specific EA. The Design Stability Models represent the worst credible scenarios in terms of geometry and ground conditions, and they are presented in section 10.2.2(for cuttings) and 10.2.3 (for embankments).

Two Design Stability Models have been developed for cuttings and three for embankments. The following information has been taken into account:

- Earthwork type (cutting or embankment);
- Groundwater conditions;
- Regrade type (partial or full);
- Existing slope angle (the steepest one);
- Existing cutting/embankment height (the highest one);
- Proposed regrade height (the highest one);
- Earthwork condition/ recorded defects in the footprint and immediate surroundings of the EA;
- Surcharge loads.

The generic earthwork designs have been applied to all EA earthwork modifications. Commercially available computer software (*Slide2* by Rocscience, 2022, version 9.024), employing limit equilibrium analysis to assess limit state modes of failure, was used to analyse the global stability of embankments and cuttings. Morgenstern and Price analysis for computing Overdesign Factor (ODF) was adopted for all analyses undertaken. The software options of 'slope search' was utilised for confirming the critical slip surface for circular analyses as appropriate.

It has been assumed for the purpose of design that existing earthworks are stable in their current condition unless major earthwork defects were identified during the Principal Inspections of earthworks as recorded in GDMS. Where earthwork defects have been recorded as being remediated, it is assumed that these slopes are stable and no further remedial works are required. Any existing earthwork defects that occur near a slope surface and within the extent of an EA will be remediated as part of the construction process by the creation of benching and the cutting back of existing slope faces. This is to ensure that loose or previously slipped material is removed and replaced.

The minimum depth of slip surfaces considered has been defined as per the default setting in *Slide2*. Drained and undrained conditions have been considered during design; however, for all analysed scenarios, drained conditions are the more onerous.

a) Geotechnical Parameters:

Scheme-wide geotechnical parameters have been assumed in the design of earthworks.

For the purposes of soil slope design, characteristic values of unit weights, effective and total stress soil strength parameters have been prepared from intrusive GI as specified in section 8.2 and historical data (GDMS Report 29152, by Arup for the original M1 J23a-25 Smart Motorway upgrade), adopting a moderately conservative approach.

The EA locations have distinct strata, which are among the six mentioned below and have been used for the respective slope designs. A summary of geotechnical parameters is presented in Table 13.

Table 13 Characteristic Geotechnical Parameters for the slope stability analysis.

Material (Geological Unit)	Bulk Unit Weight, γ (kN/m³)	Effective Angle of Shearing Resistance, φ' (°)	Effective Cohesion, c' (kPa)	Undrained Shear Strength, Cu (kPa)
Embankment fill (Class 1A)	20	36	0	-
Made Ground - Granular (MGG)	19	30	0	-
Made Ground - Cohesive (MGC)	19.0	27	0	100
Hemington Member - Cohesive (HMC)	19	27	0	100
Hemington Member - Granular (HMG)	19.5	30	0	-
Edwalton Member - Cohesive (EDW-C)	19-20*	26-27*	1-2*	75-167*
Gunthorpe Member – Cohesive (GUN-TC)	19-20*	27	2	130-180*

^{*} Characteristic values have been selected from this range at corresponding EA sites.

b) Limit States:

The results of the generic stability analyses both for the cuttings and embankments are summarised in Annex A: Geotechnical Design Summaries – Earthworks.

The methodology for stability analysis is in accordance with BS EN 1997-1 (BSI, 2013), the accompanying National Annex (BSI, 2014) and BS 6031 (BSI, 2010). Both Design Approach 1 Combination 1 (DA1-C1) and Design Approach 1 Combination 2 (DA1-C2) have been considered as part of ultimate limit state (ULS) analysis.

Partial factors on actions and soil parameters for both combinations, used in the slope stability analyses are presented in Table 14 and Table 15 respectively.

Table 14 Partial factors on actions used in the slope stability analysis

Actio	n	Symbol	Set		
Action		Symbol	A1	A2	
Permanent	Unfavourable	V.	1.35	1.0	
Permanent	Favourable	Ϋ́G	1.0	1.0	
Variable	Unfavourable	V-	1.5	1.3	
Variable	Favourable	γ Q	0.0	0.0	

Table 15 Partial factors on geotechnical parameters used in the slope stability analysis

Sail Dayamatay	Symbol	S	et
Soil Parameter	Symbol	A1	A2
Effective shearing resistance	Y φ'	1.0	1.25
Effective cohesion	Y c'	1.0	1.25
Undrained shear strength	γcu	1.0	1.4
Unconfined strength	γ qu	1.0	1.4
Weight density	Ϋ́γ	1.0	1.0

For all analysed scenarios, Combination 2 was consistently the critical case due to no extremely high variable actions or extremely low soil strength.

10.2.2 Cuttings

a) General assumptions:

Review of historical ground information has showed that some cutting slopes may be built from Made Ground material. This situation has been encountered at some EAs located around Junctions. This is likely due to the fact that the junction (mainline and slip roads) is located above natural ground levels and supporting earthworks have been built from engineered fills.

b) Loads:

The design of cuttings has included an allowance for potential loading represented as a uniformly distributed S1= 5kN/m² nominal surcharge at the top of the cutting.

c) Groundwater:

At all EAs located in cuttings, groundwater levels were deeper than maximum exploration depth; however, for the purpose of design, groundwater has been conservatively assumed to be 1.0m below the carriageway at the toe of cutting slope. Pore water pressure coefficient is not considered for the analysis as the soil above water table is free draining. Also, at EA-NB-192/0 where cohesive material is encountered, pore water pressure coefficient is not considered for the analysis given to the fact that the earthwork involved is at grade and no pore pressure build up is anticipated at this location.

c) Design Stability Models used for cuttings

Two (2No.) different Stability Models have been used in the design of cutting slopes. They have been derived assuming the critical ground conditions and slope geometries i.e., the highest and steepest cutting slopes as well as the highest slope regrades. A regrade of 1(v):2(h) and 1(v):2.5(v) have been proposed for EA locations. The drawings with typical cross-sections are attached in Annex H. A summary of Design Stability Models used for cuttings is presented in Table 16.

The results of slope stability analysis for all Design Stability Models presented in Table 16 indicate the proposed gradients of 1(v):2(h) and 1(v):2.5(h) satisfy the requirements of Eurocode 7.

A schematic cross section of a typical cutting widening is shown in Figure 10-1

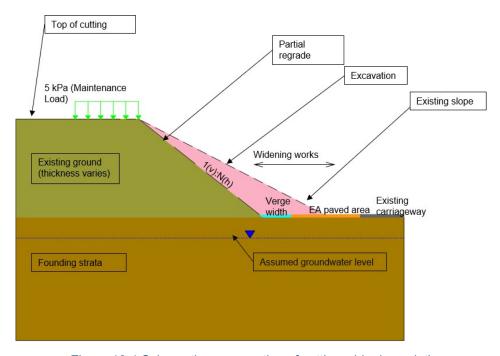


Figure 10-1 Schematic cross section of cutting widening solution.

Table 16 Design Stability Models used in the design of cuttings.

		Exis	ting state		Design State					
EA location	Earthwork Type	Max. Slope Height H (m)	Max. Existing Slope Gradient 1(v): n(h)	Max. Existing Slope Angle α (°)	Regrade Type	Proposed New Slope Gradient	Proposed New Slope Angle β (°)	Max. Slope Regrade Height h(m)	Surcharge Load S1	Ground Model (expressed by layer thickness) ⁽¹⁾
M1-J23a- J25-EA- NB-192/0	Cutting	3.0	1:2.7	20.0	Partial	1:2.5	21.8	0.75	5kPa	1. MGC: 1.3m, 2. MGG: 2.7m, 3. GUN-C.
M1-J23a- J25-EA- SB-185/1	Cutting	4.9	1:2.0	27.0	Partial	1:2.0	26.5	1.30	5kPa	1. MGG: 2.9m, 2. EDW-C: 0.4m, 3. EDW-C.

⁽¹⁾ Top of cutting / slip road is assumed as the reference level

10.2.3 Embankments

a) General assumptions:

The available historical and new ground information record the presence of Made Ground, both granular and cohesive in nature (MGR and MGC), overlying Hemington Member, Edwalton Member or Cohesive Gunthorpe Member

The Made Ground is clearly associated with motorway embankment construction.

Where localised soft cohesive materials (Cu <40kPa) are encountered beneath the toe of the proposed embankments, it is proposed to be replaced with Class 1A fill if above the water table or Class 6C fill if below.

A 0.5m depth of excavation and replacement of existing soils with Class 1A fill is required for all embankment widening.

b) Loads:

Design of the embankments has included an allowance for normal traffic loads. This is represented as a uniformly distributed S1=20kN/m² surcharge which is derived from the load model within NA to BS EN 1991-2:2003 'UK National Annex to Eurocode 1: Actions on structures – Part 2: Traffic loads on bridges' (British Standard Institution, 2010).

Potential temporary construction and maintenance loading on the road verges has been represented by a uniformly distributed S2=10kN/m² surcharge in accordance with BS 6031:2009 'Code of practice for earthworks' (British Standards Institution, 2009).

c) Groundwater:

At all EAs located on embankments, groundwater strikes have not been encountered till the maximum depth of exploration; however, for the purpose of design, groundwater has been conservatively assumed to be at 1m below the toe of the embankment. A porewater pressure coefficient (r_u) was not included in the slope stability analysis as the imported fill to form the embankment widening is specified as free-draining Class 1A granular fill (<15% fines) throughout.

A sensitivity check, however, has been carried out to simulate $r_u = 0.1$ in the upper 1m below slope surface, with the results indicating that slope stability is not compromised. Whilst the risk of localised wash-through of fines is considered feasible, it must be emphasised that this scenario is considered highly unlikely as the granular fill will not change its inherent nature to cohesive over its design life and as such, pore water pressures cannot build up.

c) Design Stability Models used for embankments:

Three (3No.) different Stability Models have been used in the design of embankment slopes. They have been derived assuming the most critical ground conditions and slope geometries i.e., the highest and steepest embankment slopes as well as the highest slope regrades. A regrade of 1(v):2(h) has been proposed for all EA locations. The drawings with typical cross-sections are attached in Annex H.

A summary of Design Stability Models used for embankments is presented in Table 17. The results of slope stability analysis for all Design Stability Models presented in Table 17 indicate the proposed gradient of 1(v):2(h) satisfies the requirements of Eurocode 7.

A schematic cross section of a typical embankment widening solution is shown in Figure 10-2

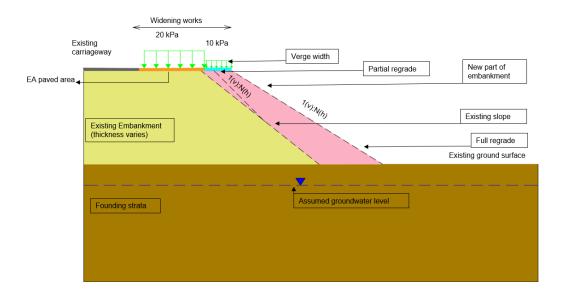


Figure 10-2 Schematic cross section of embankment widening solution.

Table 17 Design Stability Models used in the design of embankments.

Existing state				Design State						
Design Stability Model	Earthwork Type	Max. Slope Height H (m)	Max. Existing Slope Gradient 1(v):n(h)	Max. Existing Slope Angle α (°)	Regrade Type	Proposed New Slope Gradient	Proposed New Slope Angle β (°)	Max. Slope Regrade Height h (m)	Surcharge Loads S1 & S2	Ground Model (expressed by layer thickness) (1)
M1-J23a- J25-EA- NB-187/8	Embankment	5.8	1:2	26.5	Partial	1:2	26.5	2.0	S1=20kPa S2=10kPa	1. MGG: 1.0m 2. HEM-C: 1.2m, 3. HEM-G.
M1-J23a- J25-EA- NB-190/2	Embankment	9.1	1:2	26.5	Partial	1:2	26.5	3.0	S1=20kPa S2=10kPa	1. MGG: 1.3m, 2. HEM-G: 1.6m, 3. EDW-C.
M1-J23a- J25-EA- SB-187/7	Embankment	3.9	1:2	26.5	Partial	1:2	26.5	2.0	S1=20kPa S2=10kPa	1. MGG: 1.2m, 2. HEM-C: 1.8m, 3. HEM-G.

⁽¹⁾ Top of embankment is assumed as the reference level

10.2.4 Results

The Overdesign Factor (ODF) against global stability for all the soil slope models is summarised below in Table 18. The ODF in all the cases was observed to be greater than 1.0, hence the provided regrade solutions are found to be satisfactory. The outputs from Slide2 have been appended to Annex C.

The analysis has been checked for sensitivity under maintenance loading on the slope face (a 1m wide vertical surcharge of 5kPa to simulate pedestrian loading moving downslope from the crest). The sensitivity analysis has shown that the ODF is >1.0 in all cases.

Table 18 Slope Stability Analysis Summary

		Proposed	Overdesign Factor (ODF)				
EA	Type of Earthwork	regrade slope gradient	DA1C1 Drained	DA1C2 Drained	DA1C1 Undrained	DA1C2 Undrained	
M1-J23a-J25-EA-NB- 192/0	Cutting	1(v):2.5(h)	1.329	1.050	9.776	8.526	
M1-J23a-J25-EA-SB- 185/1	Cutting	1(v):2(h)	1.285	1.026	1.656	1.325	
M1-J23a-J25-EA-NB- 187/8	Embankment	1(v):2(h)	1.486	1.189	3.405	2.854	
M1-J23a-J25-EA-NB- 190/2	Embankment	1(v):2(h)	1.495	1.228	2.101	1.77	
M1-J23a-J25-EA-SB- 187/7	Embankment	1(v):2(h)	1.509	1.209	3.338	2.899	

10.3 Embedded Retaining Wall

10.3.1 General

The footprint of the proposed EA-SB-193/4 requires removal of the existing gabion wall partially to accommodate the EA. A new embedded retaining structure, a King Sheet Pile (KSP) wall has been recommended as a suitable solution to accommodate the construction of EA-SB-193/4 and retain the soil in the cut slope.

10.3.2 Geometry

The cross-sections for design were obtained from the Highways cross-section models and were verified with 3D-models generated by JET (Jacobs Engineering Tool) software. A KSP wall was identified as a suitable solution for highway widening at SB-193/4 with the proposed wall in a cutting slope. The maximum retained height is 2.0 m. A horizontal berm of 0.6 m width has been considered directly behind (upslope of) the KSP wall for allowance of future maintenance access.

A schematic cross section of an embedded retaining wall solution for cutting widening is shown in Figure 10-3

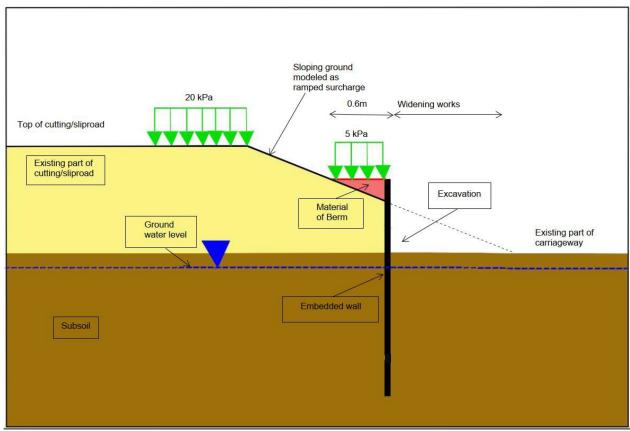


Figure 10-3 Schematic cross section of an embedded retaining wall solution for cutting widening.

10.3.3 Design Section

The design critical sections are identified based on existing ground conditions, maximum retained height and backfill slope angle. The following section profile has been considered during design:

- sheet piles of a Z-section configuration;
- sheet piles of width 700mm (Primary) and 770mm (Intermediate);
- sheet pile with a minimum cold rolled steel grade of S430GP.

A minimum section size of AZ 12-770 or equivalent has been considered for the purposes of drivability, however as this is dependent upon local ground conditions and retained height and pre-augering may be required. No capping beam is required by the design.

The details of wall/slope geometry and design sections are available in the relevant EA GDS appended in Annex A. General arrangement corresponding to King Sheet pile retaining wall is included in Annex H.

10.3.4 Loading

A 20kPa surcharge load representing the imposed load (variable load) from running lanes of the slip road behind the proposed KSP wall was applied in accordance with BS 6031:2009 (British Standard Institution, December 2009). A nominal load of 5kPa was considered behind the wall on the maintenance berm. Impact loading from vehicles is assumed to be entirely absorbed by the vehicular restraint system within the EA. The sloping ground encountered above the wall was modelled as a tapered surcharge to a height and angle appropriate for the site-specific geometry.

10.3.5 Ground Condition

The ground model for the EA location (SB-193/4) has been presented in the relevant GDS in Annex A. The soil parameters have been extracted from intrusive ground investigation and the existing geotechnical reports. The summary of soil parameters used for analysis is also presented in the GDS. The groundwater level was assumed to be at 1m below EA ground level.

10.3.6 Drainage

The drainage behind the wall shall be facilitated by the intermediate KSP walls to ensure groundwater levels on the retained side do not exceed the level assumed for design.

10.3.7 Design Working Life

The design working life of the KSP wall is 120 years in accordance with CD 350 (National Highways, 2020). The KSP wall achieves its design working life through an allowance of sacrificial steel. The design assumes that the KSP will not be galvanised, and corrosion rates have been assessed for each face of steel in contact with soil as follows:

For an embedded wall in cutting, where steel is in contact with soil, the surrounding ground has been taken as "undisturbed natural soils (sand, silt, clay, schist,)" for a 120-year design life. A corrosion rate of 1.44mm per side on contact with soil and 2.0mm on the face area of wall exposed to the atmosphere, to take into account the effects of de-icing salts and other environmental actions in accordance with Table 4.1 of BS EN 1993-5 (BSI, 2012) (BSI, 2009) has been considered for the design.

10.3.8 Geotechnical Design Method

The design of the embedded retaining wall was carried out in accordance with BS EN 1993-5 (BSI, 2009) (BSI, 2009), BS EN 1997-1 (BSI, 2013) (BSI, 2013), their accompanying National Annexes (BSI, 2012) (BSI, 2014), and BS 8002 (BSI, 2015) (BSI, 2015).

The KSP walls were analysed using the commercially available computer software 'WALLAP', version 6.07 (2020), by 'Geosolve'. Earth pressures (active and passive) were derived from EC7 relationships. The friction angle between the wall and the soil has been taken as two-thirds (2/3) the internal friction angle, due to the smooth surface of the wall, as recommended in CIRIA C760 (CIRIA, 2017). In WALLAP, the embedded depth and the retained height were optimised to achieve a factor of safety greater than or equal to 1.0 for limit state design to EC7. The section of sheet pile was then selected based on the maximum bending moment (BM) and shear force (SF) output by WALLAP in accordance with BS EN 1993-5:2007 (BSI, 2009).

The ULS limit states for both types of embedded wall were designed to DA1-C1 and DA1-C2 as per BS EN 1997-1 (BSI, 2013). The SLS condition has been assessed in relation to the deflection at the crest of the wall. Neither the British Standards nor National Highways documentation specifies any limit regarding permissible lateral deflection of the wall or the ground movements; however, a nominal limit of 75 mm was taken as the maximum permissible lateral deflection at the crest of the wall under long term earth pressures and live loading conditions.

The following design approach and assumptions were considered for design and analysis of the KSP wall as per the KSP wall design process document HE614830-JAC-HGT-P001 AL ALLGENR-TN-GE-0001:

- sloping ground behind the wall in cutting has been modelled as a tapered surcharge;
- the soil in front of the wall has been excavated to the retained height;
- an unplanned excavation (or over-dig) allowance of 10% of retained height (or 0.5 m, whichever is greatest) has been included in the design to allow for unplanned excavation. This is in accordance with BS EN 1997-1 (BSI, 2013) (BSI, 2013), where localised excavation in front of embedded wall is not anticipated;
- soil properties have been changed to drained wherever applicable for modelling long term behaviour;
- wall section properties have been reduced in the long-term to allow for corrosion throughout its design life;
- for embedded walls in cuttings, the design has allowed for the planned excavation required to install the road pavement, or cabinets, in front of the wall. Where site specific information was not available, an allowance of 10% of the retained height (or 1.2m, whichever is greatest) has been included in the design.

The following construction sequence was considered during the 'WALLAP' analysis:

Installation of KSP wall to the required toe level;

- Excavation in front of the wall including unplanned excavation of 0.5m;
- Excavation in front of the wall allowing for utilities installation to 1.2m below final retention height;
- Filling in front of the wall up to finished road level minus over dig of 0.5m (unplanned);
- Soil properties changed to drained where applicable;
- Sheet pile stiffness reduced as per corroded section thickness for 120-year design life;
- Filling in front of the wall to final retained height.

10.3.9 Design Outcome

The retaining wall sections were chosen to satisfy the lateral deflection and structural capacities. The design results are detailed in the GDS presented in Annex A. A summary of the proposed King Sheet Pile Wall is shown in Table 19.

A sensitivity analysis has been performed to check the possibility of hydrostatic water pressure build-up on the active side of the wall (to a level of 50.23m AOD) and both ULS stability and SLS deflections are found to be within acceptable limits.

Table 19 Summary of proposed King Sheet Pile Wall at EA-SB-193/4

	King Pile	Inter-	V: Pile	Stiffness of system, El (kNm²/m run)			Maximum retained height (m)	Total Embedment of King Pile	Total Embedment of Intermediate Pile (m
EA	Type	mediate Pile Type	Spacing, (m)	Before corrosion allowance	After After corrosion allowance in allowance in exposed Buried length				
M1-J23a-J25- EA -SB-193/4	AZ26-700	AZ12-770	2.94	59720	45450	47760	2.0	7.5	3.25

10.4 Highway Structures

10.4.1 MS4 Gantry

Screw Fast foundations (part of Van Elle limited) have been tasked with the preparation of GDR for the proposed MS4 gantry, the same has been attached as Annex D to this GDR.

10.4.2 CCTV Mast Foundation

Foundations for CCTV on long slender masts of 15m height have been designed in accordance with Smart Motorway Programme - Design Guide Annex E3.08 and CD 354 *Design of Minor Structures*.

A plunge pile foundation comprising a 457mm diameter steel circular hollow section 'plunged' into a 750mm diameter bore filled with concrete is proposed for new stand-alone CCTV Mast foundations. Geotechnical design of the foundations has been undertaken in accordance with CD 354 to verify the ultimate and serviceability limit states. WALLAP geotechnical software was used to confirm the pile lengths were sufficient to limit lateral deflections to within acceptable limits. A ground strength factor of 'average' has been assumed for verge locations.

Further details are provided in drawing included in Annex D and in corresponding GDS is included in Annex B.

a) Geometry

A single CCTV mast has been proposed at M1-J23a-J25-EA-SB-193/4, which is on the sloping ground of slope gradient 1(v):2(h). Hence, as per CD 354 sufficient additional depth has been proposed for plunge piles at / near sloping ground.

b) Loading

The loading at the head of each plunge pile foundation to support this mast have been provided by the structures team and presented below in Table 20.

Table 20 Loading on Plunge Pile Foundations

Minor Structure	ULS Bending Moment at Base	ULS Horizontal Force at Base
ссту	78.6 kNm	9.95 kN

The SLS and ULS were analysed in WALLAP software, with a single pile model. The nominal load was considered for the utilisation calculation for planting depth in accordance with CD 354.

c) Ground condition

The associated ground model for the CCTV structure location has been presented in the GDS in Annex A. An extract of the typical ground conditions is presented in GDS. The ground encountered is broadly divided into two categories:

Made Ground (cohesionless) underlain by Gunthorpe Member (Cohesive).

Irrespective of the intrusive ground investigation and historical exploratory hole data (with much lower water table), the water table has been conservatively assumed to be 1m below ground level within the analysis.

Geotechnical Design Method

The following design method was applied at the proposed mast location according to Smart Motorway Programme - Design Guide Annex E3.08 and CD 354 Design of minor structures:

- Check cross section at mast from Highways CAD model;
- Assess the location of mast (if at the crest of embankment) to gauge the offset of the mast from the crest of the nearest slope and the gradient of that slope, wherever necessary, include it in the calculation:
- Determine whether the ground conditions are 'Good', 'Average' or 'Poor' as defined by table 12.12 of CD 354;

- Apply loading to foundation and calculate utilisation due to design planting depth in accordance with CD 354;
- To calculate lateral displacements at the head of the pile, undertake WALLAP analysis for a single pile, considering bored pile diameter (750mm) backfilled with concrete, which is then compared with the limiting value.

Displacement Check

The design tolerance of displacement at head of the pile equivalent to 20mm is considered. In WALLAP, the boundary element analysis is carried out. It was necessary to perform a sensitivity analysis on the depth of the plunge pile to limit the deflections at head of the pile within design tolerance.

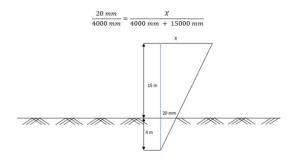


Figure 10-4: Plot showing typical displacement at pile cap.

Design outcome

According to the design checks undertaken for the CCTV plunge pile foundation, a minimum planting depth of 3.9m depth is required for 'average' ground condition. The depth was checked against the required displacement tolerances and was found to be sufficient. Thus, the CCTV foundation is designed as 4.0m long, 750mm diameter bored piles with a plunged 457mm diameter, 10mm thick CHS section. The foundation is connected to the mast via a flange plate.

The foundation drawings for the proposed structure are presented in Annex D.

10.4.3 SVD Foundation

The proposed SVD masts of 4.5m height will be supported on 0.9m long x 0.9m wide x 0.6m thick pad foundations

Based on ground investigations, the characteristic value of undrained shear strength (C_u) that has been derived for Cohesive Made Ground is 100kPa. However, the design assumes that prior to construction, the formation is to be inspected and, where cohesive material is present, tested by hand shear vane. If low strength cohesive material is encountered, defined as $C_u < 70 kPa$, it shall be excavated and replaced with compacted Class 1 Fill. The minimum depth of excavation shall be to where a minimum C_u of 70kPa is achieved. The granular Made Ground shall be well compacted prior to construction.

Details of the proposed foundation arrangement are included as Annex D. The SVD units are generally mounted on a square concrete foundation, side length 0.9m and thickness 0.6m (see Annex D), which applies a maximum bearing pressure of 70 kPa, including for self-weight of the foundation and wind action. The foundations have been sized for "average ground" conditions as described in the Institute of Highway Engineers (IHE) Sign Structures Guide (2021) Table 5.2, which satisfies ULS requirements of Eurocode 7 and the UK National Annex.

The top of the base will be level with the carriageway to maintain approximate SVD unit height above carriageway. The footing is placed on a 150mm layer of compacted Class 6C material. The SVD units are not sensitive to potential vertical movements that may result from seasonal shrink/swell of cohesive ground.

The foundation has been checked for overturning (EQU), sliding (GEO), and bearing (GEO) failure in accordance with the principles and methods of BS EN 1997 1:2004+A1:2013 using the dimensions and layout detailed below and a set of loads validated by the DED structures team and detailed in Table 21.

Table 21 Loading on Pad Foundations

Minor Structure	ULS Bending Moment at Base	ULS Horizontal Force at Base
SVD	1.32 kNm	0.30 kN

The foundation arrangement for the SVD masts on 0.9m square precast 0.6m deep reinforced concrete spread footing was found to be suitable for the loading and the proposed foundation size has been validated for a set of standardised geometries and ground conditions to be used across multiple sites.

10.4.4 MIDAS Foundation

Foundations for MIDAS on masts of 8m height have been designed in accordance with Smart Motorway Programme - Design Guide Annex E3.08 and CD 354 *Design of Minor Structures*. The proposed MIDAS mast will be supported on planted foundation of depth 3.1m with a pole diameter of 168mm. Based on ground conditions, the foundations have been sized for "average ground" conditions as described CD354 Table 12.12 and corresponding ground factor G has been used for the depth calculation of planted foundation.

MIDAS mast has been proposed at M1-J23a-J25-EA-NB-190/2, which is on the sloping ground of slope gradient 1(v):2(h). Hence, as per CD 354 sufficient additional depth has been proposed for planted foundation at / near sloping ground.

The loading at the head of planted foundation to support this mast have been provided by the structures team and presented below in Table 22.

Table 22 Loading on Planted Foundations

Minor Structure	ULS Bending Moment at Base	ULS Horizontal Force at Base
MIDAS	3.73 kNm	0.86 kN

10.4.5 **Summary**

A summary of the various minor structures together with their proposed foundation solution is presented in in the below Table 23. Plunge pile and pad foundation standard detail drawings are included in Annex H.

Table 23 Summary of proposed foundations for Minor Structures

Туре	Foundation Type	Foundation Dimensions	
CCTV SB-193/4	Plunge Piles	750mm Dia – 3.9m depth	
SVD-1 NB-190/2	Pad Foundation	0.9m x 0.9m x0.6m	
SVD-2 NB-192/0	Pad Foundation	0.9m x 0.9m x0.6m	
SVD-3 SB-185/1	Pad Foundation	0.9m x 0.9m x0.6m	
SVD-4 SB-187/7	Pad Foundation	0.9m x 0.9m x0.6m	
SVD-5 SB-193/4	Pad Foundation	0.9m x 0.9m x0.6m	
MIDAS-1 NB-190/2	Planted Foundation	168mm diameter 3.1m depth	

11 SPECIAL GEOTECHNICAL MEASURES

None are proposed for this scheme.

12 PAVEMENT DESIGN, SUBGRADE AND CAPPING

A CBR assessment has been undertaken to provide equilibrium CBR values for pavement design at each of the proposed EA locations. The equilibrium CBR values for pavement design were taken based on the Arup reports (GDMS reports 29152 and 28929) based on the recorded plasticity index values. Also, the DCP test results completed as part of the 2023 GI were considered in arriving at design CBR values. Design CBR has been assessed at 1.2m below existing carriageway level (mbecl), as this is the anticipated pavement subgrade level.

The results of the DCP tests and the CBR values from previous reports (GDMS reports 29152 and 28929), the ground conditions anticipated to be present at each EA and the specific nature of the proposed verge widening works have been taken into consideration in deriving the CBR values for each EA proposed location.

For works on existing Made Ground fill, provided there are no signs of pavement distress, a CBR of 5% (equivalent to a surface modulus E=57MPa) was assumed at subgrade surface level. A target CBR of 5% was specified for newly placed engineered fill. In cuttings, the subgrade will be on native ground which has been identified from the available records. Where subgrade is on Made Ground, a CBR of 5.0% and corresponding surface modulus E obtained as per the correlation given below.

For pavement designs the subgrade modulus is calculated following CD 225 Design for new pavement foundations using the correlation of surface modulus E=17.6(CBR)^{0.64}.

The CBR results obtained from the DCP tests are observed to be very high. Hence, the equilibrium CBR obtained from historical reports have been considered relevant for design CBR. Table 24 presents the design CBR values. These values should be validated prior to construction as per HE608071-JAC-HGT-WHL_AL_SCHME-SP-CE-0002.

Table 24 Design CBR Values

Works ID	Direction	Ground model with description (depth mbgl)	Current Earthwork	Likely Formation at 1.2 mbecl	Design CBR (%)	E (MPa)
EA NB- 187/8	NB	Made Ground (0-1) Hemington Member (1-10)	Embankment	Made Ground / Engineered Fill	5.0	57
EA NB- 190/2	NB	Made Ground (0-1.2) Hemington Member (1.2-2.8) Edwalton Member (2.8-10.0)	Embankment	Made Ground / Engineered Fill	5.0	57
EA NB- 192/0	NB	Made Ground (0-3.9) Gunthorpe Member (3.9-8.3)	Cutting to At Grade	Made Ground	5.0	57
EA SB- 193/4	SB	Made Ground (0-2.4) Gunthorpe Member (2.4-10.0)	Cutting	Made Ground	5.0	57
EA SB- 187/7	SB	Made Ground (0-1.2) Hemington Member (1.2-10.0)	Embankment	Made Ground / Engineered Fill	5.0	57

Works ID	Direction	Ground model with description (depth mbgl)	Current Earthwork	Likely Formation at 1.2 mbecl	Design CBR (%)	E (MPa)
EA SB- 185/1	SB	Made Ground (0-1.3) Edwalton Member (1.3-9.8)	Cutting	Made Ground	5.0	57

13 ASSESSMENT OF POTENTIAL CONTAMINATION

13.1 Introduction

The following section presents the methodologies, assessments, and findings with regards to the potential risks posed by identified contaminant sources to human health receptors.

The assessments are primarily based upon the UK DEFRA and Environment Agency 'best practice' in regard to the assessment of potentially contaminated land, which reflects the approach promoted in Land Contamination Risk Management (LCRM) [29] and R&D Publication 66 (National House Building Council and Environment Agency, 2008 [30]) and the supporting guidance referenced within them.

Where one or more PPL has been identified for the scheme at preliminary CSM stage, it is necessary to clarify the risks posed by that PPL to human health and controlled water receptors by comparing soil, soil leachate and groundwater contaminant concentrations with guideline values that represent acceptable values to the land end use.

The 2023 Strata Geotechnics ground investigation was targeted at the proposed EAs. Geo-environmental laboratory testing of soil samples was undertaken six borehole locations. These borehole locations and their respective EAs and the respective boreholes are shown in Table 25 below.

Table 25 Boreholes Conducted for respective EA site

EA	Borehole
EA-NB-187/8	BH1877N
EA-NB-190/2	BH1902N
EA-NB-192/0	BH1920N
EA-SB-193/4	BH1933S
EA-SB-187/7	BH1877S
EA-SB-185/1	BH1851S

In total, four samples of Made Ground and six samples of natural ground were subjected to a suite of geoenvironmental laboratory testing, as summarised in Section 7.7.2.

13.2 Visual and Olfactory Contamination

No evidence of visual or olfactory contamination (odours, sheens etc.) was recorded during the ground investigation.

13.3 Human Health Assessment

13.3.1 Methodology

Risks to human health are associated with acute exposure to soils (i.e., construction workers or future maintenance workers) and chronic exposure to soils (i.e. motorway users or adjacent land users). In all cases, the exposure pathways are identified as direct contact, inhalation and ingestion of contaminated soils and/or soil dust.

The proposed scheme will primarily comprise highway infrastructure, with most of the land below hardstanding, but with areas of soft landscaping. To assess chronic exposure risks to highway users or adjacent land users, soil analytical data has been screened against published generic assessment criteria (GAC) based on commercial / industrial land use scenario. GAC are pre-defined concentrations for individual contaminants, below which an actual or potentially unacceptable risk is not considered to be present where a PPL exists. Where contaminants are found to exceed the GAC, they are identified as contaminants of concern and an assessment is then required regarding the viability of the PPL.

The GAC have been selected from a hierarchy of published sources for Tier 2 GAC for contamination in soil. These include DEFRA Category 4 Screening Levels (C4SL) (Department for Environment Food & Rural Affairs (DEFRA), September 2014 [33]), Land Quality Management (LQM) / Chartered Institute of Environmental Health (CIEH) Suitable for Use Levels (S4UL) (Land Quality Management Limited, 2015 [31]), and Environmental Industries Commission/ Association of Geotechnical and Geo-environmental Specialists/CL:AIRE GAC (Contaminated Land: Applications in Real Environments, 2009).

The GAC adopted for chronic human health risk assessment have assumed a soil organic matter (SOM) of 1%, given the heterogenous nature of near surface soils. This is considered a conservative approach. There is no GAC for asbestos. For the purposes of this assessment, detection of asbestos in a sample is considered an exceedance.

In order to assess acute exposure risks to construction workers or future maintenance workers, soil analytical data has been screened against SoBRA Acute Generic Assessment Criteria (SoBRA AGAC) (Society for Brownfield Risk Assessment, 2020 [32]). The AGAC apply to short-term exposure for children and adult receptors based on the risk of oral consumption, inhalation, or dermal contact with soils. Given that the acute exposure risk applies to construction and future maintenance workers, soil analytical data has only been screened against AGAC for adult receptors.

13.3.2 Soil Data Assessment – Acute Exposure

Of the ten soil samples subjected to geo-environmental laboratory analysis, none recorded contaminant concentrations above the AGAC. Therefore, based on the available data, the acute risk to construction workers or and future maintenance workers is negligible.

See Annex K for a complete comparison of soil analytical data against AGAC.

13.3.3 Soil Data Assessment - Chronic Exposure

Of the ten soil samples subjected to geo-environmental laboratory analysis, none recorded contaminant concentrations above the GAC, and no asbestos was recorded. Therefore, based on the available data, the chronic risk to future highway motorway users and adjacent land users is negligible. See Annex K for a complete comparison of soil analytical data against GAC.

13.4 Controlled Waters Assessment

As no geo-environmental laboratory analysis of soil leachate or groundwater was undertaken as part of the 2023 Strata Geotechnics ground investigation, a GQRA quantitative risk assessment with respect to groundwater has not been undertaken. However, given the ground conditions and nature of Made Ground materials (comprising road construction or reworked natural soils), and the absence of any visual / olfactory contamination at the EA locations, the potential risk to groundwater (Secondary A and B aquifers) is considered to be negligible.

13.5 Ground Gas

As no ground gas monitoring was undertaken during the 2023 Strata Geotechnics ground investigation, an assessment of ground gas with respect to workplace exposure limits (WEL) has not been undertaken. However, based on the borehole logs, potential sources of ground gas such as degradable organic or putrescible materials have not been identified.

Notwithstanding the above, the presence of a historical landfill site (Hemington Gravel Pit) approximately 25m west and 25m east of EA-NB-187/8 and EA-SB-187/7, respectively, presents a potential unquantified risk of landfill gas.

13.6 Updated CSM and Risk Assessment

Based on the findings of the 2023 Strata Geotechnics ground investigation, the preliminary CSM and risk assessment detailed in sub-section 2.20 has been updated. The updated CSM and risk assessment includes confirmed PPLs and/or potential PPLs which cannot be ruled out or discounted.

Table 26 Updated CSM and Risk Assessment

Source	Identified Contaminant	Pathways to Receptor	Receptor	Consequence	Likelihood	Risk	Comments
Off-site sources of contamination, comprising: - Historical landfill (Hemington Gravel Pit).	Landfill gas.	Inhalation of landfill gas in excavations and confined spaces. Explosion.	Construction and future maintenance workers.	Severe	Unlikely	Moderate/Low	Exposure of construction / maintenance workers to landfill gas is possible within excavations and confined spaces at EA-NB-187/8 and EA-SB-187/7, located within the immediate vicinity (25m) of Hemington Gravel Pit historical landfill. However, ground investigation records at the locations of EA-NB-187/8 and EA-SB-187/7 (BH1877N and BH1877N, respectively) do not indicate any sources of landfill gas, such as organic or putrescible materials/wastes.

13.7 Conclusions and Recommendations

The 2023 Strata Geotechnics ground investigation has not identified any visual or olfactory evidence in soils, no contaminants have been recorded above the human health GAC or AGAC, and no asbestos has been recorded. Therefore, based on the available data, the risk to human health (construction workers, future maintenance workers, future motorway users and adjacent land users) is considered to be negligible.

The risk to construction and future maintenance workers associated with ground and/or landfill gas has not been fully assessed due to a lack of gas monitoring data. However, based on the existing ground information and the ground investigation borehole logs, potential sources of ground gas such as degradable organic or putrescible materials have not been identified. Based on this information, there is a Moderate/Low risk from landfill gas at EA-NB-187/8 and EA-SB-187/7, associated with a historical landfill site (Hemington Gravel Pit) located approximately 25m to the west and east, respectively. Therefore, where excavations and confined space working is planned during groundworks, gas concentrations should be monitored. Furthermore, continuous gas monitoring should be undertaken during the installation of pile foundations (if any). Should elevated gases be recorded, method statements and risk assessments for exposure to gases, including mitigation measures, should be undertaken by the groundworks and/or piling contractor.

The risk to groundwater has not been quantified due to a lack of geo-environmental soil leachate and groundwater analytical data. However, given the ground conditions, inert nature of Made Ground materials and absence of visual / olfactory contamination at the EA locations, the risk to groundwater (Secondary A and N aquifers) is considered to be negligible. During construction, however, care should be taken to avoid the creation of preferential pollution pathways into groundwater and site drainage. Site won soils, assuming they do not vary from the existing ground information, are likely to be chemically suitable for reuse. Most Made Ground and natural soils are likely to be classified as Non-Hazardous, however, a waste classification assessment in accordance with the Environment Agency Technical Guidance WM3 would need to be undertaken to confirm this.

Given that the proposed works may require the reuse of site won material, It is recommended that this is completed in accordance with the waste management regime and guidance set out within the CL:AIRE Definition of Waste: Development Industry Code of Practice (DoWCoP) (Contaminated Land: Applications in Real Environments, 2011 [33]). As such, it would be necessary for the Contractor to produce a Materials Management Plan (MMP), clearly detailing the proposed materials management scheme for the site.

There are inherent limitations in any ground investigation and sampling exercise, and there remains a potential risk of encountering locally unidentified or unforeseen contamination during groundworks. Therefore, it is recommended that a watching brief is maintained for potential contamination during groundworks. Any suspected contaminated soil, material or groundwater should be segregated to avoid cross-contamination and sampling undertaken to enable further assessment of risks and possible reuse or disposal options.

Suitable working practices, procedures, and mitigation measures, in the form of a Construction Environmental Management Plan (CEMP), should be adopted during construction and future maintenance activities, particularly those associated with excavations and below ground works, to manage residual risks to human health and controlled water receptors from unforeseen contamination. These measures are likely to be limited to the application of appropriate PPE (such as disposable overalls, gloves, and dusk masks), provision of hygiene facilities, damping down of soils, and the provision of cover materials over stockpiles to prevent the release of soil dust or leachable contaminants. All works should be undertaken using the application of appropriate working practices as outlined in CIRIA C741 'Environmental good practice on-site' (4th edition) to prevent risk to human health and controlled waters.

14 GROUND TREATMENT

No such treatment has been undertaken in this scheme as an intervention.

15 SPECIFICATION APPENDICES

Specification appendices are listed in Table 27 and full appendices are included in Annex M and Annex N. Corresponding drawings are included in Annex H

Table 27 Specification Document References.

Specification Series	Document Reference
600	HE614830-WSP-HGT-P015_AL_ALLGENR-SP-CE-0001
1600	HE614830-WSP-HGT-P015_AL_ALLGENR-SP-CE-0002

Class 1A has been assigned a minimum angle of shearing resistance of 36° to maintain long term slope stability where this material is used for embankment widening with slopes formed at 1(v):2.5(h) and 1(v):2(h).

16 INSTRUMENTATION AND MONITORING

Instrumentation is not envisaged for this scheme owing to the difficulties in establishing Traffic Management slots. Monitoring will be required during construction works. It is recommended that a watching brief is maintained for the EAs constructed within.

16.1 Pile testing requirements.

As specified in section 15 of Series 1600 (Specification for Piling and Embedded Retaining Walls).

16.2 Supervision

As specified in section 15 of Series 1600 (Specification for Piling and Embedded Retaining Walls).

.

17 MAINTENANCE AND REPAIR STATEMENT

A scheme specific maintenance strategy and repair statement has been prepared as MRS Annex document HE614830-JAC-HOS-P015_AL_ALLGENR-RP-OS-0005. A summary of engagement between OD Geotechnical Asset Manager and the respective DED Geotechnical team is included in Section 6 of the MRS Annex.

18 GEOTECHNICAL RISK REGISTER

The potential severity of harm occurring, and risk classification are defined in Table 28 and Table 29. The geotechnical risk register is presented in Table 30.

Table 28 Potential severity of harm occurring

	Potential severity of harm occurring.								
1	Minor	Minor damage or loss (no human injury)							
2	Moderate	Moderate damage or loss (slight injury or illness)							
3	Serious	Substantial damage or loss (serious injury or illness)							
4	Major	Major damage or loss (fatal injury)							
5	Catastrophic	Catastrophic damage or loss (multiple fatalities)							

Table 29 Risk classification

			Table 29 Misk Cla	Severity					
	Likelihood	1	2	3	4	5			
		Minor	Moderate	Serious	Major	Catastrophic			
1	Extremely unlikely	1	2	3	4	5			
2	Unlikely	2	4	6	8	10			
3	Likely	3	6	9	12	15			
4	Extremely likely	4	8	12	16	20			
5	Almost certain	5	10	15	20	25			
Low (1-	-8)	Ensure assumed control measures are maintained and reviewed as necessary							
Mediun	n (9-19)	Additional control measures needed to reduce risk rating to a level that is equivalent to a test of "reasonably required" for							
High (2	0-25)	Activity not permitted. Hazard to be avoided or risk to be reduced to a tolerable level							

Table 30 Geotechnical Risk Register

	Table 30 Geotechnical Risk Register										
Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk		
				Earthw	orks						
1	Unknown/variable ground and groundwater conditions	Disruption to construction. Delay for redesign of permanent and temporary works. Increased costs.	3	2	6	Validation plan through observation on site. Ground Investigation with groundwater observation has been undertaken at each EA and Gantry location.	2	2	4		
2	Existing earthwork defects	Remediation works required in excess of planned works. Additional cost. Possible delay.	2	2	4	Identified defects are either away from the proposed locations or are not expected to have any significant impact on the works. Current assessment makes risk as low as reasonably practicable. Maintain observation for onset of instability during construction.	2	2	4		
3	Poor construction of engineered fill	Excessive settlement or slope failure. Damage to structures or carriageway. Cost of repairs/replacement. Programme delays.	2	3	6	Construction in accordance with design drawings and earthwork specification. Unexpected ground conditions should be reported to the Designer.	1	3	3		
4	Unsuitable fill materials imported	Excessive settlement or slope failure. Damage to structures or carriageway. Cost of	2	3	6	Use of Class 1A fill which impose superior draining properties was proposed as filling material for earthworks.	2	3	6		

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
		repairs/replacement. Programme delays.				Construction in accordance with design drawings and earthwork specification.			
5	Slope instability in cuttings or embankments	Slope failure leading to damage to structures or carriageway. Cost of repairs. Reputational damage.	2	3	6	Available ground investigation information and ground model and characteristic parameters are selected in accordance with Design Standards. In addition, slope stability analysis was performed to ascertain the safety.	1	3	3
						Construction shall be in accordance with design drawings and earthwork specification.			
6	Compressible/ collapsible ground	Settlement/differential settlement of widened embankments and foundation failure of earthworks under traffic loading. Collapse/excessive deformations of shallow foundations. Instability of temporary excavations during construction stage. Deformation of pavements at interface between existing construction and widened embankments.	3	4	12	Ground Investigation has been undertaken to confirm the presence and thickness of Alluvium. Compaction requirements have been captured in Series 600 for embankments to avoid differential settlement issues during and post construction.	2	4	8

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
		Disruption of highway traffic, programme slippage, increased costs and injury to personnel.							
7	High groundwater due to poor performance of toe/crest drainage systems	High groundwater or perched water can severely impede construction or result in slope instability. Can lead to long-term instability of the slope, affecting the permanent works. Also, could result in the failure of temporary works	3	3	9	Groundwater monitoring data was taken into account to arrive at design groundwater level. The groundwater level was deep enough to affect the proposed works. As a conservative approach groundwater was considered 1m below the toe level of embankments. Where possible existing highways and toe drains should be regularly inspected and maintained to a good working order. Relevant groundwater control measures (toe and crest drainage) shall be incorporated during any temporary works.	2	3	6
			Kinç	g Sheet Pile	e Wall De	sign			
8	Driveability of King Sheet-Piles	Driving through hard ground will result in damage to equipment which in turn could also affect personnel. High costs associated to rectify equipment if	4	4	16	Contractor to assess ground through observations from Ground Investigation GI and determine/consider alternative method of installing king sheet piles.	3	4	12

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
		damaged. Noise generation.							
9	Surcharge behind the wall	Failure of system causing damage to highway assets and risk to human life. Cost of repairs. Reputational damage.	2	4	8	Contractor shall allow no surcharge behind the king sheet pile wall on the slope during construction. Machinery required for installation shall be placed front of the wall. Slip road is protected with existing VRS allowing no movement on the slope behind the wall.	1	4	4
10	Excessive excavation Infront of wall	Excessive excavation front of the wall shall lead to project delay, damage to assets and risk to human life. Cost of repairs.	2	4	8	Contractor shall follow the design drawings and specifications. Designer shall be notified for any excessive excavation front of the wall.	1	4	4
11	Soil Slippage at either end, due to improper Tieback of Gabion wall and King Sheet Pile wall.	Failure of slope due to progressive soil slippage from the gaps created due to improper tieback of the two retaining systems. Cost of	5	4	20	Contractor shall inspect on site and install proper tieback between the two system. A proper wrap around should be provided to arrest the soil slippage and probable slope failure.	2	4	8

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
		repairs. Reputational Damage							
				Struct	ures				
12	Existing structures	Obstruction to pilling, increased construction costs and delays.	1	2	2	No records found of previous highway structures. Risk is deemed as low as reasonably practicable.	1	2	2
13	Non-coal mining hazard	Risk of mining related subsidence affecting the EA during construction or Operational phase.	4	4	16	Further desk study has been undertaken to collate historic information to assess ground conditions and non-coal mining risk at each EA location.	1	4	4
						Ground Investigation has been undertaken at required locations and current investigation and assessment makes risk as low as reasonably practicable.			
14	Slope instability including soil slippage	Risk of slope instability affecting the EA during construction or Operational phase. Damage to structures, carriageway, highway	3	3	9	Assessment was carried out to check whether extent of any existing earthworks instability defect encroaches on the extent of the EA and also on the temporary working space (50m before and	1	3	3

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
		infrastructure and adjoining properties. Disruption of highway traffic, programme slippage, increased works costs.				50m after each EA location) to assess the likelihood of future instability. Carry out essential maintenance/remediation on existing geotechnical assets prior to, or during, the works.			
15	Unforeseen / unrecorded contamination	Encountering contaminated material (including asbestos), soil or groundwater, posing risk of harm to construction workers, maintenance staff, motorway users and adjacent land users. Pollution of groundwater. Restriction of disposal routes.	2	2	4	Confirmatory ground investigation (including geo-environmental testing of soils) has been undertaken at proposed EA locations. No visual / olfactory contamination or elevated contaminants have been identified which could pose a significant risk to human health or groundwater receptors. Robust site procedures to be documented in Contractor's MMP and CEMP.	1	1	1
		Delay to programme as soil/material/groundw ater is tested. Additional cost for disposal or treatment or contaminated soil/				Risk associated with asbestos (if present) to be managed by Contractor through the development of working methods and risk assessments in accordance with the Control of Asbestos Regulations (CAR) 2012 and CAR-SOIL guidance.			

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
		material/ groundwater.				If contaminated soil/material/groundwater is found or suspected to be present during groundworks, material should be segregated, inspected and tested by a specialist contractor.			
16	Potential landfill gas	Health and safety risk to construction and future maintenance workers: Inhalation of landfill gas in excavations and confined spaces.	2	4	8	Confirmatory ground investigation has been undertaken at proposed EA locations. Borehole records do not indicate any potential sources of landfill gas, however gas monitoring data is unavailable.	2	1	2
		Explosion.				Landfill gas risk to be managed by groundworks and/or piling contractor through the development of working methods and risk assessments, including gas monitoring within excavations and confined spaces, continuous gas monitoring during piling, and use of gas alarms.			
17	Excavation of materials	Exposure of construction workers to contaminated arisings/ made ground associated with historical landfill sites and infilled	4	3	12	Contractor to assess area of excavation and use appropriate safety measures to ensure material is stored or placed away from the running lanes.	2	3	6

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
		mineral extraction pits might impact their health.				Excavator operators to have a banksman to prevent the risk of injury to			
		Project delays undertaking clean-ups if contamination is at levels above acceptable human health screening values. Potential high clean-up costs.				personnel on site. Identified risks to be incorporated in health and safety plan during works.			
		Risk of injury to personnel during excavation. Possibility of material being displaced into live carriageway, which can lead to injury to the users of the network.							
18	Presence of UXO	Striking unexploded ordnance UXO will lead to destruction of nearby infrastructure, injury and fatality to the personnel involved.	2	5	10	The regional unexploded bomb risk map as downloaded from the Zetica website, identifies that between J23a-J25 there is low risk for encountering unexploded ordnance at the site.	1	5	5
						Contractor to undertake UXO good practice toolbox talks for excavation works.			
19	Flood events	Delays to programme caused by flooding (Flood zone 2 & 3).	3	3	9	Works should be scheduled for the dryer months of the year.	1	3	3
						Flood Risk Review has been undertaken and			

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
						determined the surface water flooding risk to be negligible.			
						The proposed works will not impact or exacerbate the existing surface water flood risk.			
						Ground Investigation suggest no surface water flooding risk at site.			
20	Presence of utilities and services	Conflict with proposed new construction, damage during construction works, delays to construction and additional costs, risk of injury/death to construction personnel.	5	5	25	Existing services have been identified. Inspection pits and slit trenches in high-risk areas should be undertaken to locate and identify known services. Contractor to be supplied with latest utility drawings.	1	5	5
21	Gradient on site – insufficient land available for widening – retaining walls or earthworks required	Increased cost of scheme, impact on structure layout	5	4	20	Complete topographical survey at locations where required. Review structure locations and land required. Design of suitable retaining structures where space is limited.	2	4	8
22	Aggressive ground chemistry – attack on buried concrete leading to reduced strength of foundations.	Failure of foundations, damage to structures. Risk to road users. Increased cost to scheme to repair/replace.	4	3	12	Chemical testing in accordance with BRE-SD1 during Ground Investigation was undertaken. Use appropriate concrete design in construction.	2	3	6

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
23	Narrow verge width at the embankment crests.	Difficult/restricted access for plant/machinery. Increased risk of slips/falls. Increased risk of damage to equipment and risk to human health.	5	3	15	The potential for minor variations in locations to avoid areas of restricted access/working area.	4	3	12
24	Encountering, disposal, and handling of hazardous material	Health and safety implications for site personnel. Additional handling and disposal costs, delays to the program.	4	4	16	Contractor to ensure appropriate PPE worn at all times and site won material and hazardous materials to be stored separately on site to avoid mixture. Contractor to complete appropriate testing on material and appropriate disposal measures to be taken on site. Hazardous materials to be stored with clear signs present warning all site personnel of hazards.	2	4	8
		Advanced Works	(including M	obilisation	to Site aı	nd Preparation for Main W	orks)		
25	Bearing Capacity Failure or Excessive Differential Settlement of temporary foundations for TM infrastructure, Scheme billboard foundation & posts; 'Goal-Posts ' for	Toppling of temporary CCTV & Temporary Automatic Speed Camera System (TASCAR) +/- Remotely Operated Temporary Traffic Management (ROTTM) signs,	2	5	10	Establish from OSAP any locations of the of temporary CCTV & Temporary Automatic Speed Camera System (TASCAR). Remotely Operated Temporary Traffic Management (ROTTM) signs, Goal-	1	5	5

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
	Avoidance of Danger from Overhead Electric Lines' [GS6 legislation], office cabins, welfare units	GoalPosts ' for Avoidance of Danger from Overhead Electric Lines' [GS6 legislation], into construction workers, or into live traffic, including potential fatalities. Excessive settlement and instability of scheme billboards; 'office cabins, welfare units, either injuring Construction workers or general public. Additional Costs to reinstate				Posts 'for Avoidance of Danger from Overhead Electric Lines'. If any proposed, undertake a review of their likely foundation material, and where appropriate, for example very poor ground is expected, engage to discuss potential alternative locations or provide more detailed geotechnical advice and design in exceptional circumstances.			
26	Slope instability being triggered by the additional loads induced by of temporary foundations for TM infrastructure, Scheme billboard foundation & posts; 'Goal -Posts ' for Avoidance of Danger from Overhead Electric Lines' [GS6 legislation], office cabins, welfare units	Toppling of temporary CCTV & Temporary Automatic Speed Camera System (TASCAR) +/- Remotely Operated Temporary Traffic Management (ROTTM) signs, Goal-Posts ' for Avoidance of Danger from Overhead Electric Lines' [GS6 legislation], into construction workers, or into live traffic, including potential fatalities. Exacerbation or worsening of existing earthwork defects	2	5	10	Establish from OSAP all the locations of the of temporary CCTV & Temporary Automatic Speed Camera System (TASCAR), Remotely Operated Temporary Traffic Management (ROTTM) signs, Goal-Posts ' for Avoidance of Danger from Overhead Electric Lines'. Also NRTS trenches, office cabins and welfare units. Undertake a review of GDMS Geotechnical Asset Database and where appropriate, for instance if infrastructure is planned in	1	5	5

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
		from the location of infrastructure directly on top of an existing defect. Positioning of NRTS trenching directly above areas of existing earthwork defects with the potential that they act as unintended French crest drains feeding water into the earthwork and destabilising it.				immediate proximity to a defect and could potentially provide additional load which may de-stabilise it, engage with OSAP to discuss potential alternative locations or provide more detailed geotechnical advice and design in exceptional circumstances			
27	Hard dig, for example from shallow rockhead	Difficulties in installing NRTS Open Trenches, or otherwise pegging, ducting, cabling, and crossovers. Inappropriate choice of any trenchless technology.	3	2	6	Establish from OSAP all the NRTS cabling that will be required and understand expectations on how they plan to install it. If there are any below ground trenches (or other means of installation) provide advice on likely amount of hard dig following a review of the design ground model.	3	1	3
						Provide advice on recommended installation techniques if below ground excavation is necessary. If a trenchless crossing is to be provided provide geotechnical advice on the completion of reporting in accordance with CD 622			

Hazard ID	Hazard	Consequence	Likelihood	Severity	Risk	Available Mitigation Measure	Likelihood	Severity	Residual Risk
28	Geo-Environmental considerations	Potential health and safety risks arising from contaminated land exposure to construction works from any Advance Works activities.	2	4	8	Liaise with OSAP and Geo- Environmental team to ensure that the Materials Management Plan for the scheme is available and understood by the Site Clearance Team.	2	2	4
		Potential programme delays and costs associated with dealing with any excavations/treatment or disposal of contaminated ground.							
		Potential for topsoil strip and storage is tracked and in accordance with scheme Material Management Plan.							

Note: Some risks under a particular section heading may also apply under another group heading — This risk register to be considered a holistic overview of the geotechnical risks which apply, and what groups of risks they apply to will be kept under review and updated accordingly. The risks noted above apply whether they are considered as Permanent Works or Temporary Works. Management of Geotechnical Risks in accordance with CD 622 is required for all Permanent Works and Temporary Works that could potentially impact on the road user, or an external party outside the National Highways boundary.

19 REFERENCES

- [1] Ove Arup & Partners. (2005). M1 Widening: Junctions 21-30, Preliminary Sources Study Report, GDMS Ref: 19183.
- [2] AMAR. (2016). M1 Junction 23a to 25 Ground Investigation Report, Ref. HA549342-AMAR-HGT-SWI-RP-CE-000002, GDMS Ref: 28929.
- [3] AMAR. (2017). SMP M1 J23a-25 Geotechnical Design Report, Ref. HA549342-AMAR-HGT-SWI-RP-CE-000003, GDMS Ref: 29152.
- [4] AMAR. (2021). SMP M1 J23a-25 Geotechnical Feedback Report., Ref. HA549342-AMAR-HGT-SWI-RP-CE-000008, GDMS Ref. 30523
- [5] WSP. (2023). National Emergency Area Retrofit M1 J23a-25-Statement of Intent, GDMS Ref: 47380.
- [6] BRE Special Digest 1:2005, Concrete in Aggressive Ground.
- [7] Geosolve, WALLAP Retaining Wall Anaysis Program.
- [8] Highways England, IAN 73/06 Revision 1 Design Guidance for Road Pavement Foundations (Draft HD25), February 2009.
- [9] King Sheet Piling Technical Guidance, V 1.2/15.4.14, obtained from www.ksp-piling.co.uk.
- [10] British Standards Institution. (2009). BS EN 1993-5:2007 Eurocode 3 Design of Steel Structures Part 5: Piling. London: BSI Standards Limited.
- [11] British Standards Institution. (2010). BS EN 1997-2:2007 Eurocode 7 Geotechnical Design Part 2: Ground Investigation and Testing. London: BSI Standards Limited.
- [12] British Standards Institution. (2013). BS EN 1997-1:2004+A1:2013 Eurocode 7: Geotechnical Design Part 1: General Rules. London: BSI Standards Limited.
- [13] British Standards Institution. (2015). *BS 5930:2015+A1:2020 Code of practice for ground investigations*. London: BSI Standards Limited.
- [14] British Standards Institution. (2018). BS EN 14688-1:2018 Geotechnical Investigation and Testing Identification and Classification of Soil. London: BSI Standards Limited.
- [15] British Standards Institution. (2005). BS 8002 Code of practice for Earth Retaining Structures. London: BSI Standards Limited.
- [16] British Standards Institution. (2010). BS 8006-1:2010 Code of practice for strengthened/reinforced soils and other fills. London: BSI Standards Limited.
- [17] British Standards Institution. (n.d.). *BS 1377 Methods of test for Soils for civil engineering purposes*. London: BSI Standards Limited.
- [18] Design Manual for Roads and Bridges. (2020). CS 641 Managing the maintenance of highway geotechnical assets. Design Manual for Roads and Bridges.
- [19] Design Manual for Roads and Bridges. (2022). *CD 354 Design of minor structures*. Design Manual for Roads and Bridges.
- [20] Design Manual for Roads and Bridges. (2020). *CD 622- Managing geotechnical risk.* Design Manual for Roads and Bridges.
- [21] GDMS. (n.d.). *Geotechnical and Drainage Management Service*. Retrieved 2022, from https://gdms.assetia.cloud/map;tabld=000000.

- [22] Geolndex Onshore. (n.d.). *British Geological Survey*. Retrieved 2020, from <u>Geolndex British Geological Survey</u> (bgs.ac.uk).
- [23] Guidelines for the safe investigation by drilling of landfills and contaminated land. London: Thomas Telford.
- [24] Institute of Highway Engineers. (2021). Sign Structures Guide-Support design for permanent UK traffic signs to BS EN 12899-1 and Eurocodes.
- [25] Smart Motorway Programme. (2019). Smart Motorway Programme- Design Guide Annex E3.04.
- [26] Statutory Undertakers Information HE614830-WSP-GEN-P015 AL ALLGENR-M2-CH-0004.
- [27] The Coal Authority Interactive Viewer. (n.d.). *The Coal Authority*. Retrieved 2023, from Interactive Map Viewer | Coal Authority (bgs.ac.uk).
- [28] ZeticaUXO. (n.d.). Zetica Limited. Retrieved 2023, from Risk Maps | Zetica UXO.
- [29] Land Contamination Risk Management (LCRM),
 https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm/lcrm-stage-1-risk-assessment#tier-2-generic-quantitative-risk-assessment.
- [30] National House Building Council and Environment Agency, 2008, https://webarchive.nationalarchives.gov.uk/ukgwa/20140328084622/http://www.environment-agency.gov.uk/static/documents/Leisure/SR-DPUB66-e-e.pdf
- [31] Land Quality Management Limited, 2015, https://www.lqm.co.uk/products/lqm-cieh-suitable-4-use-levels
- [32] Society for Brownfield Risk Assessment, 2020, https://sobra.org.uk/acute-gacs-report/development-of-acute-generic-assessment-criteria-for-assessing-risks-to-human-health-from-contaminants-in-soil/
- [33] Contaminated Land: Applications in Real Environments, 2011, https://www.claire.co.uk/projects-and-initiatives/category-4-screening-levels

Annex A Geotechnical Data Sheets – Earthworks, King Sheet Pile Wall and MS4 Gantry

Location Name	M1-J23a-J25- EA-NB-187/8	Location Type	Emergency Area
Earthwork Type	Embankment	Earthwork Modification	Regrade

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)
Northbound	187700- 187800	187/8	446861E, 330029N

Description and Proposed Works	
Modifications to existing Embankment slope (max. height of regrade 0.8m)	

Site Description						
The site is located on the	northbound carriagew	ay verge, after Junction	n 24a.			
Associated Earthworks		GDMS Reference(s)	Туре			
		24434	Embankment			
Environmental and Historical Site Information	dating up to the 1 the current alignr The site area is in Groundwater floor The area falls in capacity.	A review of the historical maps on GDMS shows the site as fields dating up to the 1950s. From the 1970s onward the carriageway in the current alignment we see today is present. The site area is in the designate flood zone 2 and 3 and potential for Groundwater flooding situated below Ground Level. The area falls in recorded flood lines due to exceeding channel capacity. GDMS indicates that the bedrock at the site area has an aquifer				
	designation as Secondary -B and Secondary – A Aquifer for the superficial deposits. The site is not with a groundwater Source Protection Zone.					
Geology and Groundwa	ter					
Superficial Deposits		gy Viewer depicts: Hemington Member - Silt and cial deposit formed during the Pre-Quaternary period entire site.				
Bedrock		gy Viewer depicts: Edwalton Member - Mudstone. drock formed during the Carnian period.				
Groundwater	No Groundwater encountered during ground investigation performed in 2023.					

Downstream

Source: AVIS

Date of Capture 24/03/2023

Figure 19-1 EA-NB-187/8

Summary of	of Applicable Exp	loratory Holes			
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation
-	BH1877N	Midpoint of EA	33.71 (OD)	10m	01/06/2023

Geotechnical Ground Model for Design	Material	Depth (mbgl)	Elevation (m OD)	Notes
Verge Level: 33.71m OD	Made Ground- Granular	1	32.7	Ground model taken from BH1877N
33.7 IIII OD	Hemington Member – Cohesive	2.2	31.5	
	Hemington Member- Granular	10	23.7	
	Groundwater r	notes: No Ground	dwater Encountered	

Design Parameters												
Moderately Conservative Values:												
Material	Material Bulk Density (kPa) Cu (kPa) Φ' (°) Eu (kPa) E' (kPa)											
Made Ground - Granular	19	-	0	30	-	5000						
Hemington Member – Cohesive	19	100	0	27	19000	17100						
Hemington Member - Granular	3											

Design Section

Minor Regrade of 1V:2H slope has been proposed at this location and slope stability analysis has also been performed. The Slope has been found satisfactory for the proposed conservative ground model.

Contaminated	Potential landfill gas risk associated with Hemington Gravel Pit historical
Land	landfill. Method statements and risk assessments for exposure to gases,
Assessment	including mitigation measures, to be undertaken by groundworks and/or
	piling contractor

Location Specific Risks

ID24: Excavated arisings could be classed as non-hazardous or hazardous waste

Report Extracts and References

GFR

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

4.4. Instability problems and unusual ground conditions

The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

4.5. Ground water conditions and problems and drainage measures to overcome them

No major drainage or groundwater problems were encountered during widening of the embankments.

4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

No contamination or hazardous materials were encountered at cutting locations across the scheme.

4.7. Foundation treatment, including drainage measures and treatment of soft areas

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

4.8. Settlement of foundation and fill material

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

Exploratory Hole Log

				t Name:		_				Client				Borehol	le ID:	
∰ς:	TR/	۸TA	M1 J23 Contract						C-		Harris	BMJV	Ct-t	⊢ B	H1877N	
G E C	OTEC	HNICS	Consission	1 Numbe 230600	ir.	Date St	aneo: 06/202	- 1		mpleted: 06/2023	Logged: JN/ASH	Checked: JB	FINAL			
	nic Sam		Easting:		_	Northin			Ground		Plant User		Print Date:	Sheet 1	of 1	
	ing Log			6863.5			9. 0029.2	ľ		Im (OD)		chio 305	04/09/2023	- Cana	1:50	
Weather: Fine			ew: Adrier	Foulsto		-			ed Depti			SPT Hamn	ner: AR935 Energy	Ratio: 63		
***************************************		ples & In S				-			С		Strata Deta		E. Patasa E. Langy		Groundwater	
Depth	Sample	Test	Result	TOR	SCR F	RQD FWI	(mAOD)	Depth (m) (Distance)	Legend			Strata Descrip	tion		Water Backlit Strike Installati	
0.00 - 1.00	CC1			\top	ヿ	十	33.51	0.20			ROUND: Bla	ick bitumino	us material.	-	30000	
							33.51	(0.30)			ROUND: Co	ncrete bour	d material.	-1	800000	
0.50	D13 ES11						33.21	0.50	90000		GROUND]	sy cliabily a	andy GRAVEL, Sa	nd in	1/40	
0.50	2011							(0.50)		fine to co	parse. Gravel		o sub-angular fine			
1.00	ES12						32.71	1.00	# 1+A	VIMADE (f quartzite. 3ROUND]			/-1		
1.20 - 1.65	D2		i) 1.20m, =19	.			32.51	1.20	- 12-A				gravelly CLAY. Sa inded fine to medic			
1.40 - 1.50 1.50 - 1.70	D14 ES15		4,5,5,5)						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	quartzite	L.		indea line to mean			
								(1.00)			ngton Membe fish brown sli		ly sandy CLAY. Sa	nd is		
- 2.00 - 3.00	D16								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		parse. Gravel		ine to coarse of	- 2		
2.00 - 3.00	ES17) 2.20m,				31.51	2.20		.[Hemmir	ngton Membe					
2.20 - 2.65	D3	N=30 (8	,8/9,8,8,	5)					95				angular fine to coa Sand is fine to coa			
									45.		gton Membe					
									45							
3.00 - 3.41 3.00 - 4.00	D4 B19		3.00m, (25 for	'					353					F 3		
3.00 - 4.00	D18	110mm	/14,6,6,5	i)				(2.30)	350					[
									35					ŀ		
									-					- 1		
4.00 - 4.20	D20		() 4.00m,	.					-					- 4		
4.00 - 4.45	D5		=30 (9,9,10)											- [
4.50 - 4.70	D21	,					29.21	4.50	77	COHOLO	deb beause es	adu araualh	CLAY. Sand is fin	- 1-		
4.70 - 5.00	D22						29.01	4.70	301.8	coarse.	Gravel is sub	-rounded to	rounded fine to co			
- 5.00 - 5.45	D6	SPT/S	s) 5.00m.				28.71	(0.30)	4000		and mudsto			Æ		
5.00 - 6.00	D23		8/8,8,8,1					3.00	733	Reddish	brown slight	y gravelly s	Ity fine to coarse	—ı		
								(4.00)	700		Bravel is sub- nd sandstone		ounded fine to coa	rse of		
								(1.00)	1		ngton Membe		fine to coarse SA	/[
									5.00	Gravel is	sub-angular		fine to coarse of q	uartz		
6.00 - 6.45	D7		6,6/6,6,7,				27.71	6.00	458	and sand	dstone. Igton Membe	ri		JF ⁶		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,-,-,-	"					350				wn clayey sandy Gravel is sub-angi	doc		
									25%	to round	ed fine to coa	irse of quart	z and sandstone.	···		
									350	[Hemmir	ngton Membe	r]		•		
7.00 - 7.45	D8		7.00m,						357	7.00-10	our very samely			- 7		
7.00 - 8.00 7.00 - 8.00	B25 D24	N=21 (8	,9/4,4,6,	7)					77.73					- [
									70.0	1				ļ.		
										1						
8.00 - 8.45	D9	SPT/S	8) 8.00m,					(4.00)	12 / C]				- 8		
8.00 - 9.00	D26		,4/7,7,5,					(447 W							
									Carrier Co					ļ		
									4					ŧ		
									45%					-		
9.00 - 10.00 9.00 - 9.45	D27		9.00m, =45	-					450					- 9		
2.02 - 2.40	510		11,13,12						450							
									450					ŀ		
-		-		+	_	+	23.71	10.00	MALE AND		Endle	f Borehole a	10.00m	1	• 777	
Start	& End of	Shift Ohs	ervation	s	ᆛ	Flo	sh Reh	on Into	rmation	I R	emarks:	and the state of	- Manan			
Date	Time D	epth (m) C			n) T		e Min S			Colour N	o groundwate		ed during drilling.			
01-06-23 01-06-23	20:00 23:55	0.00								В	ackfilled with	pentonite, c	oncrete and bitum	mous mate	mal.	
								1								
		- 1						1					Water Strike	to 1 = 1		
Borehole D			sing Dia		#		Coring				rike (m) Casin	g (m) Sealed	(m) Time (mins) Rose	no (m)	Remarks	
Depth (m) 3.00	Dia (mm) 101	Depth 1.2		Dia (mm) 152	Tk	op (m) 8	lase (m)	Dia (m	m) Bar	rel Type						
7.00 10.00	87 77									Cine per h	tion index (FI) - Produces C. Mana Lung (MV) species	per make, Frankes Sa Linkshood Door Free	uning (if) - reproduct in more assisting do gets (Sup. Product) paradiscension (FP)	emage and blue value tapantu Librardiopol (es 100, 504 and 400 report Company Street COS	
- a- a-d																

Location Name	M1-J23a-J25- EA-NB-190/2	Location Type	Emergency Area
Earthwork Type	Embankment	Earthwork Modification	Regrade

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)
Southbound	190070 – 190160	190/2	446685E, 332308N

Description and Proposed Works Modifications to existing Embankment slope (max. height of regrade 1.4m)

Site Description				
The site is located on the Junction 25.	northbound carriage	eway verge, midway betw	een Junction 24a and	
Associated Earthworks		GDMS Reference(s)	Туре	
		24420	Embankment	
Environmental and Historical Site Information	dating up to the Line to the Nor current alignme. The site area is potential for Gr GDMS indicate designation as superficial dependential con	e 1960s with Draycot road th. From the 1970s onwarent we see today is present we see today is present to the designate flooundwater flooding situates that the bedrock at the Secondary -B and Secondsits. The site is not with a	ood zones 2 and 3 and ed below Ground Level. site area has an aquifer ndary – A Aquifer for the	
Geology and Groundwa			water Manches Oilt and	
Superficial Deposits	The BGS Geology Viewer depicts: Hemington Member - Silt and Gravel. Superficial deposit formed during the Pre-Quaternary period underlying the entire site.			
Bedrock	The BGS Geology Viewer depicts: Edwalton Member - Mudstone. Sedimentary bedrock formed during the Carnian period.			
Groundwater	No Groundwater encountered			

Downstream

Source: AVIS

Date of Capture 24/03/2023

Figure 19-2 EA-NB-190/2

Summary of Applicable Exploratory Holes						
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation	
-	BH1902N	Midpoint of EA	40.40 (OD)	10m	30/05/2023	

Geotechnical Ground Model	Material	Depth (mbgl)	Elevation (m OD)	Notes
for Design	Made	1.2	39.2	Ground model
Verge Level: 33.71m OD	Ground- Granular			taken from BH1902N
33.7 IIII OD	Hemington Member –	2.8	37.6	
	Granular			
	Edwalton	5.0	35.4	
	Member – Cohesive			
	Edwalton	10.0	30.4	
	Member – Cohesive			
Groundwater notes: No Groundwater Encountered				

Design Parameters							
	Moderately Conservative Values:						
Material	Bulk Density (kN/m3) Cu (kPa) c' (kPa) Φ' (°) Eu (kPa) E' (kPa)						
Made Ground - Granular	19	-	0	30	-	5000	
Hemington Member – Granular	19	-	0	30	-	10000	
Edwalton Member – Cohesive	19	90	2	26	18000	16200	
Edwalton Member – Cohesive	19.5	165	2	27	33000	29700	

<u>Design Section</u>
Minor Regrade of 1V:2H slope has been proposed at this location and slope stability analysis has also been performed. The Slope has been found satisfactory for the proposed conservative ground model.

Contaminated	No contamination sources identified based on confirmatory ground
Land	investigation data
Assessment	

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

Report Extracts and References

GFR

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

4.4. Instability problems and unusual ground conditions

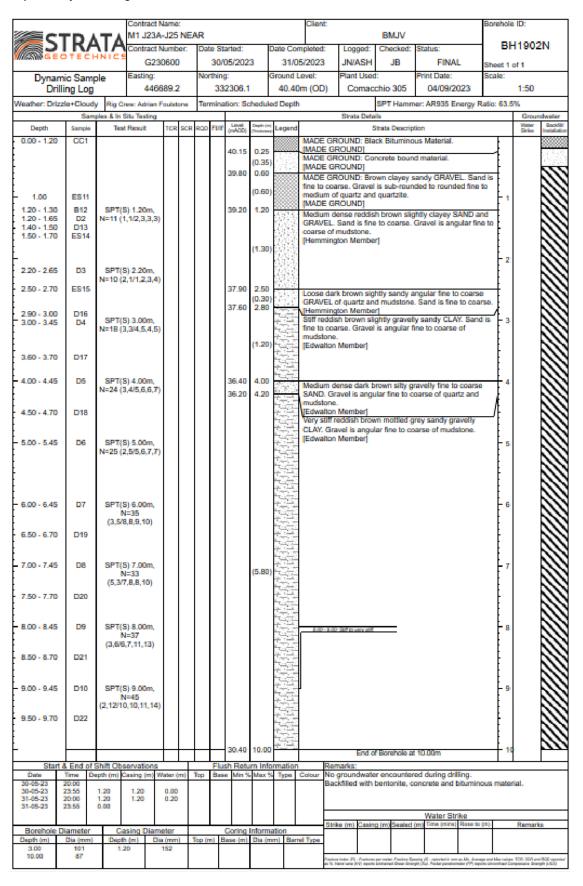
The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

4.5. Ground water conditions and problems and drainage measures to overcome them

No major drainage or groundwater problems were encountered during widening of the embankments.

4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

No contamination or hazardous materials were encountered at cutting locations across the scheme.


4.7. Foundation treatment, including drainage measures and treatment of soft areas

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

4.8. Settlement of foundation and fill material

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

Exploratory Hole Log

Location Name	M1-J23a-J25- EA-NB-192/0	Location Type	Emergency Area
Earthwork Type	Cutting to At Grade	Earthwork Modification	Regrade

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)
Southbound	191880 – 191200	192/0	447256E, 333972N

Description and Proposed Works	
Modifications to existing Embankment slope (max. height of regrade 0.72m)	

The site is located on the	northbound carriagew	ay verge, before Junct	ion 25.	
Associated Earthworks		GDMS Reference(s)	Туре	
		22235	Cutting	
Historical Site Information Lane to the North current alignmen The site area is of Occur at Surface		historical maps on GDMS shows the site as fields a 1960s with Derby Road to the South and Longmoonth. From the 1970s onward the carriageway in the ent we see today is present. It designated as potential for Groundwater flooding to be. The set that the bedrock at the site area has an aquifer		
	designation as Secondary -B and Secondary - A Aquifer for the superficial deposits. The site is not with a groundwater Source Protection Zone.			
Geology and Groundwat	ter			
Superficial Deposits	Member - Sand a	y Viewer depicts: Bees and Gravel. Superficial ch period underlying the	deposit formed during the	
Bedrock		y Viewer depicts: Gunt Irock formed during the	horpe Member - Mudstone Anisian period.	
Groundwater	No Groundwater encountered			

Source: AVIS

Date of Capture 24/03/2023

Downstream

Figure 19-3 EA-NB-192/0

Summary o	f Applicable Expl	oratory Holes			
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation
-	BH1920N	Midpoint of EA	35.74 (OD)	8.29m	02/05/2023

Geotechnical Ground Model	Material	Depth (mbgl)	Elevation (m OD)	Notes
for Design	Made	1.2	34.5	Ground model
Verge Level: 33.71m OD	Ground- Cohesive			taken from BH1920N
33.7 IIII OD	Made	3.9	31.8	
	Ground-			
	Granular			
	Gunthorpe	7.0	28.7	
	member -			
	Cohesive			
	Gunthorpe	8.29	27.4	
	member -			
	Mudstone			
	Groundwater	notes: No Ground	dwater Encountered	d

Design Parameters								
	Moderately Conservative Values:							
Material	Bulk Density (kN/m3	Cu (kPa)	c' (kPa)	ф'	Eu (kPa)	E' (kPa)	UCS (MPa)	
Made Ground- Cohesive	19	100	0	27	7800	6200	-	
Made Ground- Granular	19	-	0	32	-	15000	-	
Gunthorpe member – Cohesive	20	180	2	27	36000	32400	-	
Gunthorpe member – Mudstone	20	-	-		-	50000	0.48	

Design Section

Minor Regrade of 1V:2.5H slope has been proposed at this location and slope stability analysis has also been performed. The Slope has been found satisfactory for the proposed conservative ground model.

Contaminated	No contamination sources identified based on confirmatory ground
Land	investigation data
Assessment	

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

Report Extracts and References

GFR

3.3. Details of any problems encountered

None encountered.

3.4. Instability problems and unusual ground conditions

The ground conditions and materials encountered during construction were similar to the anticipated ground model in the GIR [1]. All excavated material was classed as 2A and 2B (unsuitable for regrading or fill to structures) and removed from the site. No ground instability problems were encountered during the construction.

3.5. Ground water conditions and problems and drainage measures to overcome them

No major groundwater problems were encountered during regrading of the cutting slopes.

3.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

No contamination or hazardous materials were encountered at cutting locations across the scheme.

kplorat S	TRA	ATA	Contract Name M1 J23A-J25 Contract Num	NEAR	late Starte	ıd:	Client: Date Completed:	Logged:	BMJV Checked:	Status		Boreho	le ID: H 192	!ON
	OTEC	HNICS	G23060		02/05/	0.000	10/05/2023	JN/ASH	JB	FIN	AL s	Shoot 1	of 2	
Dynar	nic Sam	ple	Easting:	N	larthing:	unne 1	Ground Level:	Plant Used		Print Date:		Scale:		
Bore	hole Lo	g	447250.	8	3339	71.2	35.74m (OD)	Comac	chio 305 04/09/2023			1:50		
eather; Dry		100000	rew: JK&JK	T	ermination	n: Schedul	1900 15000	X X	SPT Harrin	ner AR3653		atio: 6	4,444	
Depti	Samples & Sample ID	In Situ Test	ing leat Forautt	Leve	Depth (n) Lagend	Strata Det	aits Strata Descr	9203	ů.	Progress Window Run	0	Grou Water Strike	Geste
naba	Sample III	-	ens rossum	(mAD)		20000000	MADE GROUN			lark grev	-	E .	Strike	Inch
0.30	ES			54200		033333	slightly gravelly rootlets (6x15).	sandy CLAY,	with freque	ent plants/		₽		11
0.30	ES1				(0.60	¹	sub-rounded to					₽ I		11
0.00				35.0	4 0.70	-	1					[⊟		11
1.00	ES3				(0.50)	1			1		1		11
1.20	D4		1.20m, N=15	34.5	4 1.20	-		200		1	- 3	ŧ		11
20 - 1.30 20 - 1.40	B5 ES10	(3,3/4,3,4 Recover	4,4) y = 100%	257274	(0.48	1 0000000	MADE GROUN		grey sandy	gravelly	1.30 - 1.65 100% rec	₹		17
20 - 1.65 20 - 2.20	D26 L24	Recover	y = 900%	34.1	4 1.60	00000	CLAY, Sand is rounded to rou				130 500 130% per	∮		11
60 - 1.70	D11					888	Touridad Solicos	NOON IN IN IN	eutem or q	unit LETTO.		2		77
80 - 1.90 20 - 2.80	ES12 UT22	Recover	v = 50%			80000						F 1		1
						10000	1				2.20 - 2.00			1
					(2.00	, 2000	MADE GROUI			90 A	SD% rec	ĒΙ		11
80 - 3.00 80 - 3.80	ES13	Recover	y = 100%				MADE GROUN slightly gravelly					ŧ l		1
80 - 3.80 00 - 3.20	D14					20000	sub-rounded to					3		11
							цианине.			4	2.80 - 3.80 100% rec	ŧΙ		11
60 - 3.80	D15			32.1	4 3.60	20000	4			1	8	ŧΙ		1
80 - 4.80	L25		3.80m, N=36	105,016	(0.30) 833333	MADE GROUP	unit				[1
90 - 4.10	ES16	(7,8/8,9). Recover	9,10) y = 100%	31.8	(0.30		MADE GROUN	D: Medium de				4		1
20 - 4.40	D18	- Territoria	1000	31,5			brown slightly of fine to coarse.				3.90 - 4.60 100% rec	ŧ l		1
0.000.000	JU1954					4 (44)	to coarse of qu	artz			man/th INC	f		11
80 - 5.00	UTG	Recover	v = 0%			14	MADE GROUN	ID; Dark brow				[11
00 - 6.00	L7	100	y = 900%		(1.40	gir Fact 1	sandy GRAVEL sub-angular to				1.60 - 5.10 0% res	5		11
10 - 5.20	D19	2011/01/01	1001045555			274	sandstone. IMADE GROUI		e de la constante	MED WILLS		[11
	1111					gi (648)	MADE GROUN	D; Dense ora			5.00 - 6.00	E l		1
60 - 5.70	D20			30.1	4 5.60	A CALL	gravelly fine to angular to roun				100% rsc	ŧ		11
00 - 7.00	C8	COTACLA	6.00m. N=44			272	sandstone. IMADE GROUI					6		11
200 - 1,000	~0	(10,14/14	4,16,12,2)			Services	Stiff reddish bro	own mottled g				6		11
		Recover	y = 30%		(1.40)	sandy CLAY, S angular to roun				6.00 - 7.00			11
						27.7	sandstone. [Gunthorpe Me		2011A	100 A	30% rec			11
						375	Stiff reddish bro	own mottled g						11
00 - 7.10 00 - 8.00	D21 L9	SPT(C): (16,9/17,	7.00m, 50 ,18,15,)	28.7	4 7.00		gravelly CLAY. angular fine to					7		1
	95701		y = 100%		100,000,00						7.00			11
					(1.29) ===	Guntharpe Me			-0142	7.00 - 8.00 100% rec	Ē		11
							Stiff reddish bro Sand is fine to	coarse. Grave	il is sub-ang	gular to	2			11
8.00	50	1700 E1700	21.9 h			-	angular fine to	ooarse of muc	Istone.		-	6-		11
J254/EF	(20,5/20, 9,)	21,	e tred	27.4	5 8.29		JGunthorpe Me				- 9			7,
							Very weak redo	10,000	OSTONE.	Discontinuit	ies (0-20)	E		
							are extremely o	dosely spaced	planar with	o clay infil.				
							Gunthorpe Me	mber] End of Bos	death of P. T.	W		9		
								End of Bon	anun) at 8.25	eatt)		ĮΙ		
												E		
												ŧΙ		
8	Fracture	TOR	SCR ROD			20 22, 22 24 2		A-15 A-17 A-17			- 3			
Date	Progre	ss by Tim Depth	Casing Was		ehole Dia		The state of the s	temarks:	a amony with	and division of	ding	x (d)		00
0.00		- Control of	- more				And a State of	to groundwate ackfilled with				is mate	orial.	
										Water S		30	0	
								ense (m) Casin	g (m) Sealed	(m) Time (min	e) Rose to (n	U.S.	Mama	rica .
			. 50		- 63	5-4	5	Srike (m) Casin	g (m) Sealed			u .	Rema	ries

Location Name	M1-J23a-J25- EA-SB-193/4	Location Type	Emergency Area
Earthwork Type	Cutting	Earthwork Modification	King Sheet Pile Wall

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)
Southbound	193480 – 193390	193/4	447211E, 335436N

Description and Proposed Works	
Modifications to existing Embankment slope (max. height of retention 1.7m)	

Site Description						
The site is located on the	southbound carriage	way verge before Juncti	ion 25.			
Associated Earthworks		GDMS Reference(s)	Туре			
		22232	Cutting			
Environmental and Historical Site Information	dating up to the Derby Road to the the current align GDMS indicated designation as S	historical maps on GDMS shows the site as fields 1960s with Longmoor Lane to the South and B5010 the North. From the 1970s onward the carriageway in ment we see today is present. The sthat the bedrock at the site area has an aquifer Secondary -B and absence of Aquifer for the sits at the site. The site is not with a groundwater				
Geology and Groundwa	iter					
Superficial Deposits	The BGS Geology Viewer depicts: No formation is found underlyin the entire site extents.					
Bedrock	The BGS Geology Viewer depicts: Gunthorpe Member - Mudstor Sedimentary bedrock formed during the Anisian period.					
Groundwater	No Groundwater encountered					

Source: AVIS
Date of Capture 24/03/2023

Downstream

Figure 19-4 EA-SB-193/4

Summary of Applicable Exploratory Holes						
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Eploratory hole Depth (m bgl)	Date of Exploratory Hole Formation	
-	BH1933S	Midpoint of EA	48.27 (OD)	10m	24/05/2023	

Geotechnical Ground Model	Material	Depth (mbgl)	Elevation (m OD)	Notes
for Design Verge Level: 48.27m OD	Made Ground- Granular	1.1	47.2	Ground model taken from BH1933S
40.27111 01	Gunthorpe member – Cohesive	2.4	45.9	
	Gunthorpe member – Cohesive	10	38.3	
	Groundwater r	notes: No Ground	dwater Encountered	

Design Parameters							
	Moderately Conservative Values:						
Material	Bulk Density (kN/m3)	Cu (kPa)	c' (kPa)	Ф' (°)	Eu (kPa)	E' (kPa)	UCS (MPa)
Made Ground- Granular	19	-	0	30	-	6200	-
Gunthorpe member – Cohesive	19	130	0	27	26000	23400	-
Gunthorpe member – Cohesive	20	192	2	26	32000	28800	-

Design Section

Due to insufficient space due to verge widening with earthworks solution, King Sheet Pile wall of design retention height of 2m has been proposed at this location. Sections have been considered by integrating maximum corrosion rate of 0.012mm/year on the soil side and 0.017mm/year on the exposed side.

Contaminated	No contamination sources identified based on confirmatory ground
Land	investigation data
Assessment	

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

ID13: Non-Coal mining Hazard

Report Extracts and References

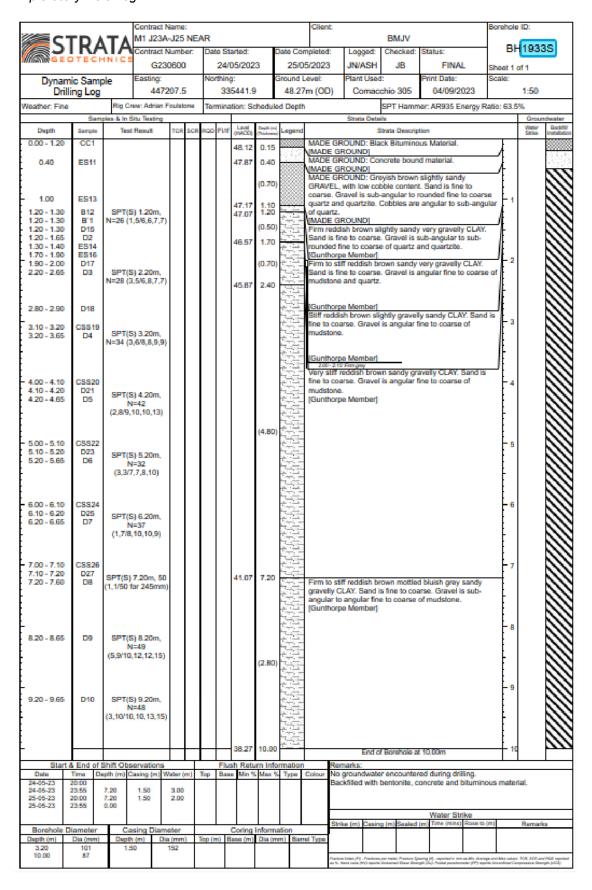
GFR

5. Retaining Structures

Retaining structures were constructed at the locations where there was insufficient space for verge widening with an earthworks solution, due to the restrictions of the HE boundary, other infrastructure or on embankments crossing flood plains.

The types of retaining walls constructed on the scheme were conventional sheet pile and King Sheet Pile (KSP) walls, gabion walls and slab on edge walls.

5.1. Sheet pile and king sheet pile walls


Locations of sheet pile and KSP wall structures along with the as-built details are shown in Appendix B. The locations of construction phase design changes are summarised in Table 8 and Table 9. The sheet piling subcontractor was Sheet Piling (UK) Ltd.

5.1.1. Record of soil and groundwater conditions encountered

The encountered ground conditions were broadly as expected in the design as described in the GIR [1] and GDR [2]. No significant groundwater seepages were encountered in the temporary excavations or through the sheet pile walls.

5.1.2. Temporary works required

The piling works were carried out from temporary piling platforms designed and constructed by the contractor. Due to the size of the piling rigs, the width of the piling platforms in cuttings was in some cases greater than the available space in the traffic management. In these locations the piling platform was extended past the line of the sheet pile wall, in a temporary cutting, which was subsequently backfilled with Class 6N material with a geotextile drainage layer (Deckdrain) behind the sheet piles.

Location Name	M1-J23a-J25- EA-SB-187/7	Location Type	Emergency Area
Earthwork Type	Embankment	Earthwork Modification	Regrade

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)
Southbound	187760 – 187650	187/7	446911E, 329995N

Description and Proposed Works Modifications to existing Embankment slope (max. height of retention 0.91m)

Site Description				
The site is located on the	southbound carriagev	vay verge, after Junctio	n 24a.	
Associated Earthworks		GDMS Reference(s)	Туре	
		24555	Embankment	
Environmental and Historical Site Information	dating up to the 1 the current alignr The site area is in Groundwater floo The area falls in i capacity. GDMS indicates designation as S	A review of the historical maps on GDMS shows the site as fields dating up to the 1950s. From the 1970s onward the carriageway in the current alignment we see today is present. The site area is in the designate flood zone 2 and 3 and potential for Groundwater flooding situated below Ground Level. The area falls in recorded flood lines due to exceeding channel		
Geology and Groundwa				
Superficial Deposits	The BGS Geology Viewer depicts: Hemington Member - Silt and Gravel. Superficial deposit formed during the Pre-Quaternary period underlying the entire site.			
Bedrock	The BGS Geolog		alton Member - Mudstone. Carnian period.	
Groundwater	No Groundwater		•	

Source: AVIS

Date of Capture 24/03/2023

Downstream

Figure 19-5 EA-SB-187/7

Summary of Applicable Exploratory Holes					
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation
-	BH1877S	Midpoint of EA	33.52 (OD)	10m	14/06/2023

Geotechnical Ground Model for Design	Material	Depth (mbgl)	Elevation (m OD)	Notes
Verge Level: 33.52m OD	Made Ground- Granular	1.2	32.3	Ground model taken from BH1877S
33.32111 01	Hemington Member – Cohesive	3.0	30.5	
	Hemington Member – Granular	10	23.5	
	Groundwater	notes: No Ground	dwater Encountered	d

Design Parameters							
	Moderately Conservative Values:						
Bulk Density (kN/m3) Cu (kPa) c' (kPa) (kPa) Φ' (°) Eu (kPa) (kPa) E' (kPa)				UCS (MPa)			
Made Ground- Granular	19	-	0	30	-	5000	-
Hemington Member – Cohesive	19	100	0	27	19000	17100	=
Hemington Member – Granular	19.5	-	1	30	-	25000	-

Design Section

Minor Regrade of 1V:2H slope has been proposed at this location and slope stability analysis has also been performed. The Slope has been found satisfactory for the proposed conservative ground model.

Contaminated	Potential landfill gas risk associated with Hemington Gravel Pit historical
Land	landfill. Method statements and risk assessments for exposure to gases,
Assessment	including mitigation measures, to be undertaken by groundworks and/or
	piling contractor

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

ID13: Non-Coal mining Hazard

ID24: Excavated arisings could be classed as non-hazardous or hazardous waste

Report Extracts and References

GFR

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

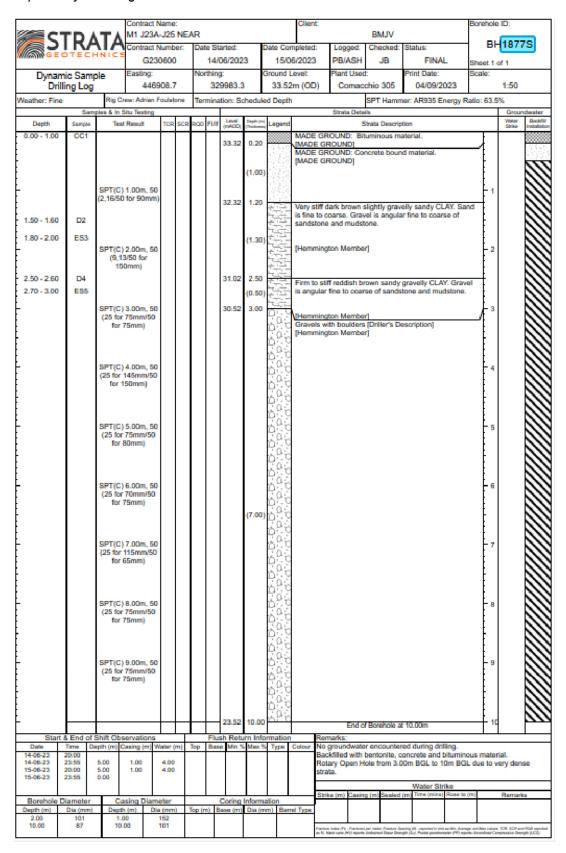
4.4. Instability problems and unusual ground conditions

The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

4.5. Ground water conditions and problems and drainage measures to overcome them

No major drainage or groundwater problems were encountered during widening of the embankments.

4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site


No contamination or hazardous materials were encountered at cutting locations across the scheme.

4.7. Foundation treatment, including drainage measures and treatment of soft areas

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

4.8. Settlement of foundation and fill material

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

Location Name	M1-J23a-J25- EA-SB-185/1	Location Type	Emergency Area
Earthwork Type	Cutting	Earthwork Modification	Regrade

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)
Southbound	184970 – 185070	185/1	447559E, 327405N

Description and Proposed Works	
Modifications to existing Embankment slope (max. height of retention 1.26m)	

Site Description					
The site is located on the	The site is located on the southbound carriageway verge, just before Junction 24.				
Associated Earthworks	Associated Earthworks		Туре		
		NA	Cutting		
Environmental and Historical Site Information	A review of the historical maps on GDMS shows the site as fields dating up to the 1960s with Derby road to the North and Ashby road to the south. From the 1970s onward the carriageway in the current alignment we see today is present. GDMS indicates that the bedrock at the site area has an aquifer designation as Secondary -B and Secondary -A Aquifer for the superficial deposits. The site is not with a groundwater Source Protection Zone.				
Geology and Groundwa	ater				
Superficial Deposits	Gravel Member -		nton Common Sand and perficial deposit formed rlying the entire site.		
Bedrock		y Viewer depicts: Edw lrock formed during the	alton Member - Mudstone. e Carnian period.		
Groundwater	No Groundwater	encountered			

Source: AVIS
Date of Capture 24/03/2023

Downstream

Figure 19-6 EA-SB-185

Summary of Applicable Exploratory Holes							
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation		
-	BH1851S	Midpoint of EA	39.54 (OD)	9.78m	28/06/2023		

Geotechnical Ground Model	Material	Depth (mbgl)	Elevation (m OD)	Notes
for Design	Made	1.3	38.2	Ground model
Verge Level: 33.52m OD	Ground- Granular			taken from BH1851S
33.52III OD	Edwalton	1.7	37.8	
	Member –			
	Cohesive			
	Edwalton	7.0	32.5	
	Member –			
	Cohesive			
	Edwalton	9.8	29.8	
	Member –			
	Cohesive			
	Groundwater	notes: No Ground	dwater Encountered	

Design Parameters							
	Moderately Conservative Values:						
Material	Bulk Cu (kPa) c' Φ' (°) Eu E' UCS						
Made Ground- Granular	19	-	0	30	-	6200	-
Edwalton Member – Cohesive	18	50	0	27	7800	6200	-
Edwalton Member – Cohesive	19	86	1	26	19000	17100	-
Edwalton Member – Cohesive	20	167	2	27	37000	33300	-

Design Section

Minor Regrade of 1V:2H slope has been proposed at this location and slope stability analysis has also been performed. The Slope has been found satisfactory for the proposed conservative ground model.

Contaminated	No contamination sources identified based on confirmatory ground
Land	investigation data
Assessment	

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

ID13: Non-Coal mining Hazard

ID24: Excavated arisings could be classed as non-hazardous or hazardous waste.

Report Extracts and References

GFR

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

4.4. Instability problems and unusual ground conditions

The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

4.5. Ground water conditions and problems and drainage measures to overcome them

No major drainage or groundwater problems were encountered during widening of the embankments.

4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

No contamination or hazardous materials were encountered at cutting locations across the scheme.

4.7. Foundation treatment, including drainage measures and treatment of soft areas

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

4.8. Settlement of foundation and fill material

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

Location Name	EA-E3-A2-190/5	Location Type	MS4 Gantry
Earthwork Type	Embankment	Earthwork Helical Piles	
		Modification	

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)
Southbound	190475 – 190495	190/5	446884E, 332633N

Description and Proposed Works	
Modifications on existing Embankment	

Site Description The site is located on the	southbound carriagev	vay verge, just before J	unction 24.	
Associated Earthworks		GDMS Reference(s)	Туре	
		24388	Embankment	
Environmental and Historical Site Information	A review of the historical maps on GDMS shows the site as fields dating up to the 1960s with Wilsthorpe Lane-Derby road to the North and Railway Line to the south. From the 1970s onward the carriageway in the current alignment we see today is present. Potential for Groundwater Flooding of Property Situated Below Ground Level at site. GDMS indicates that the bedrock at the site area has an aquifer designation as Secondary -B and Secondary - A Aquifer for the superficial deposits. The site is not with a groundwater Source Protection Zone.			
Geology and Groundwa				
Superficial Deposits	Gravel - Sand an		nington Member - Silt and eposit formed during the Mid site.	
Bedrock		y Viewer depicts: Edwarock formed during the	alton Member - Mudstone. • Carnian period.	
Groundwater	No Groundwater encountered			

Source: AVIS

Date of Capture 24/03/2023

Downstream

Figure 19-7 EA-E3-A2-190/4

Summary	Summary of Applicable Exploratory Holes						
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation		
-	BH1904N	Midpoint of Gantry	39.20 (OD)	20m	05/05/2023		

Geotechnical Ground Model	Material	Depth (mbgl)	Elevation (m OD)	Notes
for Design Verge Level:	Made Ground-	0.9	38.3	Ground model taken from
33.52m OD	Granular Hemington Member-	1.2	38.0	BH1904N
	Granular Edwalton Member –	4.0	35.2	
	Cohesive Edwalton	8.0	31.2	
	Member – Cohesive	42.0	27.0	
	Edwalton Member – Cohesive	12.0	27.2	
	Edwalton Member – Granular	14.9	24.4	
	Edwalton Member – Sandstone	20	19.2	
	Groundwater	notes: No Groun	dwater Encountered	

Design Parameters							
	Moderately Conservative Values:						
Material	Bulk Density (kN/m3)	Cu (kPa)	c' (kPa)	Ф' (°)	Eu (kPa)	E' (kPa)	UCS (MPa)
Made Ground- Granular	19	-	0	30	-	6200	-
Hemington Member- Granular	19	-	0	30	-	10000	-
Edwalton Member – Cohesive	19	75	0	26	15000	13500	-
Edwalton Member – Cohesive	19	125	0	26	25000	22500	-
Edwalton Member – Cohesive	19	150	2	26	50000	45000	-
Edwalton Member – Granular	20	-	0	33	-	40000	-
Edwalton Member – Sandstone	21	-	-	-	-	50000	1.5

<u>Design Section</u> Refer to Annex D

Contaminated Land	No contamination sources identified based on confirmatory ground investigation data
Assessment	

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

Report Extracts and References

GFR

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

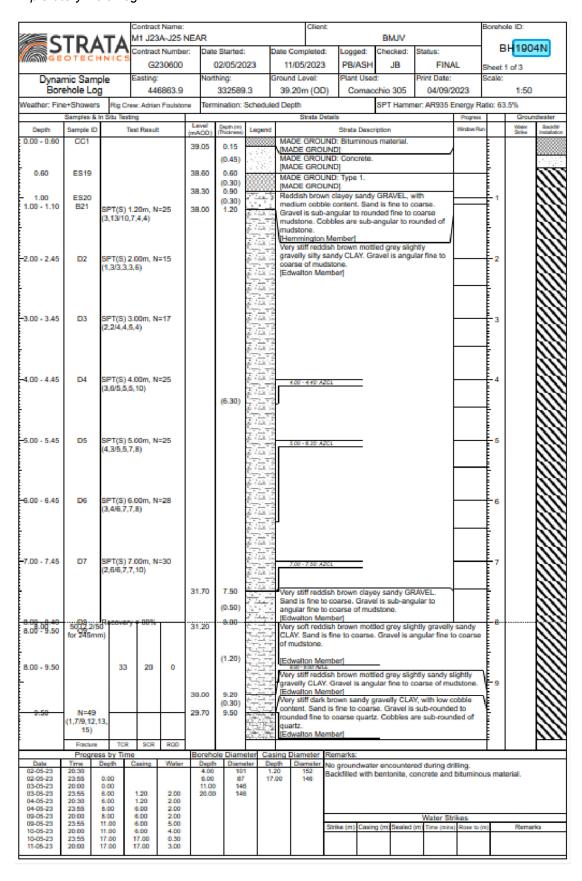
4.4. Instability problems and unusual ground conditions

The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

4.5. Ground water conditions and problems and drainage measures to overcome them

No major drainage or groundwater problems were encountered during widening of the embankments.

4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site


No contamination or hazardous materials were encountered at cutting locations across the scheme.

4.7. Foundation treatment, including drainage measures and treatment of soft areas

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

4.8. Settlement of foundation and fill material

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

Annex B Geotechnical Datasheets – Minor Structures

Structure Name	CCTV-1	Structure Type	Minor Structure
Earthwork Type	Cutting	Earthwork	-
		Modification	

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)		
Southbound	193364	193/3B+43	447212E, 335401N		
The centre of the minor structure is 1.23 m from the verge.					

Description and Proposed Works	
Plunge pile foundation	

The site is located on the	southbound carriage	way verge before Junct	ion 25.		
Associated Earthworks		GDMS Reference(s)	Туре		
		22232	Cutting		
Environmental and Historical Site Information	A review of the historical maps on GDMS shows the site as fields dating up to the 1960s with Longmoor Lane to the South and B5010 Derby Road to the North. From the 1970s onward the carriageway in the current alignment we see today is present. GDMS indicates that the bedrock at the site area has an aquifer designation as Secondary -B and absence of Aquifer for the superficial deposits at the site. The site is not with a groundwater				
Geology and Groundwa	Source Protection Zone.				
Superficial Deposits	The BGS Geology Viewer depicts: No formation is found underlying the entire site extents.				
Bedrock	The BGS Geology Viewer depicts: Gunthorpe Member - Mudstone. Sedimentary bedrock formed during the Anisian period.				
Groundwater	No Groundwater encountered				

Downstream

Source: AVIS

Date of Capture 24/03/2023

Figure 19-8: Street View of CCTV-1 earthwork location

Summary of Applicable Exploratory Holes						
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation	
-	BH1933S	Midpoint of EA	48.27 (OD)	10m	24/05/2023	

Geotechnical Ground Model for Design	Material	Depth (mbgl)	Elevation (m OD)	Notes
Verge Level: 48.27m OD	Made Ground- Granular	1.1	47.2	Ground model taken from BH1933S
40.27111 015	Gunthorpe member – Cohesive	2.4	45.9	
	Gunthorpe member – Cohesive	10	38.3	
	Groundwater	notes: No Ground	dwater Encountered	d

Design Parameters							
ı	Moderately (Conservativ	ve Value	es:			
Material Bulk Density (kN/m3) Cu (kPa) C' (kPa) Φ' (°) Eu (kPa) (kPa) (kPa) (MPa)							
Made Ground- Granular	19	-	0	30	-	6200	-
Gunthorpe member – Cohesive	19	130	0	27	26000	23400	ï
Gunthorpe member – Cohesive	20	192	2	26	32000	28800	-

<u>Design Section</u>
The CCTV-1 structure is supported on plunge piles of 457mm dia CHS pile planted inside 600mm dia concrete pile of depth 3.9m.

Plunged column Embedment length (m)	4.0m
Anticipated	5.1 mm at top of pile
Elastic	
Deflections	24.85 mm at the top of CCTV mast
Design Utilisation for CD354 planting depth	48.8%

Contaminated	No contamination sources identified based on confirmatory ground
Land	investigation data
Assessment	

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

ID13: Non-Coal mining Hazard

Report Extracts and References

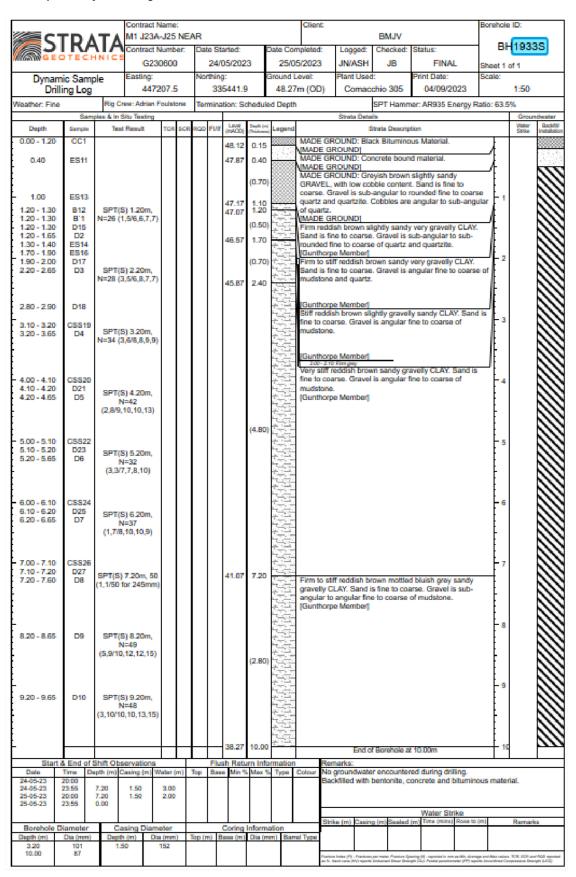
GFR

5. Retaining Structures

Retaining structures were constructed at the locations where there was insufficient space for verge widening with an earthworks solution, due to the restrictions of the HE boundary, other infrastructure or on embankments crossing flood plains.

The types of retaining walls constructed on the scheme were conventional sheet pile and King Sheet Pile (KSP) walls, gabion walls and slab on edge walls.

5.1. Sheet pile and king sheet pile walls


Locations of sheet pile and KSP wall structures along with the as-built details are shown in Appendix B. The locations of construction phase design changes are summarised in Table 8 and Table 9. The sheet piling subcontractor was Sheet Piling (UK) Ltd.

5.1.1. Record of soil and groundwater conditions encountered

The encountered ground conditions were broadly as expected in the design as described in the GIR [1] and GDR [2]. No significant groundwater seepages were encountered in the temporary excavations or through the sheet pile walls.

5.1.2. Temporary works required

The piling works were carried out from temporary piling platforms designed and constructed by the contractor. Due to the size of the piling rigs, the width of the piling platforms in cuttings was in some cases greater than the available space in the traffic management. In these locations the piling platform was extended past the line of the sheet pile wall, in a temporary cutting, which was subsequently backfilled with Class 6N material with a geotextile drainage layer (Deckdrain) behind the sheet piles.

Structure Name	SVD-1	Structure Type	Minor Structure
Earthwork Type	Embankment	Earthwork	-
		Modification	

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)	
Northbound	190188	190/2A+34	446717E, 332368N	
The centre of the mir	The centre of the minor structure is 0.8m from the verge.			

Description and Proposed Works	
Pad foundation	

The site is located on the Junction 25.	northbound carriage	way verge, midway betw	een Junction 24a and
Associated Earthworks		GDMS Reference(s)	Туре
		24420	Embankment
Environmental and Historical Site Information	A review of the historical maps on GDMS shows the site as fields dating up to the 1960s with Draycot road to the South and Railway Line to the North. From the 1970s onward the carriageway in the current alignment we see today is present. The site area is near to the designate flood zones 2 and 3 and potential for Groundwater flooding situated below Ground Level. GDMS indicates that the bedrock at the site area has an aquifer designation as Secondary -B and Secondary - A Aquifer for the superficial deposits. The site is not with a groundwater Source Protection Zone.		
Geology and Groundwa	ter		
Superficial Deposits		ial deposit formed during	ington Member - Silt and g the Pre-Quaternary period
Bedrock		gy Viewer depicts: Edwa drock formed during the	alton Member - Mudstone. Carnian period.
Groundwater	No Groundwater	rencountered	

Downstream

Source: AVIS

Date of Capture 24/03/2023

Figure 19-9: Street View of SVD 1 earthwork location

Summary of Applicable Exploratory Holes					
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation
-	BH1902N	Midpoint of EA	40.40 (OD)	10m	30/05/2023

Geotechnical Ground Model	Material	Depth (mbgl)	Elevation (m OD)	Notes
for Design	Made	1.2	39.2	Ground model
Verge Level: 33.71m OD	Ground- Granular			taken from BH1902N
33.7 IIII OD	Hemington	2.8	37.6	
	Member – Granular			
	Edwalton	5.0	35.4	
	Member – Cohesive			
	Edwalton	10.0	30.4	
	Member – Cohesive			
	Groundwater r	notes: No Ground	dwater Encountered	

Design Parameters							
	Moderately Conservative Values:						
Material	Bulk Density (kN/m3) Cu (kPa) c' (kPa) Φ' (°) Eu (kPa) E' (kPa)						
Made Ground - Granular	19	-	0	30	-	5000	
Hemington Member – Granular	19	-	0	30	-	10000	
Edwalton Member – Cohesive	19	90	2	26	18000	16200	
Edwalton Member – Cohesive	19.5	165	2	27	33000	29700	

Design Section

Pad foundation of size 0.9m x 0.9m and thickness of 0.6m is proposed.

Case	Over Design Factor (ODF)			
	Overturning	Sliding	Bearing Resistance	
DA1C1	4	21	8	
DA1C2	3	14	5	
SLS	4	23	12	

Contaminated Land	No contamination sources identified based on confirmatory ground investigation data
Assessment	

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

Report Extracts and References

GFR

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

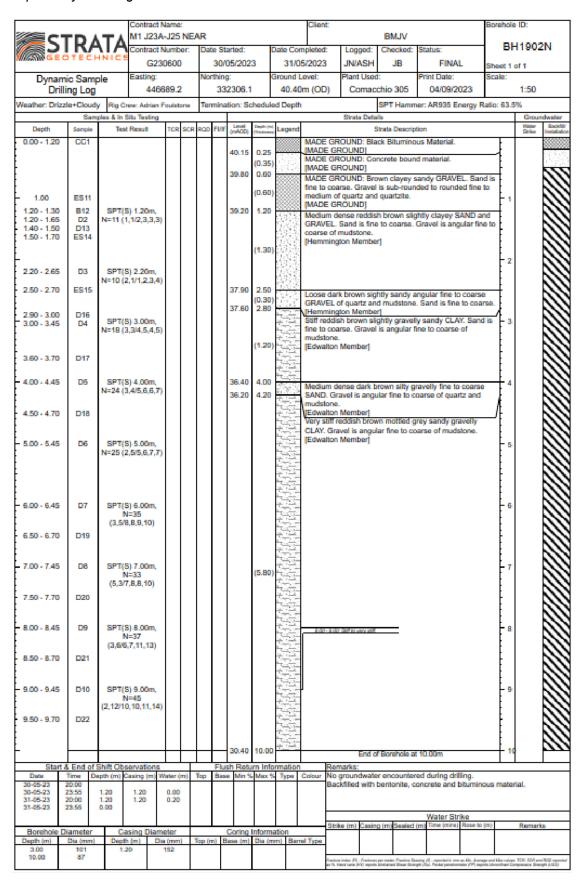
4.4. Instability problems and unusual ground conditions

The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

4.5. Ground water conditions and problems and drainage measures to overcome them

No major drainage or groundwater problems were encountered during widening of the embankments.

4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site


No contamination or hazardous materials were encountered at cutting locations across the scheme.

4.7. Foundation treatment, including drainage measures and treatment of soft areas

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

4.8. Settlement of foundation and fill material

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

Structure Name	SVD-2	Structure Type	Minor Structure
Earthwork Type	Cutting	Earthwork	-
		Modification	

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)
Northbound	191980	192/0A+19	447245E, 334008N
The centre of the mir	nor structure is 0.1	3 m from the verge.	

Description and Proposed Works	
Pad Foundation	

The site is located on the northbound carriageway verge, before Junction 25.				
Associated Earthworks		GDMS Reference(s)	Туре	
		22235	Cutting	
Environmental and Historical Site Information	A review of the historical maps on GDMS shows the site as fields dating up to the 1960s with Derby road to the South and Longmoor Lane to the North. From the 1970s onward the carriageway in the current alignment we see today is present. The site area is designated as potential for Groundwater flooding to Occur at Surface. GDMS indicates that the bedrock at the site area has an aquifer designation as Secondary -B and Secondary - A Aquifer for the superficial deposits. The site is not with a groundwater Source			
Coolers and Crossed base	Protection Zone.			
Geology and Groundwa		\" \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Superficial Deposits	The BGS Geology Viewer depicts: Beeston Sand and Gravel Member - Sand and Gravel. Superficial deposit formed during the Pleistocene Epoch period underlying the entire site.			
Bedrock	The BGS Geology Viewer depicts: Gunthorpe Member - Mudstone. Sedimentary bedrock formed during the Anisian period.			
Groundwater	No Groundwater encountered			

Downstream

Source: AVIS

Date of Capture 24/03/2023

Figure 19-10: Street View of SVD 2 earthwork location

Summary o	Summary of Applicable Exploratory Holes							
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation			
-	BH1920N	Midpoint of EA	35.74 (OD)	8.29m	02/05/2023			

Geotechnical Ground Model for Design	Material	Depth (mbgl)	Elevation (m OD)	Notes
ioi besigii	Made	1.2	34.5	Ground model
Verge Level: 33.71m OD	Ground- Cohesive			taken from BH1920N
33.7 IIII OD	Made	3.9	31.8	
	Ground- Granular			
	Gunthorpe member –	7.0	28.7	
	Cohesive			
	Gunthorpe member –	8.29	27.4	
	Mudstone			
	Groundwater	notes: No Ground	dwater Encountered	

Design Parameters							
N	Moderately Conservative Values:						
Material Bulk Density Cu c' Φ' Eu E' UCS (kPa) (kPa) (kPa) (kPa) (kPa)						UCS (MPa)	
Made Ground- Cohesive	19	100	0	27	7800	6200	-
Made Ground- Granular	19	-	0	32	-	15000	-
Gunthorpe member – Cohesive	20	180	2	27	36000	32400	-
Gunthorpe member – Mudstone	20	-	-	-	-	50000	0.48

 $\frac{\textbf{Design Section}}{\text{Pad foundation of size 0.9m x 0.9m and thickness of 0.6m is proposed.}}$

Case		Over Design Factor (ODF)	
	Overturning	Bearing Resistance	
DA1C1	4	21	8
DA1C2	3	14	5
SLS	4	23	12

Contaminated Land	No contamination sources identified based on confirmatory ground investigation data
Assessment	

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

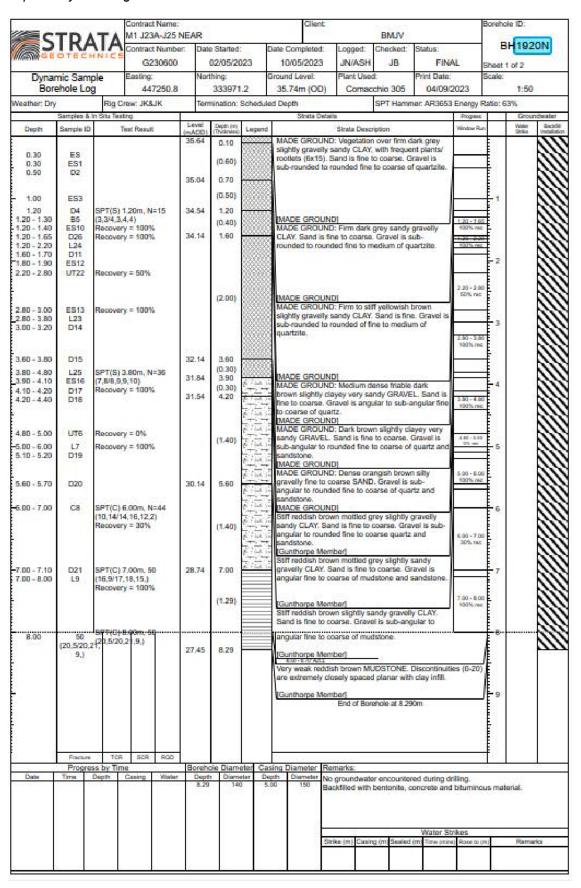
Report Extracts and References

GFR

3.3. Details of any problems encountered

None encountered.

3.4. Instability problems and unusual ground conditions


The ground conditions and materials encountered during construction were similar to the anticipated ground model in the GIR [1]. All excavated material was classed as 2A and 2B (unsuitable for regrading or fill to structures) and removed from the site. No ground instability problems were encountered during the construction.

3.5. Ground water conditions and problems and drainage measures to overcome them

No major groundwater problems were encountered during regrading of the cutting slopes.

3.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

No contamination or hazardous materials were encountered at cutting locations across the scheme.

Structure Name	SVD-3	Structure Type	Minor Structure
Earthwork Type	Cutting	Earthwork	-
		Modification	

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)		
Southbound	184956	185/0B+05	447558E, 327347N		
The centre of the minor structure is 2.3 m from the verge.					

Description and Proposed Works	
Pad Foundation	

Site Description				
The site is located on the southbound carriageway verge, just before Junction 24.				
Associated Earthworks		GDMS Reference(s)	Туре	
		NA	Cutting	
Environmental and Historical Site Information	dating up to the 1 to the south. From alignment we see GDMS indicates designation as S	A review of the historical maps on GDMS shows the site as fields dating up to the 1960s with Derby road to the North and Ashby road to the south. From the 1970s onward the carriageway in the current alignment we see today is present. GDMS indicates that the bedrock at the site area has an aquifer designation as Secondary -B and Secondary -A Aquifer for the superficial deposits. The site is not with a groundwater Source Protection Zone		
Geology and Groundwa	ater			
Superficial Deposits	The BGS Geology Viewer depicts: Egginton Common Sand and Gravel Member - Sand and Gravel. Superficial deposit formed during the Mid Pleistocene period underlying the entire site.			
Bedrock	The BGS Geology Viewer depicts: Edwalton Member - Mudstone. Sedimentary bedrock formed during the Carnian period.		alton Member - Mudstone.	
Groundwater	No Groundwater encountered			

Downstream

Source: AVIS

Date of Capture 24/03/2023

Figure 19-11: Street View of SVD 3 earthwork location

Summary of	f Applicable Explo	ratory Holes			
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation
-	BH1851S	Midpoint of EA	39.54 (OD)	9.78m	28/06/2023

Geotechnical Ground Model for Design	Material	Depth (mbgl)	Elevation (m OD)	Notes
loi Design	Made	1.3	38.2	Ground model
Verge Level: 33.52m OD	Ground- Granular			taken from BH1851S
33.32III OD	Edwalton Member – Cohesive	1.7	37.8	
	Edwalton Member – Cohesive	7.0	32.5	
	Edwalton Member – Cohesive	9.8	29.8	
	Groundwater	notes: No Ground	dwater Encountered	d

Design Parameters								
	Moderately Conservative Values:							
Material	Bulk Density (kN/m3)	Cu (kPa)	c' (kPa)	Ф' (°)	Eu (kPa)	E' (kPa)	UCS (MPa)	
Made Ground- Granular	19	-	0	30	-	6200	-	
Edwalton Member – Cohesive	18	50	0	27	7800	6200	-	
Edwalton Member – Cohesive	19	86	1	26	19000	17100	-	
Edwalton Member – Cohesive	20	167	2	27	37000	33300	-	

Case	Over Design Factor (ODF)				
	Overturning	Sliding	Bearing Resistance		
DA1C1	4	21	8		
DA1C2	3	14	5		
SLS	4	23	12		

Contaminated Land	No contamination sources identified based on confirmatory ground investigation data
Assessment	

Location Specific Risks

ID6: Compressible/Collapsible ground hazard

ID13: Non-Coal mining Hazard

ID24: Excavated arisings could be classed as non-hazardous or hazardous waste.

Report Extracts and References

GFR

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

4.4. Instability problems and unusual ground conditions

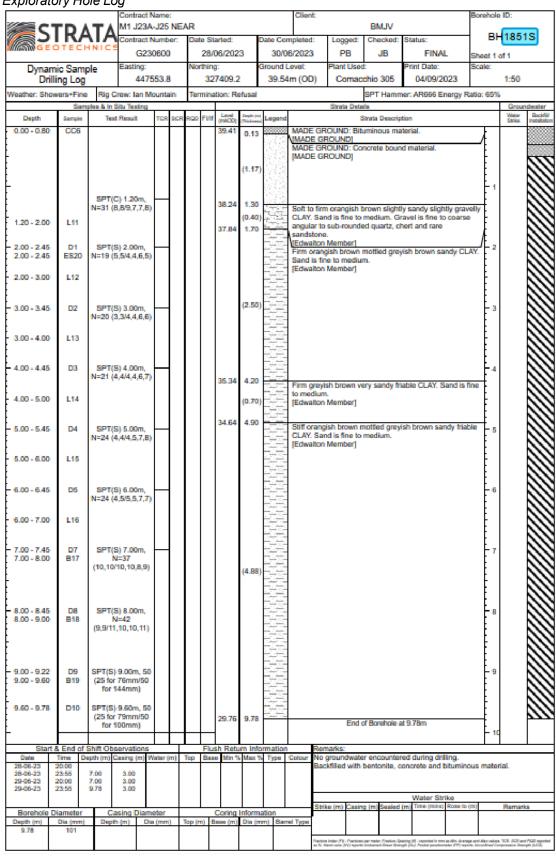
The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

4.5. Ground water conditions and problems and drainage measures to overcome them

No major drainage or groundwater problems were encountered during widening of the embankments.

4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

No contamination or hazardous materials were encountered at cutting locations across the scheme.


4.7. Foundation treatment, including drainage measures and treatment of soft areas

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

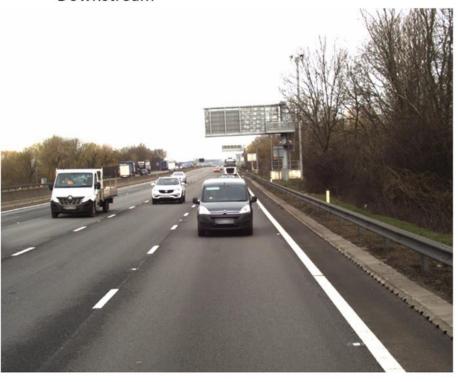
4.8. Settlement of foundation and fill material

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

Exploratory Hole Log

Structure Name	SVD-4	Structure Type	Minor Structure
Earthwork Type	Embankment	Earthwork	-
		Modification	

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)
Southbound	187764	187/7B+70	446892E, 330048N
The centre of the mir	nor structure is 3.5	m from the verge.	


Description and Proposed Works	
Pad Foundation	

Site Description The site is located on the	southbound carriagew	vay verge after Junction	n 24a	
Associated Earthworks	oodinoodiid odiilagoi	GDMS Reference(s)	Туре	
		24555	Embankment	
Environmental and Historical Site Information	A review of the historical maps on GDMS shows the site as fields dating up to the 1950s. From the 1970s onward the carriageway ir the current alignment we see today is present. The site area is in the designate flood zone 2 and 3 and potential for Groundwater flooding situated below Ground Level. The area falls in recorded flood lines due to exceeding channel capacity.			
Caalagu and Craundus	GDMS indicates that the bedrock at the site area has an aquifer designation as Secondary -B and Secondary - A Aquifer for the superficial deposits. The site is not with a groundwater Source Protection Zone.			
Geology and Groundwa				
Superficial Deposits		al deposit formed during	ington Member - Silt and g the Pre-Quaternary period	
Bedrock		y Viewer depicts: Edwarock formed during the	alton Member - Mudstone. Carnian period.	
Groundwater	No Groundwater	encountered		

Upstream

Downstream

Source: AVIS

Date of Capture 24/03/2023

Figure 19-12: Street View of SVD 4 earthwork location

Summary	Summary of Applicable Exploratory Holes						
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation		
-	BH1877S	Midpoint of EA	33.52 (OD)	10m	14/06/2023		

Geotechnical Ground Model for Design	Material	Depth (mbgl)	Elevation (m OD)	Notes
Verge Level: 33.52m OD	Made Ground- Granular	1.2	32.3	Ground model taken from BH1877S
33.32111 05	Hemington Member – Cohesive	3.0	30.5	
	Hemington Member – Granular	10	23.5	
	Groundwater	notes: No Ground	dwater Encountered	1

Design Parameters							
Moderately Conservative Values:							
Material	Bulk Density (kN/m3)	Cu (kPa)	c' (kPa)	Ф' (°)	Eu (kPa)	E' (kPa)	UCS (MPa)
Made Ground- Granular	19	-	0	30	-	5000	-
Hemington Member – Cohesive	19	100	0	27	19000	17100	=
Hemington Member – Granular	<u> </u>						-

Design Section

Pad foundation of size 0.9m x 0.9m and thickness of 0.6m is proposed.

Case	Over Design Factor (ODF)		
	Overturning	Sliding	Bearing Resistance
DA1C1	4	21	8
DA1C2	3	14	5
SLS	4	23	12

Contaminated	Potential landfill gas risk associated with Hemington Gravel Pit historical
Land	landfill. Method statements and risk assessments for exposure to gases,
Assessment	including mitigation measures, to be undertaken by groundworks contractor.'

<u>Location Specific Risks</u> ID6: Compressible/Collapsible ground hazard

ID13: Non-Coal mining Hazard

ID24: Excavated arisings could be classed as non-hazardous or hazardous waste.

Report Extracts and References

GFR

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

4.4. Instability problems and unusual ground conditions

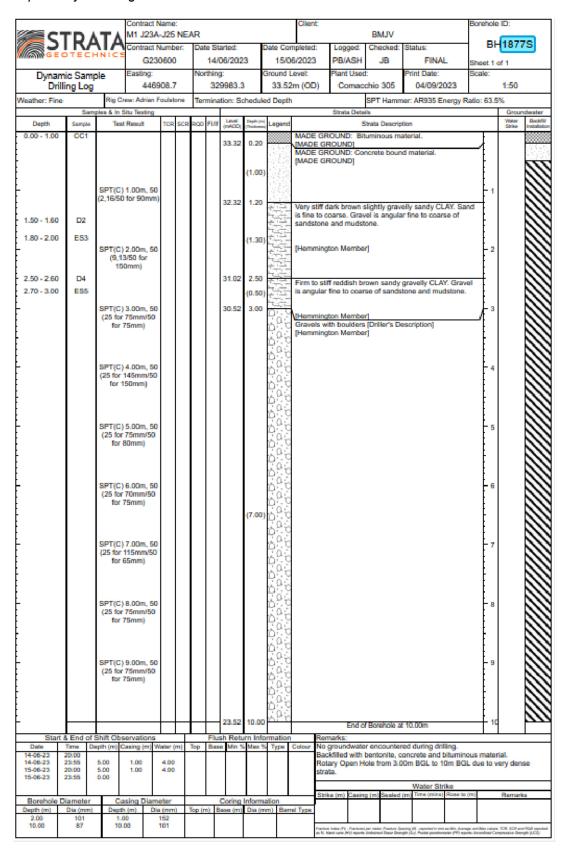
The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

4.5. Ground water conditions and problems and drainage measures to overcome them

No major drainage or groundwater problems were encountered during widening of the embankments.

4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

No contamination or hazardous materials were encountered at cutting locations across the scheme.


4.7. Foundation treatment, including drainage measures and treatment of soft areas

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

4.8. Settlement of foundation and fill material

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

Exploratory Hole Log

Structure Name	SVD-5	Structure Type	Minor Structure
Earthwork Type	Cutting	Earthwork	-
		Modification	

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)	
Southbound	447212E, 335403N			
The centre of the minor structure is 1.3 m from the verge.				

Description and Proposed Works	
Pad foundation	

Site Description			
The site is located on the	southbound carriage	way verge before Junct	ion 25.
Associated Earthworks		GDMS Reference(s)	Туре
		22232	Cutting
Environmental and Historical Site Information	A review of the historical maps on GDMS shows the site as field dating up to the 1960s with Longmoor Lane to the South and B5 Derby Road to the North. From the 1970s onward the carriagewathe current alignment we see today is present. GDMS indicates that the bedrock at the site area has an aquifer designation as Secondary -B and absence of Aquifer for the superficial deposits at the site. The site is not with a groundwater		Lane to the South and B5010 Os onward the carriageway in present. The site area has an aquifer ance of Aquifer for the
	Source Protection Zone.		
Geology and Groundwa	ter		
Superficial Deposits	The BGS Geology Viewer depicts: No formation is found underlying the entire site extents.		
Bedrock	The BGS Geology Viewer depicts: Gunthorpe Member - Mudstone. Sedimentary bedrock formed during the Anisian period.		
Groundwater	No Groundwater encountered		

Upstream

Source: AVIS

Date of Capture 24/03/2023

Downstream

Figure 19-13: Street View of SVD 5 earthwork location

Summary of Applicable Exploratory Holes						
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation	
-	BH1933S	Midpoint of EA	48.27 (OD)	10m	24/05/2023	

Made Ground- Granular	1.1	47.2	Ground model
Jianulai			taken from BH1933S
Gunthorpe member – Cohesive	2.4	45.9	
Gunthorpe nember – Cohesive	10	38.3	
ו	nember – Cohesive Gunthorpe nember – Cohesive	nember – Cohesive Gunthorpe 10 nember – Cohesive	nember – Cohesive Gunthorpe 10 38.3 nember –

Design Parameters							
	Moderately Conservative Values:						
Material	Bulk Density (kN/m3)	Cu (kPa)	c' (kPa)	Ф' (°)	Eu (kPa)	E' (kPa)	UCS (MPa)
Made Ground- Granular	19	-	0	30	-	6200	-
Gunthorpe member – Cohesive	19	130	0	27	26000	23400	-
Gunthorpe member – Cohesive	20	192	2	26	32000	28800	-

Design Section

Pad foundation of size 0.9m x 0.9m and thickness of 0.6m is proposed.

Case	Over Design Factor (ODF)		
	Overturning	Sliding	Bearing Resistance
DA1C1	4	21	8
DA1C2	3	14	5
SLS	4	23	12

Contaminated	No contamination sources identified based on confirmatory ground
Land	investigation data
Assessment	-

<u>Location Specific Risks</u> ID6: Compressible/Collapsible ground hazard

ID13: Non-Coal mining Hazard

Report Extracts and References

GFR

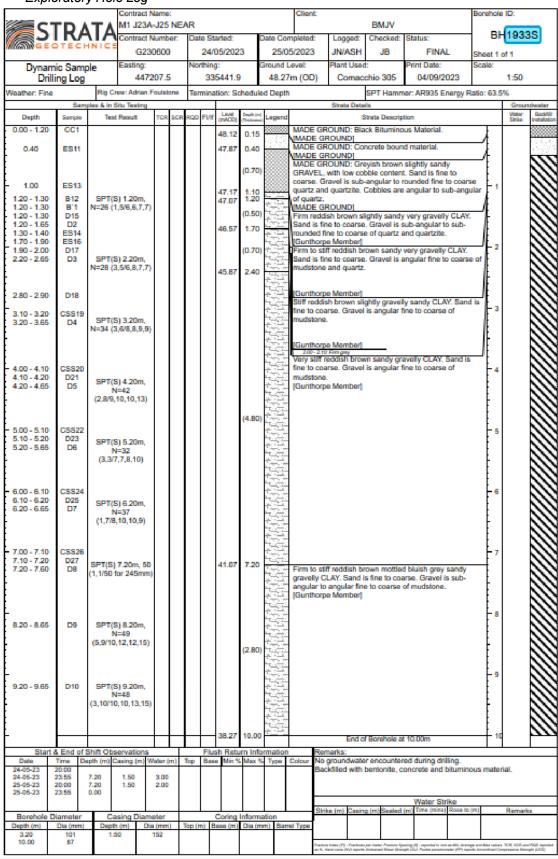
5. Retaining Structures

Retaining structures were constructed at the locations where there was insufficient space for verge widening with an earthworks solution, due to the restrictions of the HE boundary, other infrastructure or on embankments crossing flood plains.

The types of retaining walls constructed on the scheme were conventional sheet pile and King Sheet Pile (KSP) walls, gabion walls and slab on edge walls.

5.1. Sheet pile and king sheet pile walls

Locations of sheet pile and KSP wall structures along with the as-built details are shown in Appendix B. The locations of construction phase design changes are summarised in Table 8 and Table 9. The sheet piling subcontractor was Sheet Piling (UK) Ltd.


5.1.1. Record of soil and groundwater conditions encountered

The encountered ground conditions were broadly as expected in the design as described in the GIR [1] and GDR [2]. No significant groundwater seepages were encountered in the temporary excavations or through the sheet pile walls.

5.1.2. Temporary works required

The piling works were carried out from temporary piling platforms designed and constructed by the contractor. Due to the size of the piling rigs, the width of the piling platforms in cuttings was in some cases greater than the available space in the traffic management. In these locations the piling platform was extended past the line of the sheet pile wall, in a temporary cutting, which was subsequently backfilled with Class 6N material with a geotextile drainage layer (Deckdrain) behind the sheet piles.

Exploratory Hole Log

Structure Name	MIDAS-1	Structure Type	Minor Structure
Earthwork Type	Embankment	Earthwork	-
		Modification	

Carriageway	Chainage	Marker Post Reference	National Grid Reference (centre point)	
Northbound	190494	190/5A+61	446889E, 332642N	
The centre of the minor structure is 4.3 m from the verge.				

Description and Proposed Works	
Planted foundation	

The site is located on the Junction 25.	northbound carriage	way verge, midway betw	een Junction 24a and	
Associated Earthworks		GDMS Reference(s)	Туре	
		24420	Embankment	
Environmental and Historical Site Information	A review of the historical maps on GDMS shows the site as fields dating up to the 1960s with Draycot road to the South and Railway Line to the North. From the 1970s onward the carriageway in the current alignment we see today is present. The site area is near to the designate flood zones 2 and 3 and potential for Groundwater flooding situated below Ground Level. GDMS indicates that the bedrock at the site area has an aquifer designation as Secondary -B and Secondary - A Aquifer for the superficial deposits. The site is not with a groundwater Source Protection Zone.			
Geology and Groundwa	ter			
Superficial Deposits	The BGS Geology Viewer depicts: Hemington Member - Silt and Gravel. Superficial deposit formed during the Pre-Quaternary period underlying the entire site.			
Bedrock	The BGS Geology Viewer depicts: Edwalton Member - Mudstone. Sedimentary bedrock formed during the Carnian period.			
Groundwater	No Groundwater encountered			

Upstream

Downstream

Source: AVIS

Date of Capture 24/03/2023

Figure 19-14: Street View of MIDAS 1 earthwork location

Summary of Applicable Exploratory Holes					
BGS Reference ID	Exploratory Hole Name	Distance and direction from structure to exploratory hole (m)	Exploratory hole Elevation (m)	Exploratory hole Depth (m bgl)	Date of Exploratory Hole Formation
-	BH1902N	Midpoint of EA	40.40 (OD)	10m	30/05/2023

Geotechnical Ground Model	Material	Depth (mbgl)	Elevation (m OD)	Notes
for Design	Made	1.2	39.2	Ground model
Verge Level: 33.71m OD	Ground- Granular			taken from BH1902N
33.7 IIII OD	Hemington	2.8	37.6	
	Member –			
	Granular			
	Edwalton	5.0	35.4	
	Member –			
	Cohesive			
	Edwalton	10.0	30.4	
	Member –			
	Cohesive			
	Groundwater	notes: No Ground	dwater Encountered	

Design Parameters						
	Moderately Conservative Values:					
Material	Bulk Density (kN/m3)	Cu (kPa)	c' (kPa)	Ф' (°)	Eu (kPa)	E' (kPa)
Made Ground - Granular	19	-	0	30	-	5000
Hemington Member – Granular	19	-	0	30	-	10000
Edwalton Member – Cohesive	19	90	2	26	18000	16200
Edwalton Member – Cohesive	19.5	165	2	27	33000	29700

Design Section

pole diameter 168mm with Planted foundation of depth 1.2m along with minimum augured depth of 3.0m.

Design Utilisation for CD354 planting depth	63.5%
--	-------

Contaminated	No contamination sources identified based on confirmatory ground
Land	investigation data
Assessment	

<u>Location Specific Risks</u> ID6: Compressible/Collapsible ground hazard

Report Extracts and References

GFR

4.3. Details of any problems encountered

No particular embankment construction problems were encountered.

4.4. Instability problems and unusual ground conditions

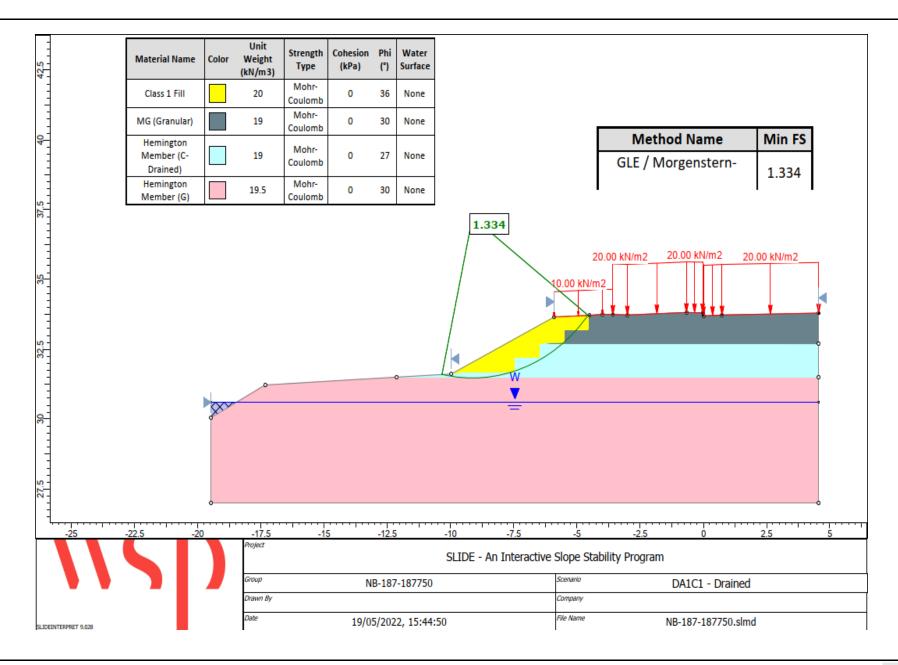
The materials encountered during construction were broadly similar to the reported ground conditions in the GIR [1]/ GDR [2]. All excavated material was classed as 2A and 2B (unsuitable for embankment widening) and removed from site. No ground instability problems were encountered during the construction.

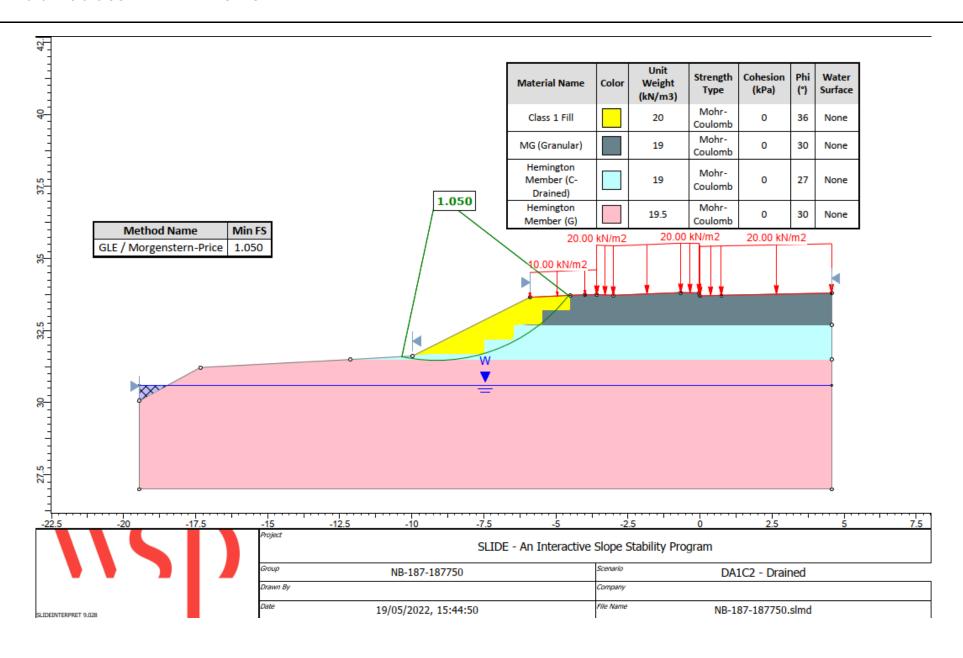
4.5. Ground water conditions and problems and drainage measures to overcome them

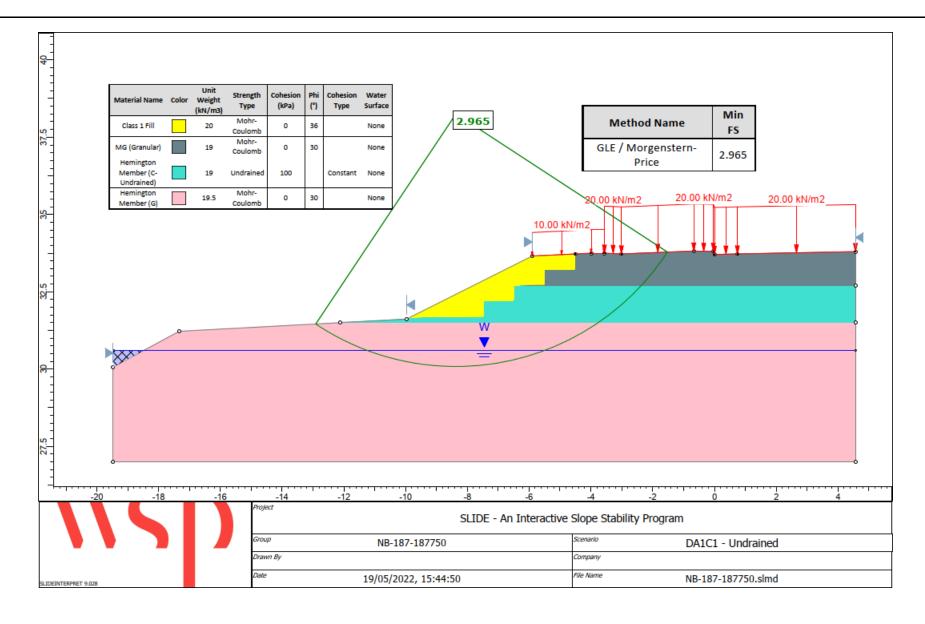
No major drainage or groundwater problems were encountered during widening of the embankments.

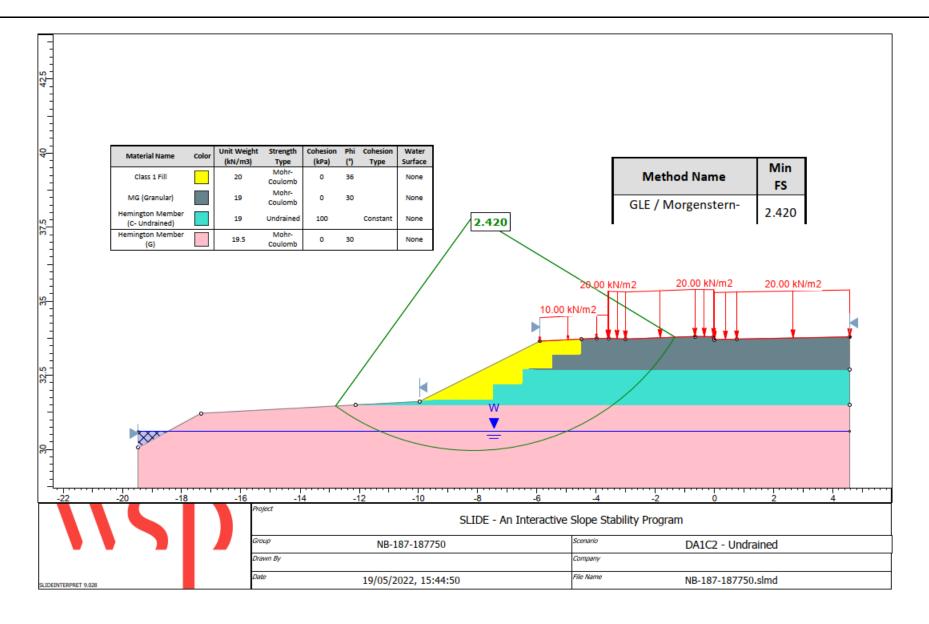
4.6. Contaminated and hazardous material encountered on site and the location of disposal, both on and off site

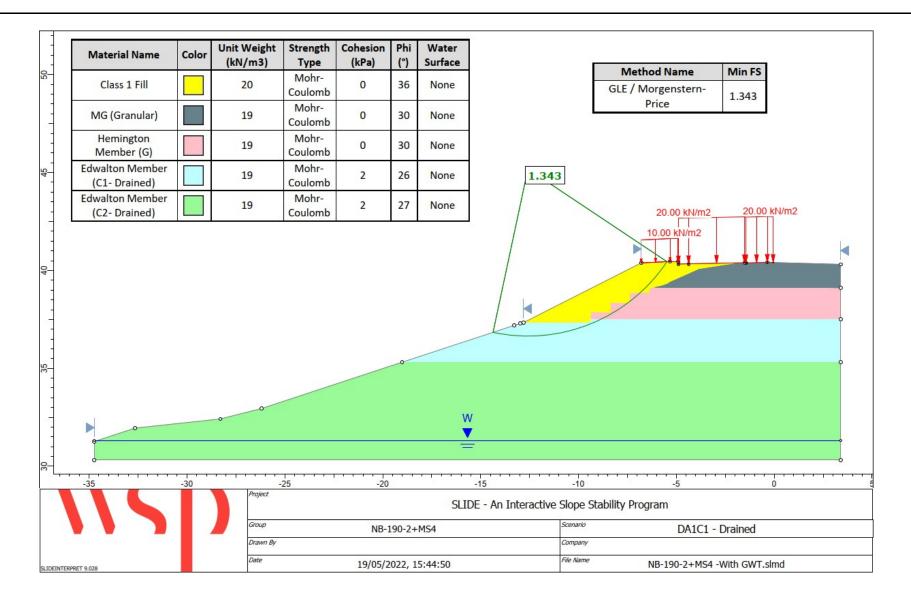
No contamination or hazardous materials were encountered at cutting locations across the scheme.

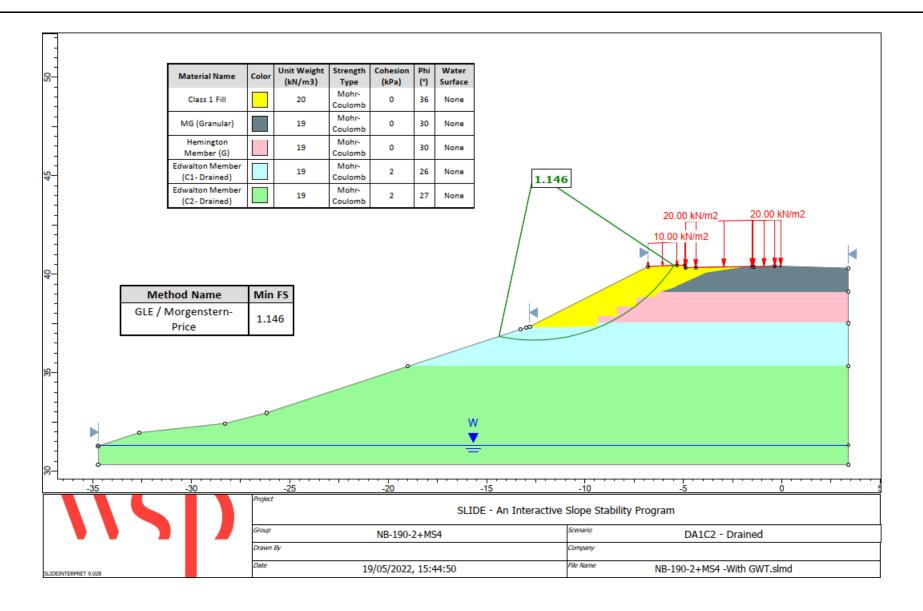

4.7. Foundation treatment, including drainage measures and treatment of soft areas

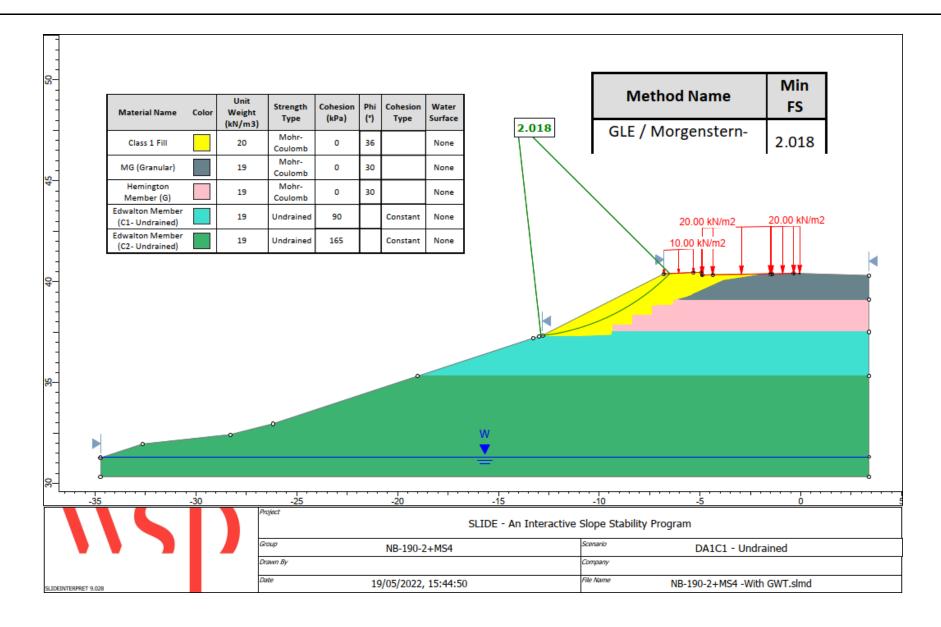

No areas of soft foundations were encountered, as the embankment widening did not generally extend into the flood plain areas. New fill was benched into the existing embankment to maintain the integrity of the new slope.

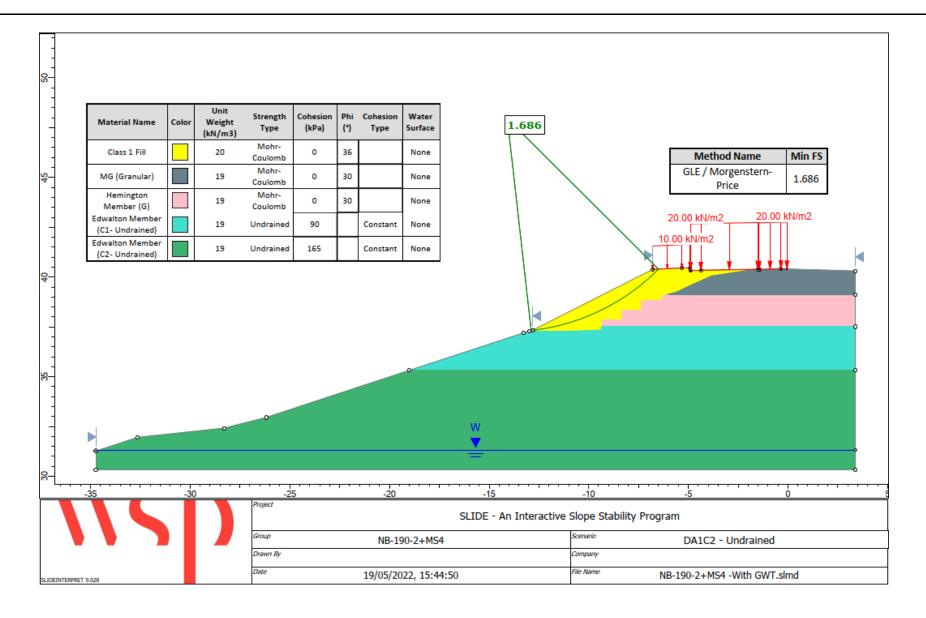

4.8. Settlement of foundation and fill material

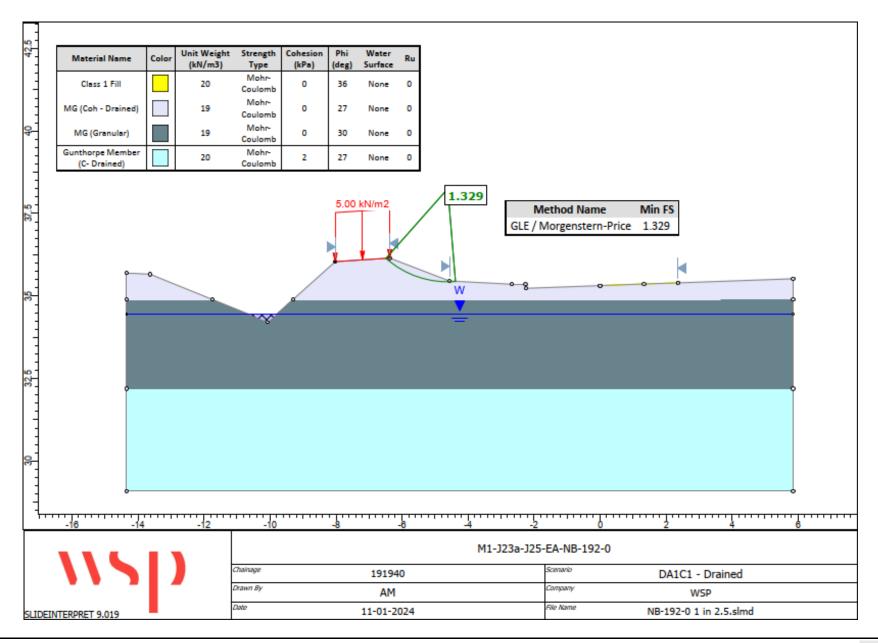

The works comprised only localised small scale widening of existing embankments. No new embankments that would be subject to foundation or internal settlement were constructed as part of the works.

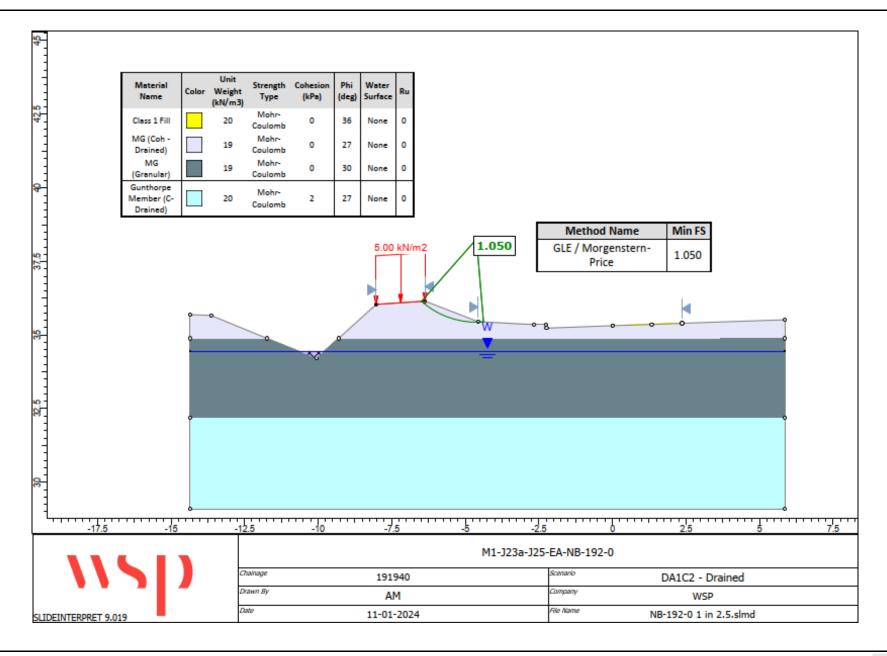

Annex C SLIDE Output

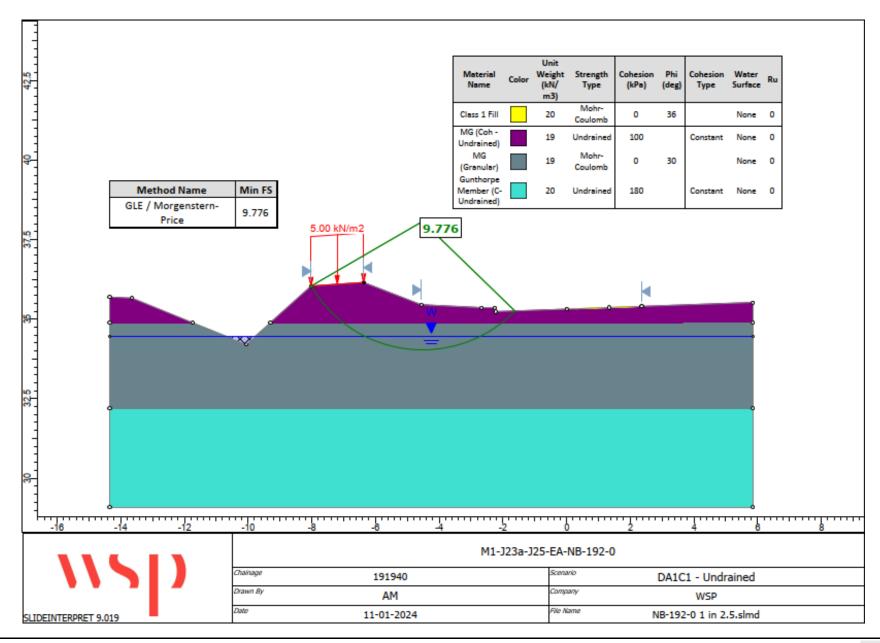


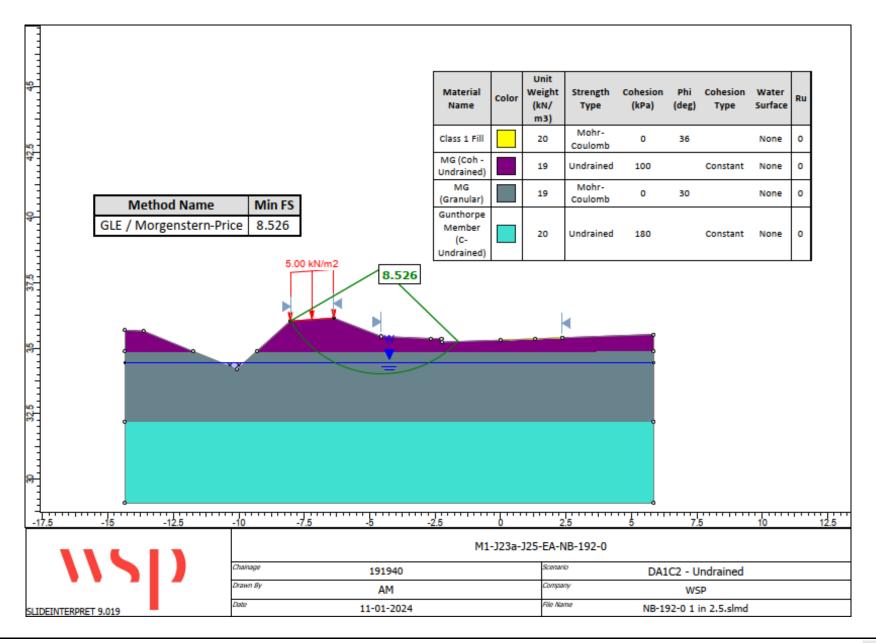


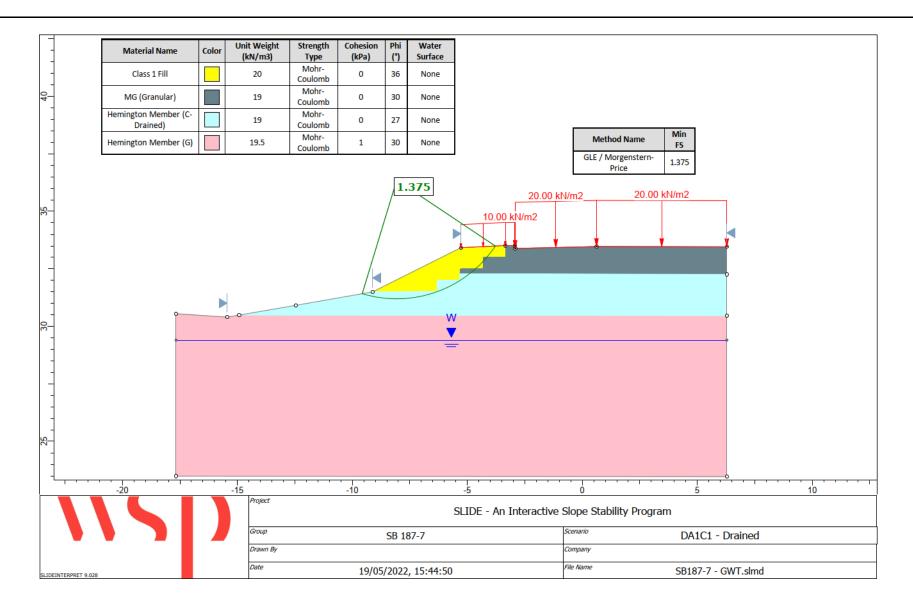


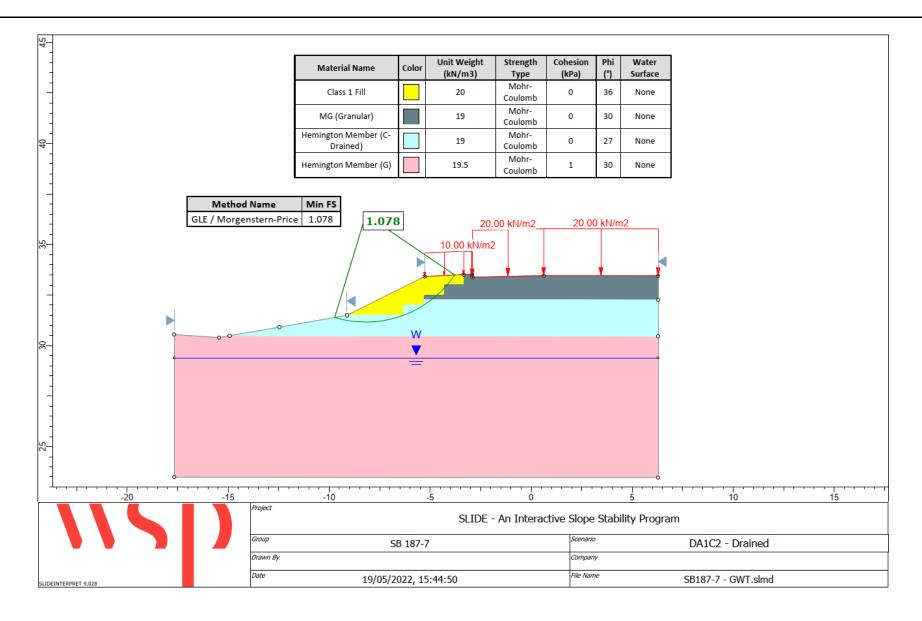


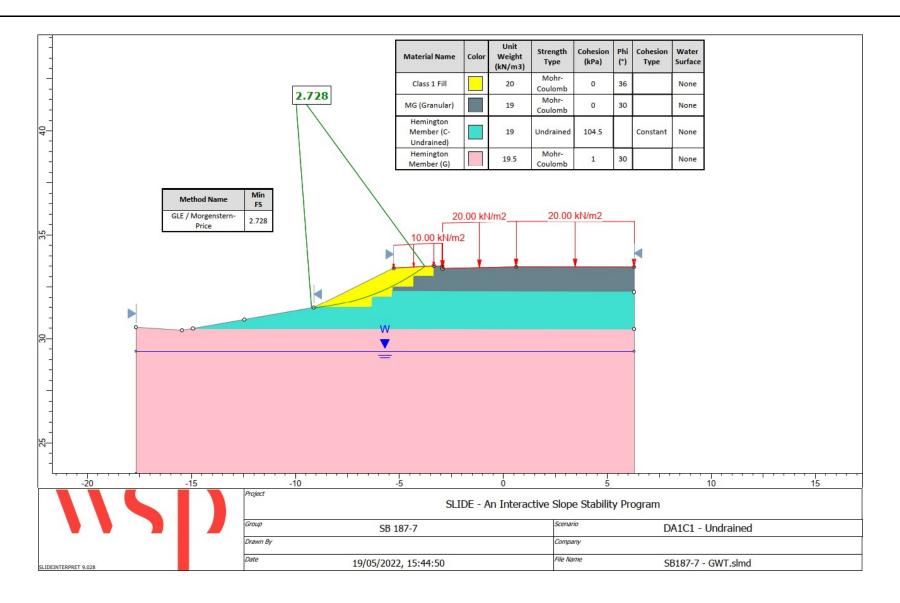


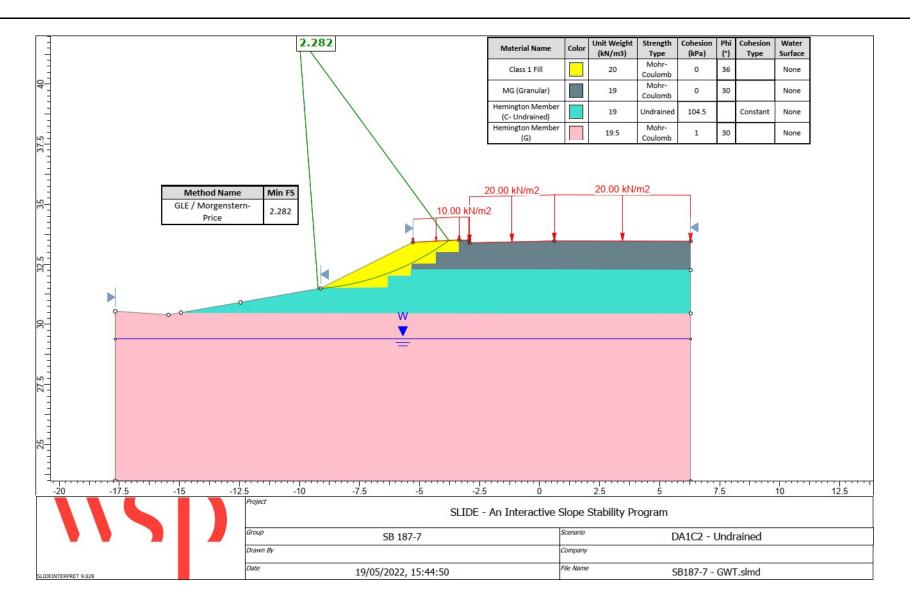


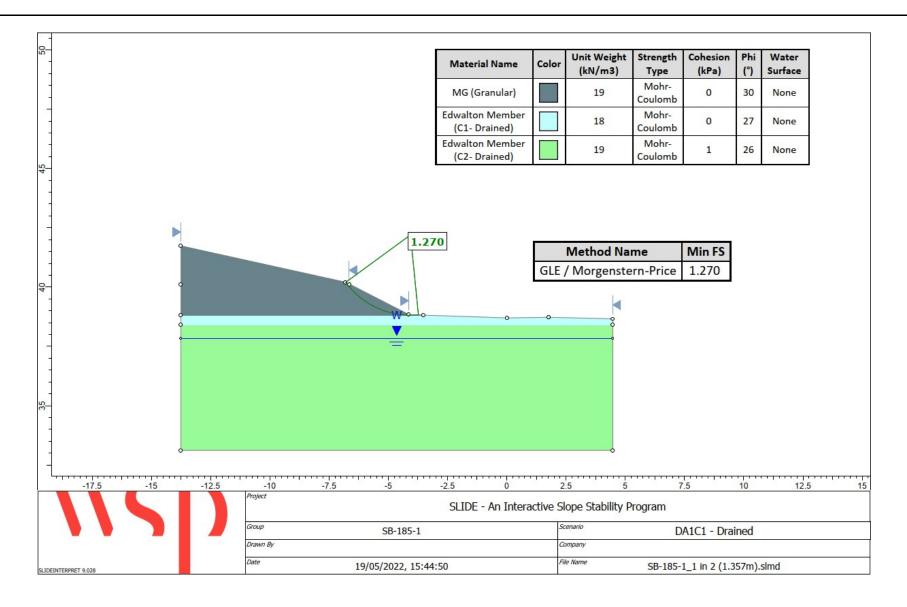


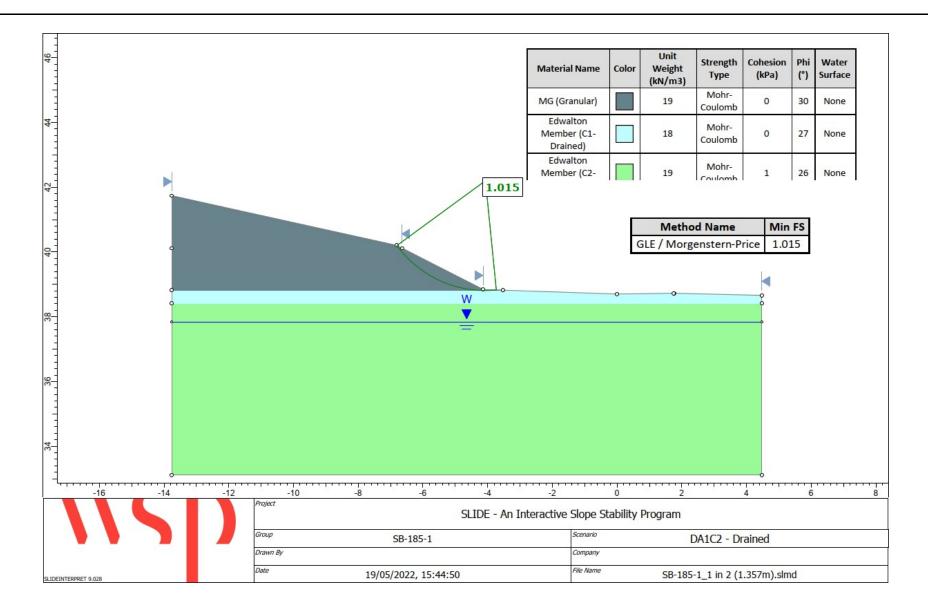


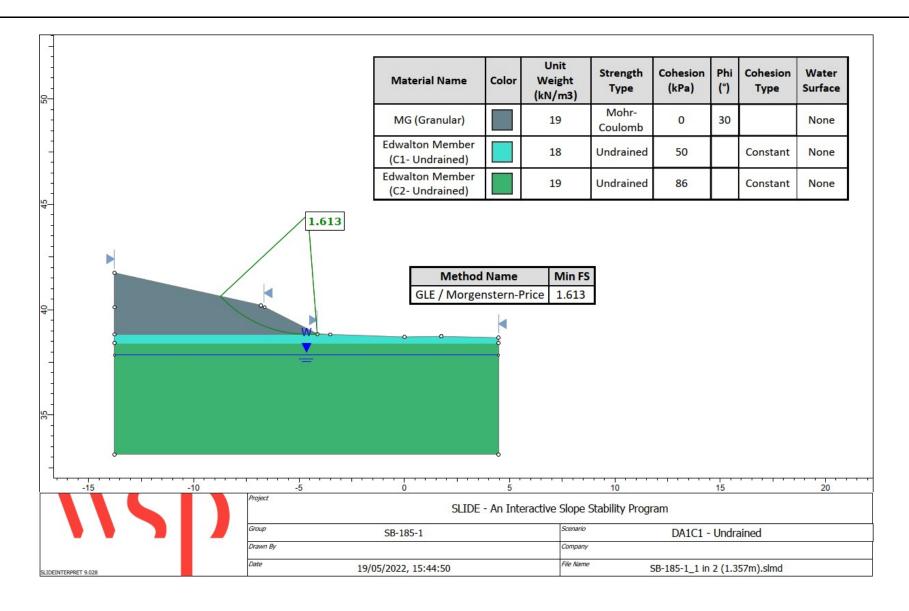


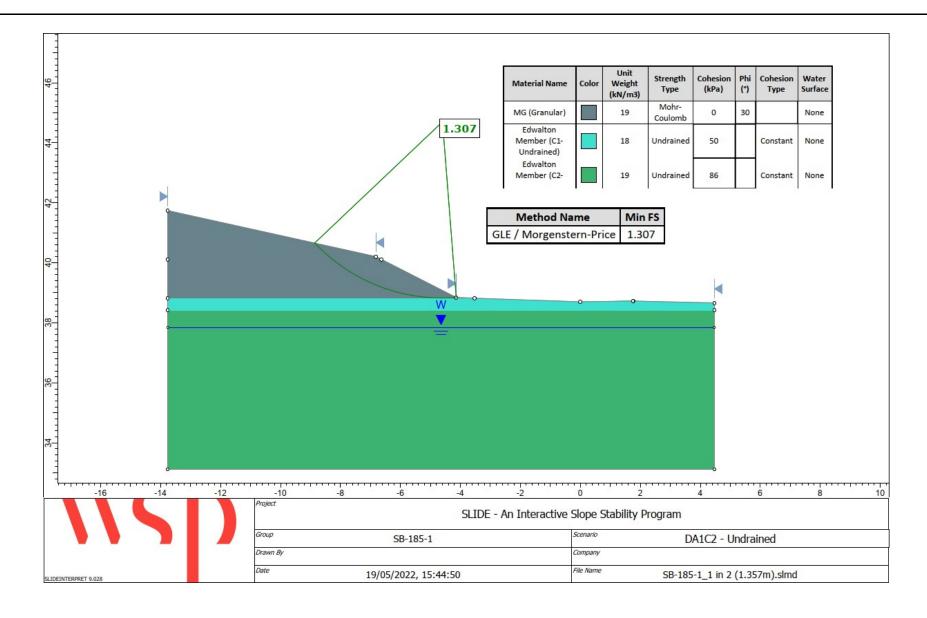












Annex D MS4 Cantilever Gantry Geotechnical Design Report

NATIONAL EMERGENCY AREA RETROFIT M1 J23a-25

HE614830

MS4 Chainage 190+485

Date: 14/02/24

Document Control and Sign off Sheet

Document Number:	HE614830-VAE-SGY-P015_S2_ALLGENR-RP-CB-0001
Rev Number:	P02
Date:	14/02/24
Document Status:	S5
Client Ref Number (PIN):	HE 614830
PCF Stage:	PCF 5
Document Author & Role	M. Christie – Senior Geotechnical Engineer

Revision History

Revision	Date	Description	Ву	Check	Review	Approved
P01	05/01/24	SUITABLE FOR REVIEW AND COMMENTS	MC	AP	DW	AP
P02	14/02/24	SUITABLE FOR REVIEW AND ACCEPTANCE	MC	AP	DW	AP

Consulted with

Name	Role	Date Consulted	Date of Final Comments	Technical & Operational Approval*
				•
		_		
			_	

^{*} In addition to the mandatory final sign off, some products also require a prior 'technical' acceptance by one or more technical specialists (such as SES Transport Planning Group (TPG) or SES Environment Group) or 'operational' approval from OD.

NH Project Manager

As the individual responsible for this product you are required to sign off to confirm that:

- The product has been produced and is PCF compliant (e.g. in line with the product description found in the pages of the PCF Website and the Matrix)
- PCF process has been correctly followed e.g. the correct consultation has taken place
- You are content with the overall content and quality of the product

Name	Signature	Title	Date

Final sign off by individual named under 'Accountable and Signed Off By'

As the individual accountable* for this product you are required to sign off to confirm that:

- The product has been produced and is PCF compliant (e.g. in line with the product
- description)
- PCF process has been correctly followed e.g. you are assured that the correct consultation has taken place
- You are content with the overall content and quality of the product

Name	Signature	Title	Date

^{*}Every product is subject to a mandatory final sign off by the individual named as 'Accountable'. This is often the Programme Delivery Director or Regional Sponsor depending on the product.

Contents

SECT	ION TITLE	PAGE No.
	Introduction	5
G1	Cuttings	5
G2	Embankments	5
G3	Highway Structures	5
G4	SGM	10
G5	Drainage	10
G6	Pavement design, subgrade design (including the need for in-situ treatment, etc.) and capping	10
G7	Contamination and ground gas risk	10
G8	Ground treatment including void stabilisation	10
G9	Geotechnical risk register	10
G10	Specification appendices	13
G11	Instrumentation and monitoring	13
G12	Pile testing requirements	13
G13	Annex 1	13
G14	Annex 2	14

APPENDIX A: Site Specific Datasheets APPENDIX B: Design Calculation Sheets APPENDIX C: Drawings

Introduction

This report forms the Geotechnical Design Report for the gantry foundations of the National Emergency Area Retrofit M1 J23a-25 scheme, which is to be attached to the main Geotechnical Design Report to be drafted by DED. This report concerns the helical pile foundations designed by Screwfast Foundations (part of Van Elle Limited) for the structures on the M1 J23a-25 scheme listed in Table 1 - 1.

This report should be read in conjunction with the AIP document ref; HE614830-WSP-SGY-P015 S2 ALLGENR-AV-CB-0001

Reference should be made to the Factual Ground Investigation Report by Strata Geotechnics, with reference, G230600 and dated 08/08/23.

G1 Cuttings

No major earthworks are necessary for the installation of the gantry foundations.

G2 Embankments

No major earthworks are necessary for the installation of the foundations.

G3 Highway structures

G3.1 Details of highway structure types

The structure type that will be supported on Screwfast foundations are given in Table 1 - 1. The structure loads are transferred to the piled foundations at the leg by means of a steel grillage. Details of the relevant highway structure and the site-specific foundation design, including foundation type and soil parameters, are summarised on the datasheets given in Appendix A.

The grillage also has a steel stair for access, which requires helical pile to be installed as part of the stair independent foundation.

The use of helical piles, has been determined using the available ground information for the site. The number of piles beneath the grillage has been determined by the available bearing capacity on the selected pile type and the most efficient combination of pile length and number of piles to restrain the required load.

G3.2 General design details

The design life of the structures is 30 years and the foundations have been designed with a corresponding 30-year design life. The structural design considers 30 years' design life plus 10 years for fatigue.

The factual ground report has been referenced for the ground model development. The relevant borehole is shown on the site-specific datasheets (Appendix A). Information from the factual report has been supplemented with data from the nearest borehole and literature such as Tomlinson and Woodward (2008) and Barnes (2010) where necessary to derive the soil parameters and soil mechanics for design for this project.

Table 1 – 1: Structures to be installed by ScrewFast Foundations

Gantry	Structure Type	Chainage	Structure Key	Carriage- way	Pile Type
MS4 190+485	MS4	190+485	STR 43871	NB	Helical

The friction angle of non-cohesive soils has been estimated using different methods for the different soil conditions, again a conservative estimate of phi (see below formulas adopted);

When Grain angularity is unknown:

Japanese Road Association, 1990

$$Ø^{\rm r} = 15 + \sqrt{(15 \times N)}$$

When Grain angularity is known:

Dunham, J.W. Pile foundation for buildings

$$\phi^{r} = 25 + \sqrt{(12 \times N)}$$
 Angular

$$Ø^{r} = 15 + \sqrt{(12 \times N)}$$
 Rounded

$$Ø^{r} = 20 + \sqrt{(12 \times N)}$$
 Well graded

Occasionally, where applicable, the derived Phi values from the formulas may be reduced to account for variations in the granular material including the potential for variations of cohesive content and grain angularity.

G3.3 Design of ScrewFast Helical Piles

ScrewFast's helical piles are designed using conventional pile design methodologies and soil mechanics in accordance with Eurocode 7, BS 8004:2015+A1:2020 and Perko (2009). Helical piles are classed as low displacement piles in the codes, therefore parameters and partial factors relevant to this pile type are used in the design. Minimum, maximum and estimated installation ('design') torque values are also produced as part of ScrewFast's design process to accompany the design for use as a check on the design during installation. The torque values are shown on the design calculation sheets at Appendix B. The maximum torque reflects the structural capacity of the pile steel elements and is used to ensure that the pile is not over-stressed during installation. The minimum and design torque values are calculated using empirical relationships modified from Perko (2009) developed by ScrewFast over many years and are used, if necessary, as described at Section G3.7.

Thedeparture prepared by DED will be submitted to NH for approval proposing use of ICE Specification for Piling and Embedded Retaining Wall 3rd Edition as the basis for installation of the helical piles.

G3.3.1 Compressive and tensile capacity of a single pile

The bearing capacity of each helical pile is considered as the sum of the capacities of each helical plate along the shaft. For conservatism, shaft resistance is ignored for the purposes of design. The capacity of each plate is calculated by considering it as an end-bearing face, with the helix plate area net of the shaft diameter. Each helix plate, therefore, acts as an individual base plate supported directly by the ground above and below it for tensile and compressive loads respectively. The shaft-type failure has been checked in the design of the spacing of the helix plates according to Boussinesq's theory. The most likely failure mechanism is the failure of individual helix plates, which is checked during design.

The equations used to calculate end-bearing resistance (q_b) are as follows:

In cohesive soil:	$q_b = 9.c_u$	where: c _u = undrained shear strength
In non-cohesive soil:	$q_b = Nq.pd'$	Nq = bearing capacity factor in accordance with Brinch Hanson pd' = average effective overburden pressure

These equations are widely used for pile design and are published in a variety of sources including Tomlinson and Woodward (2008) and Barnes (2010).

The strength of the founding stratum for each helix plate is calculated from weighted average ground strengths over one metre above or below the helix for tensile and compressive loads respectively. The ground strength average is weighted according to the distance from the helical plate.

The piles will be subjected cyclic loads as a result of the application and removal of the variable actions on the structure throughout its design life. To account for possible soil disturbance resulting from the cyclic loading, reference is made to section 5.6 of Perko (2009). This summarises work undertaken by Ghaly and Clemence (1998) which showed that upwards creep is almost 100 percent recoverable where the cyclic load is less than 25 percent of the ultimate static resistance, which was then confirmed by test results presented by Victor and Cerato (2008). Further, there is suggestion that the cyclical nature of the loads can cause stiffening of the soils and therefore increase pile resistance. As such, piles have been designed in accordance with this criteria.

Appropriate partial factors are applied, and the design resistance is checked against the factored actions in accordance with EC7 and CD365. These are all shown on the design calculation sheets given at Appendix B. Checks on the anticipated settlement performance against the required settlement forms part of the helical pile design checks.

As shown on the design calculation sheets in Appendix B, the design utilisation for the ULS DA1-1(STR) and DA1-2 (GEO) is 32% and 70% respectively. The design to Eurocode is considered acceptable when the pile utilisation is less than 100%. As discussed, the potential creep associated with cyclical loading is considered almost 100% recoverable where the cyclical load is less than 25% of the ultimate static resistance which will be maintained. The substructure deflection and rotation falls within the superstructure performance requirements; therefore the design is considered satisfactory for the proposed loads and performance criteria.

G3.3.2 Pile group effects

To determine pile loads within the pile group a 3D model of the grillage has been created using final element software Autodesk Robot Structural Analysis Professional. The gantry loads received from the superstructure designers were used to create load combinations according to CD365 and Eurocode 0 and the grillage and load distribution has been determined accordingly using a FEM software. Individual pile loads, and the redistribution of the loads between the piles within the pile group, have been calculated considering the pile and the grillage beam arrangement and the stiffness of all the grillage elements.

Large diameter reinforced concrete piles are commonly analysed as a group since the collective capacity of the pile group is less than the sum of the individual pile capacities. By contrast, helical pile group capacity is simply the sum of the individual pile capacities provided pile spacing is adequate. Adequate pile spacing is checked for each structure type in the corresponding worst case pile ground conditions following Perko (2009), to determine whether any group reduction factor is required. These checks are provided in Appendix B.

G3.3.3 Methodology for Category III checking of ScrewFast helical piles - compression and tension

As per the Category III requirements, all pile designs are independently checked prior to approval by Richter Associates.

In accordance with the conventional soil mechanics approach, the helical piles are checked for their serviceability and ultimate limit states specified in BS 8004:2015 + A1 2020.

G3.3.4 Durability design

The foundation site has been classified as C5 (M) in accordance with BS EN ISO 12944-2:2007 which is an appropriate classification for steel structures located in the highway verge susceptible to de-icing salts.

The piles, including all connecting bolts, have been designed for a 30 years design life plus 10 years for fatigue, with reference to BS EN 1993-5: 2007. All structural steelwork above ground and steel piles to the minimum depth of 2 meters below ground level are protected by galvanizing and a coating

in accordance with protection system SHW Series 1900 Table 19/4C – G2B ground section for piles and upper section for grillage. The above ground bolts are to be visually inspected every two years with a principal inspection every six years.

G3.4 Design of ScrewFast Helical Piles Cap Analysis

The piles, grillage and plinth are designed using finite element software Autodesk Robot Structural Analysis Professional. The superstructure loads are applied at the top of the plinth connection and the pile loads are determined from the analysis output. The output from the analysis includes load effects in the plinth and grillage members enabling these items to be designed.

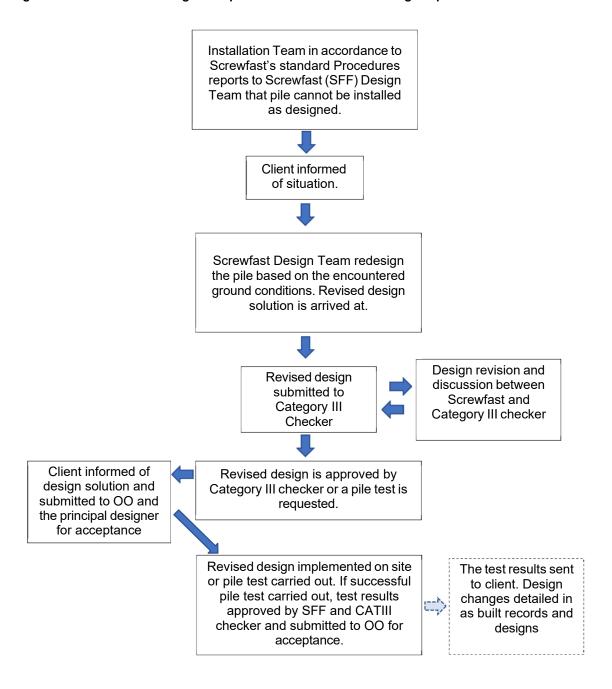
The deflection and rotation outputs from the analysis at the plinth top are checked against the limits specified by the superstructure designer. Spring stiffness supports are used to model the pile settlements and deflections. The analysis also gives horizontal and vertical loads applied to each of the piles.

The plinth to gantry leg connection is analysed as a rigid connection. The pile to grillage connection is a single stud. It is neither fully fixed nor a pure pin connection. The pile to grillage connection is modelled as fixed and pinned in turn, the output giving the most onerous conditions is then used in the design.

G3.4.1 Lateral capacity

The software, Oasys Alp, was used to calculate the horizontal pile capacities. The model inputs include the loads derived from wind action on the signs, groundwater level and the soil strength based on the ground investigation data. The horizontal displacement (deflection) and bending are calculated under the combination of the shear force and bending moment. The laterally loaded piles are subject to cyclical actions resulting in the application and removal of the variable loads. In this instance the generated P-Y curve method based upon cyclical loads is used in Oasys Alp provided in Appendix B. The P-Y curves are generated from the same data set as those used in the vertical pile model. Lateral loads are supported by the passive resistance of the soil and fixed pile head with partial restraint to rotation.

From the design calculation sheet, the structural utilisation is 19% The calculated substructure deflection and rotation falls within the superstructure performance requirements and therefore the design is considered satisfactory for the proposed loads and performance criteria.


G3.4.2 Methodology for Category III checking of ScrewFast helical piles – lateral capacity

As per requirements, all pile designs are independently checked prior to approval by Richter Associates prior to approval by the Overseeing Organisation (OO)

G3.5 Monitoring during pile installation

The process described in Figure 2-2 is carried out as soon as and only if an issue is detected with the design. The installation team reports to Screwfast's design engineers that the pile cannot be installed as designed by the end of the shift at the latest. Screwfast's design engineers inform the Category III checkers and OO as soon as possible and the redesign process begins, with a view to reaching an agreed solution as soon as practicable. Installation of the revised design and any pile testing is then undertaken as soon as the installation programme permits. The testing equipment will be stored at a nearby compound so that instances as described above can be tested quickly.

Figure 2-2: Process for dealing with a pile that does not achieve design depth:

G4 SGM

Not used.

G5 Drainage

Not used

Pavement design, subgrade design (including the need for in-situ treatment, etc.) and capping

Not used

G7 Contamination and ground gas risk

Refer to main report.

G8 Ground treatment (including void stabilisation)

Refer to main report.

G9 Geotechnical risk register

A review of the geotechnical and environmental risks associated with the proposed works has been undertaken using risk rating criteria outlined in Table 11 - 1.

Table 11 - 1: Risk Rating Criteria

Likelihood (L)	ood (L) Severity (S)				R	isk (R)			
					Like	elihoo	od			
						1	2	3	4	5
Negligible	1	Catastrophic	5		5	5	10	15	20	25
Unlikely	2	Major	4		4	4	8	12	16	20
Possible	3	Moderate	3	<u>ج</u>	3	3	6	9	12	15
Probable	4	Minor	2	Severity	2	2	4	6	8	10
Almost Certain	5	Insignificant	1	Se	1	1	2	3	4	5

Risk Ratings

1 to 5 Risk is negligible or of otherwise low severity and shall be set aside for further consideration.

6 to 10 Risk is unacceptable, avoid or manage with mitigation measures and controls.

11 to 25 Risk is intolerable, avoid or manage with mitigation measures and controls. The geotechnical risk register provided as part of the GDR and is presented in Table 11 - 2, incorporating residual risks, anticipated geotechnical hazards associated with the works and the potential consequences of those hazards. The risk before control of the hazard has been assessed quantitatively as has the anticipated risk following the proposed response to each hazard.

Table 11 - 2 Geotechnical Risk Register

Ref	Hazard	Consequence		Risk		Design Control Measures	Residual Risk			Owner
			L	S	R		L	S	R	
- Slo	pes and Earthworks									
	,									
	Unknown slope gradients on or adjacent to scheme leading to unfavourable slope conditions	Instability	3	4	12	Assess slope data to confirm slope angles. Where necessa undertake earthworks inspection to incorporate data in t design phase.		4	4	Pile Contractor
2	Unknown ground conditions and potential geo-hazards	Instability resulting from compressible soils, voids due to presence of soluble rocks, coal, glacial features where pre-existing shear surfaces may exist, e.g in Coal		4	8	Geotechnical design appropriate to project ground models a parameters based on site-specific review of stratigraphy a parameters and ground investigations. Select a low impapiling technique for the work such as helical.	nd	3	6	Pile Contractor
– Fo	undations and Substructures		•							
1	Unknown levels of hard ground. Risk to buildability	Hard ground at shallow depth – difficulty in achieving adequate depth for foundation construction Requirement for heavy duty machinery to excavate shallow bedrock to enable foundation construction. Potential requirement for redesign during construction		3	12	Appropriate foundation solutions designed for ground conditions present. Prepared plan for pile design changes.	2	3	6	Pile Contractor
2	Adjacent Structures – works affecting services. Unplanned against other structures	Damage to services and endangering road users. Damage to adjacent structures. Increased costs in repair to damage incurred.	3	5	15	Locate all structures prior to design and leave sufficied distance from location. Locate services prior commencement of works.		5	5	Pile Contractor
3	Unknown ground chemistry – attack on buried steel leading to reduced strength of foundations	Risk to road users from failed post/piles. Increased cost to scheme to repair/replace gantries or piles	4	3	12	Used appropriate steel design in for piles and posts.	1	3	3	Pile Contractor
	Variability in ground conditions unknown, i.e. presence of buried channels.	Stability of temporary works compromised. Founding stratum failure of deformation in excess of structure serviceability limits resulting in structure/infrastructure damage. Disruption to construction owing to unforeseer ground conditions. Delays to programme and increased pile materials and costs.	1 1	4	16	Designed to practicable worst-case scenario. Prepared wit alternative piling methods.	h 2	4	8	Pile Contractor
5	Softening / weakening of ground on exposure	Failure or deformation in excess of structure serviceability limits resulting in structure / infrastructure damage.	4	4	16	Piling techniques chosen that do not result in exposure ground conditions.	of 1	4	4	Pile Contractor
6	Presence of voids	Loss of end bearing for piles. Collapse of bore in location of voids.	2	4	8	Identify and report potential voids during installation to enab design checks to be undertaken.	le 1	4	4	Pile Contractor
7	Boulders / hard ground	False identification of rock head. Early refusal of piles on insufficient ground condition.	3	4	12	Best available BH data is used at each location following all stages of site wide GI.	1	4	4	Pile Contractor
– Dra	ainage and Flooding			1						
1	Shallow groundwater levels unknown	Dewatering required during construction. Risks to foundations due to uplift	3	3	9	Conservative ground water levels are assumed in the design	n. 1	3	3	Pile Contractor
2	Locations within areas of high flooding risk.	Flooding of sites affecting temporary works. Disruption to construction owing to flood events. Delays to programme and increased costs.	4	3	12	Locations checked for areas of high flooding risk during desiphase. Pile technique chosen to limit temporary works a open holes. Design also results in reduced Gantry footpr area. Contractor to be aware of weather conditions a adverse weather warnings. Contractor to plan tempora works to avoid working in adverse weather condition Contractor to plan emergency procedures for flooding event	nd int nd ry is.	3	6	Pile Contractor
– Mir	ning/Underground Voids							1		_
1	Unknown presence of Coal/solution features/natural cavities/man-made cavities leading to unstable ground	Surface deformation, damage to structures. Pile instability leading to risk to road users. Repairs required leading to increased cost to development. Reviewed as part of GISR.	3	4	12	No evidence of any mine workings from GI carried out to dar Piling to be closely monitored throughout the installation for to presence of any voids. Feeding back to design when necessary or when Coal presence seems larger the predicted.	ne re	4	4	Principal Contrac

Ref Hazard		Consequence		Risk		Design Control Measures	Residual Risk			Owner	
		L	L S R			L	S	R			
Ξ1	Buried Services encountered during excavations	Health and safety risk – harm to workers/road users. Suspension of road signage. Increased cost to repair	3	5	15	Obtain all services plans for the route and ensure all service are identified and marked out prior to commencement of ar intrusive site works. Inspection pits to be dug before commencement of any piling.	ny	5	10	Pile Contractor	
2	Contaminated ground presence unknown.	Health and safety risk to site workers/road users. Increased cost to dispose of material off site. Delay programme and increase in cost to development Reviewed as part of GIR and considered to be low risk.		4	8	Monitor for signs of contaminated land throughout the works	. 1	4	4	Pile Contractor	
– In	sufficient Geotechnical Data										
1	Insufficient GI and/or laboratory testing for design	Stratigraphy and materials not as expected. Unforeseen ground conditions Inappropriate design solutions. Re-design may be required with cost and programme implications	5	3	15	The pile design has taken projections of the best availab information. The designs have been made to achieve the mo flexible design possible, i.e. longer piles as pile shortening simpler than lengthening once at site.	st	2	4	Pile Contractor	
2	Lack of groundwater monitoring	Not able to define groundwater level, leading to inappropriate design solutions.	3	3	9	Under normal conditions conservative assumptions made for ground water level based on topography and geology are adopted a groundwater at ground level as a conservative assumption.	nd	3	3	Pile Contractor	

G10 Specification appendices

Appendix 1/5 Rev 00: Testing to be carried out by the contractor

Appendix 16/6 Rev 00: Steel Helical Piles

Appendix 16/9 Rev 00: Static load testing of piles

Appendix 19/5 Rev 00: General requirements for protection of steelwork against corrosion

G11 Instrumentation and monitoring

Piles will be monitored for depth during installation.

G12 Pile testing requirements

Static load pile testing will be undertaken as part of ScrewFast's work. Testing will be undertaken to the requirements of the ICE SPERW 3rd Edition, EN 1997-1 section 7.5 and in accordance with SHW 1600 Series Appendix 16/9 (included at Annex 1). The details of this testing are outlined in Appendix 16/9 of Annex 1.

It is common UK pile testing practice that at least one percent of locations will be tested. There are a total of 13 piles. Therefore, we propose 1 tension test as this is the governing load case between tension and compression. A test report will be prepared summarising the results and performance of the piles.

Due to buildability and safety restrictions, it is not proposed that any lateral tests are undertaken at the site as this would require extensive and time consuming temporary works.

G13 Annex 1

APPENDIX 1/5: TESTING TO BE CARRIED OUT BY THE CONTRACTOR

1.5.1 the Contractor shall be responsible for carrying out the following tests detailed in the following Table in accordance with Clause 105.

Clause	Work, Goods or Material	Test	Frequency of Testing	Test Certificate	Comments
Series 160	0				
1606	Helical piles		See comments	Required	Refer to Appendix 16/6 for details
1609	Static load testing of piles		See comments	Required	Refer to Appendix 16/9 for guidance
Series 180	0				
1801 1803	Structural steels to BS EN 10025-1 and BS EN 10210			Required	
	Welding procedures	Test specified in BS EN ISO 15614-1	As required in BS EN ISO 15614-1 and Appendix 18		Reported in accordance with Annex B of BS EN 287: Part 1
Series 190	0				
1909	Galvanised coating	Tests specified in BS EN ISO 1461 and Series 1900 of Volume 2 – Notes for Guidance on the SHW.	As required in BS EN ISO 1461 and Series 1900.		Method for sampling to be in accordance with Clause 1910.
1911	Paints				
	A and B samples	Specific Gravity Colour Match Composition Application Characteristic	As required in Clause 1911 and 1912		Samples will be selected in accordance with Clause 1911 and 1912

Notes:

- 1. Tests comparable to those specified in this Appendix will be necessary for any equivalent work, goods or materials
- 2. Unless otherwise shown in this Appendix tests and test certificates for work, goods or materials as scheduled under any one Clause are required for all such work, goods or materials in the Works.

APPENDIX 16/6: STEEL HELICAL PILES

The clause numbers in the schedule below refer to ICE SPERW 3rd Edition, 2017. The general piling works shall be undertaken in accordance with ICE SPERW 3rd Edition, 2017, section B7. Where the is a conflict of requirements the specification appendices shall take precedence.

B7 Clause number	Title	Requirements
7.1	General	Applies
7.2	General	7 фрисо
A A	Penetration or depth	As per site specific design
B	Pre-drilling	To BS 8004:2015+A1:2020 where required.
C	Installation records	Applies, see installation sheets
D	Grades of steel	Shaft and helix
U	Grades of steel	BS EN 10210 for shafts and BS EN 10025 for helices Grade S355 J2H for shafts and S355 J2 for helices Bolts and studs BS EN 15048 Class 8.8 bolts with class 10.9 nuts for galvanised bolts and class 8.8 nuts for other class 8.8 bolts BS EN 14399-3 – class 10.9/10 – HR - tZn with washers to BS EN 14399-5
E	Types of corrosion protection	As per HA 1900 series table 19/4C-G2b ground section.
F	Thickness of primer and coats	As per HA 1900 series table 19/4C-G2b ground section.
G	Adhesion tests	As per 1900 series and project specific RAM
Н	Welding procedures	Not required
	Non-destructive testing of welds	Not required
J	Marking of piles	Not required
K	Constraints on pile testing	As per appendix 16/9
L	Other technical requirements	Not required
7.3.1	Compliance with standards	Applies
7.3.2	Inspection and test certs	Applies
7.3.3	Manufacturing tolerances	Applies
7.4.1	Ordering of piles	Not required
7.4.2	Marking of piles	Applies
7.4.3	Handling of piles	Applies
7.4.4	Installation of piles	Applies
7.4.4.1	Installation torque	Applies
7.4.4.2	Minimum torque	Applies
7.4.4.3	Maximum torque	Applies
7.4.4.4	Penetration rate	Applies
7.4.5	Extraction	Applies if required
7.5	Corrosion protection	Applies in aerobic zone
7.6	Welding Procedures	In accordance with Appendix 18/1. Non destructive MPI testing to BS EN ISO 9934-1
7.7	Static Load Testing	Applies; additional details in Appendix 16/9. Test pile removal only where specifically required
7.8	Records	Applies and included in the installation records

APPENDIX 16/9: STATIC LOAD TESTING OF PILES

1. Particular requirements for static load testing of piles

(a) Type of pile

This document refers to the Screwfast designed and installed helical piles. The site is designed for site specific ground conditions and loads. Tests are to be conducted on the site detailed in this report for which this appendix forms a part thereof. The pile testing is to be undertaken on helical piles.

(b) Type of test

All testing of piles shall be maintained load testing. Vertical tests will be two stage testing.

As there is one gantry with a total of 13 piles, one tension working pile test is proposed to be undertaken

(c) Details of working pile tests

Axial testing of working piles is proposed. The general procedure of this pile test type is included in this document.

All pile testing procedures will adhere to the National Highways' Specification for Highway Works (HA SHW) Clause 1609.33 and Table 16/6 and Institution of Civil Engineer's Specification for Piling and Embedded Retaining Walls, 3rd Edition (ICE SPERW) specifically section B17. No pile will be tested more than once to ensure the pile performance data is accurate and test conditions are repeatable.

Pile Testing Details

Working pile tests will be conducted on the project. The piles to be tested are intentionally left unspecified. In this way the test locations can be matched to the locations where construction constraints have been encountered or design changes have been necessary, or if any other issues arise. The vertical pile tests will be tested in two stages only as detailed in Table 1. Indicative pile testing layout is shown in Appendix C.

Table 1 - Vertical Maintained Load Test

	Load	Minimum Time to Maintain Load	Elapsed Time (minutes)
	25% DVL	30 minutes	30
	50% DVL	30 minutes	60
1	75% DVL	30 minutes	90
Stage	100% DVL	6 hours	450
Sta	75% DVL	10 minutes	460
	50% DVL	10 minutes	470
	25% DVL	10 minutes	480
	Nominal 5kN	1 hour	540
	100% DVL	1 hour	600
	100% DVL + 25% SWL	1 hour	660
3 2	100% DVL + 50% SWL	6 hours	1020
Stage	100% DVL + 25% SWL	10 minutes	1030
Sta	100% DVL	10 minutes	1040
	75% DVL	10 minutes	1050
	50% DVL	10 minutes	1060
	25% DVL	10 minutes	1070
	Nominal 5kN	1 hour	1130

Table adapted from ICE SPERW 3rd B17.1

Pile Testing Method

Vertical piles will be tested individually with a test beam, reaction piles or kentledge blocks and a test pile. The Specified Working Load (SWL, similar to F_{rep} discussed below), Design Verification Load (DVL) and maximum test load shall be specified in the individual test documentation.

The ICE SPERW defines DVL as the load which will be substituted for the SWL for the purpose of a test. In this case the unfactored load will be used as the DVL, so that the 100% DVL load increment will demonstrate pile displacement under the unfactored working load.

The ICE SPERW indicates that SWL is the unfactored load and that it is similar to the Representative Action (F_{rep}) defined in BS EN 1990 as $F_{rep} = \psi.F_k$ If the unfactored load was used as both SWL and DVL for the testing then the maximum test load would be 150% of the unfactored load. However, since the piles have been designed in accordance with Eurocode 0 and CD365, the characteristic loads (F_k) when multiplied by the appropriate partial factors (ψ) are less than 150% of the unfactored load. It is therefore considered inappropriate to use the unfactored load as the SWL. Accordingly, for the purposes of the testing, the value of SWL has been selected to ensure that the maximum test load of 100% DVL + 50% SWL is equal to the F_{rep} used for the designs, to ensure that the piles are tested to the precise design loads. Accidental loads, for which all piles have been designed, do not form part of the test loads combinations.

All testing shall be carried out in accordance with a Method Statement. The Method Statement will include details of the pile testing equipment, arrangement, form of test records and any temporary works required.

In all cases the loads applied shall be appropriate to the site specific working pile, any temporary reaction piles or kentledge blocks required shall be designed by Screwfast Foundations and are subject to the same design conditions as all the other piles on the project. Any working piles used as reaction piles shall be monitored during static load testing. Working reaction piles shall not uplift/settle by more than half the specified permissible settlement of the test pile at working load. If a test pile is deemed to have failed the test load, then the Designer shall be notified, and the pile shall be re-designed based on the results of the pile tests.

Unless otherwise agreed, the performance criteria for working piles tested for axial loads shall be as shown in table 2.

Table 2 - Pile Test Performance Criteria

Load	Measurable Criterion
Variable load only	5mm
100% DVL (under load)	10mm
Residual (load released)	-
100% DVL + 50% SWL (under load)	No excessive creep
Residual (load released)	-

Note: "-" represents that a deflection limit was not specified. This is applied to 'Residual Load' cases as these do not require a measurable deflection criterion.

The allowable pile vertical deflection (settlement) is 10mm under DVL. As the grillage design assumes a spring stiffness value predicated on 5mm settlement under variable action then this is an additional settlement limit. This 5mm limit however is determined under the variable actions only. This is based on the Highways Standard CD365 which states pre-camber in the gantry design accounts for the permanent action effects. This has been confirmed with the superstructure designer. Therefore, it is only the variable loads that account for the 5mm limit stated.

In order that testing stages do not have to be deviated from the testing standards the following method is proposed to make this determination with an illustrative example. If the test pile has a DVL of 100kN permanent and 70kN variable making it 170kN in total and the permanent and variable action split is 59/41. If, during the 170kN load stage, the pile settled by 8mm., then pile settlement under 70kN variable action is 8mm x 41% = 3.3mm. This test has passed because 8mm < 10mm, and 3.3mm < 5mm.

Ambient temperature will be monitored during testing. Should large temperature variations occur during testing, the deflections will be adjusted during reporting if temperature is deemed to have influenced the results.

The testing is to be completed by competent and experienced pile testing contractor. The applied load is to be monitored during load stages and pressure reapplied to that required for the stage should the hydraulic pressure fall. All such reapplications of pressure will be recorded.

The load test report shall include the following items in accordance with BS EN 1997-1:2004+A1:2013:

- · A description of the site
- The ground conditions with reference to the ground investigation
- The pile type including details of the reaction piles
- Description of the loading and measuring apparatus and the reaction system
- Calibration documents for the load cells, the jacks and gauges.
- · The installation records of the test piles
- Photographic records of the pile and the test site
- Test results in numerical form
- Time-displacement plots for each applied load when a step loading procedure is used
- Reasons for any departures from the above requirements
- (d) Special materials to be used in construction of test piles where appropriate
- (e) Special construction detail requirements for test piles
 All construction details shall be as per the requirements for a working pile.
- (f) Special requirements for pile-testing equipment and arrangement None.
- (g) Pile installation criteria
 As per the site specific pile design installation.

SERIES 1600 PILING AND EMBEDDED RETAINING WALLS APPENDIX 16/9

- (h) Time interval between pile installation and testing.
 - No time interval is necessary for helical pile testing as there is no concrete in the pile design.
- (i) Removal of temporary works Not applicable.
- (j) Details of work to be carried out to the test pile cap or head at the completion of a test.

APPENDIX 19/5: GENERAL REQUIREMENTS FOR PROTECTION OF STEELWORK AGAINST CORROSION

- 19.5.1 Steelwork shall be designed to transfer the required working loads safely for the design life duration in the appropriate environmental conditions as per BS EN 1993-5 Section 4.
- 19.5.2 The sections of steelwork to be protected against corrosion and the details of the protection method shall be shown on the design fabrication drawings and detailed below.
- 19.5.3 The protective system shall include all required steelwork preparation, primers and all other coats.
- 19.5.4 The preparation of surfaces for the application of barrier or electrolytic systems shall be carried out safely by competent and appropriately trained personnel.
- 19.5.5 All work associated with surface preparation shall be undertaken inside a waterproof structure.
- 19.5.6 All surfaces to be coated shall be clean and dry and prepared as per the specific product requirements.
- 19.5.7 The method of application of protective systems shall comply with the manufacturer's instructions, including controls on limits of humidity.
- 19.5.8 All primary steelwork above ground and to a depth of 2m below ground level, unless specifically indicated on drawing to be own colour, will be galvanised and coated in a protective system to 1900 Series specification.
- 19.5.9 The protective system will be in accordance with National Highways Series 1900 Table 19/4C G2b ground section for piles and upper section of the grillage.
- 19.5.10 The nominal mean thickness of the finished protective coating and, if necessary, of each protective system shall be as specified in the relevant standard BS EN ISO 1461, BS EN ISO 12944 or other.
- 19.5.11 In no case shall any protective system be less than 75% of the nominal thickness. Each coat shall be applied after an interval that ensures proper hardening or curing of the previous coat in accordance with the manufacturer's instructions. The completed protective system shall be checked for thickness and electrical connectivity. Areas where the thickness is less than that specified shall receive additional treatment and areas where the connection is not sound shall receive remedial attention.
- 19.5.12 The finished protective system shall be smooth, of dense and uniform texture and free from sharp protuberances or pin holes. Areas of excessive sags, dimpling or curtaining shall be re-treated.
- 19.5.13 Galvanising where specified on fabrication drawing to be in accordance with BS EN ISO 1461 with minimum mean cover of 85 microns unless otherwise stated.
- 19.5.14 Sacrificial anode(s) where specified to be of suitable material, appropriately sized for the application, and adequately fixed to the steelwork.
- 19.5.15 All bolts above ground and to a depth of 2m below ground level, to be galvanised, unless specified otherwise.
- 19.5.16 Surface soil which has been particularly contaminated by road salts should be removed and replaced by suitable compacted granular fill.
- 19.5.17 Any system damaged by subsequent processes or deterioration shall be removed and an approved manufacturers repair system used.
- 19.5.18 Where attachments are to be welded to the steelwork after installation, it is necessary to ensure that the coating system is removed and made good, or replaced where appropriate.

G14 Annex 2

Not applicable

References

- National Emergency Area Retrofit M1 J32-35a Approval in Principle, doc. ref No., HE614830-WSP-SGY-P015 S2 ALLGENR-AV-CB-0001
- BS EN 1997-1: 2004+A1:2013 Eurocode 7: Geotechnical design (EC7)
- NA to BS EN 1997-1: 2004+A1:2013 UK National Annex
- BS EN 1990:2002 Eurocode 0: Basis of Structural Design (EC0)
- NA to BS EN 1990:2002 UK National Annex
- BS EN 1993-5: 2007
- BS 8004:2015+A1:2020 Code of practice for foundations
- Japanese Road Association, 1990, Specification for Highway Bridges, IV.
- Tomlinson, M. & Woodward, J., 2008. Pile Design and Construction Practice. 5th Edition. Taylor & Francis
- PERKO, H.A., 2009, Helical piles a practical guide to design and installation., Hoboken, New Jersey: John-Wiley, 2009, ISBN 978-0-470-40479-9.
- Barnes, G.E., 2010, Soil Mechanics Principles and Practice. 3rd Edition. Palgrave Macmillan.
- CD365 Portal and Cantilever Sign/Signal Gantries

of Performance of Constructed Facilities.

- Factual Report on Ground Investigation Strata Geotechnics G230600 Issue 001 and dated 08/08/23
- Ghaly, A.M. and S.P. Clemence. 1998. "Pullout Performance of Inclined Helical Screw Anchors in Sand." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 7, pp. 617–627.

G14 Annex 2

Not applicable

References

- National Emergency Area Retrofit M1 J32-35a Approval in Principle, doc. ref No., HE614830-WSP-SGY-P015_S2_ALLGENR-AV-CB-0001
- BS EN 1997-1: 2004+A1:2013 Eurocode 7: Geotechnical design (EC7)
- NA to BS EN 1997-1: 2004+A1:2013 UK National Annex
- BS EN 1990:2002 Eurocode 0: Basis of Structural Design (EC0)
- NA to BS EN 1990:2002 UK National Annex
- BS EN 1993-5: 2007
- BS 8004:2015+A1:2020 Code of practice for foundations
- Japanese Road Association, 1990, Specification for Highway Bridges, IV.
- Tomlinson, M. & Woodward, J., 2008. Pile Design and Construction Practice. 5th Edition.
 Taylor & Francis
- PERKO, H.A., 2009, Helical piles a practical guide to design and installation., Hoboken, New Jersey: John-Wiley, 2009, ISBN 978-0-470-40479-9.
- Barnes, G.E., 2010, Soil Mechanics Principles and Practice. 3rd Edition. Palgrave Macmillan.
- CD365 Portal and Cantilever Sign/Signal Gantries
- Factual Report on Ground Investigation Strata Geotechnics G230600 Issue 001 and dated 08/08/23
- of Performance of Constructed Facilities.
 Ghaly, A.M. and S.P. Clemence. 1998. "Pullout Performance of Inclined Helical Screw Anchors in Sand." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 7, pp. 617–627.

APPENDIX A1: Site Specific Datasheets Primary Piles

u	ionai Emergency	Alea Retiont Wil 323-23a		TOTAL FOUNDATION SOLU	TI		
Geotechnical Design Statement Appendix to GDR							
	Structure: Document reference number		Version No:	C00			
	MS4 190+485 PRIMARY PILES	HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0001	Last update:	19/12/23			

	Feature: Gantry				ound Level				
General Details	Type:	MS4 Cant				thwork:		ankment	
	Chainage:					rriageway:		bound (NB)	
Relevant Exploratory	Borehole R	eference		Distan	ce	Reference)		
Holes	G23060	0 – BH190	4N	48	m		233	3630	
Mapped Geology	be underlain Pleistocene Mercia Mud variably dolo and finely di Carnian Age	to Holocen stone Grou omitic siltston sseminated (227.3-237	mington le Epoc lp, mair ne and d gypsu 'Ma)	or Geolndex Onshore geology viewer indicates the site to on Member, comprising gravels, sands and loam of Late och age overlying the Edwalton Member, part of the inly comprising Mudstone and Siltstone, with beds of d very fine grained sandstone, common in the lower half sum, common in the upper half and deposited in the					
Hydrogeology and Hydrology	previous na with limited as Red-brov great thickn l/s.	me of the K potential, re vn marls an ess in Ches	Keuper egions d siltsto shire. N	Marl. It without ones, wi dinor sa	is deso signific th impo indstor	cribed as co cant ground ortant salt an ne intercala	oncealed lwater. T nd gypsu	Mudstone under its aquifers; aquifers hey are described im horizons, reach provide up to 0.3	
Recorded Ground Conditions	The vertical ground profile at this location consists of: 39.2 – 38.3mAD: Made Ground. 38.3 – 38.0mAD: Reddish Brown clayey sandy gravel. 38.0 – 31.7mAD: Very stiff gravelly silty sandy clay. 31.7 – 31.2mAD: Very stiff clayey sandy gravel 31.2 – 30.0mAD: Very soft slightly gravelly sandy clay. 30.0 – 29.7mAD: Very stiff slightly sandy slightly gravelly clay. 29.7 – 27.5mAD: Very stiff sandy gravelly clay. 27.5 – 27.3mAD: Fine to coarse sand. 27.3 – 27.2mAD: Firm gravelly sandy clay. 27.2 – 24.35mAD: Very dense medium to coarse GRAVEL 24.35 – 23.2mAD: Very stiff reddish brown sandy clay. 23.2 – 19.2mAD: Bedrock identified as mudstone and sandstone.								
	No groundw Material	alei was ei	icount		(mAD)	Top Note			
	Sandy GRA	VEL			38.21	Cons	Considered in lateral analysis only.		
	Very Stiff Sa	andy CLAY	(1)		38.0				
Geotechnical Ground	Very Stiff Sa				36.2				
Model for Design	Very Stiff Sa				35.2				
Widder for Design	Very Stiff Sa				33.2				
	Very Stiff Sa				32.2				
	Very Stiff Sa				31.7				
	Very Soft G				30.0				
	Groundwate			with ara		vel for vertic	al capac	citv.	
	Stratur		γ (kN/m		C _u	ı	Φ'	UCS (MN/m²)	
	Sandy GRA		20	,	(KIV)	11)	(°)	, ,	
					- 75	. 		-	
Characteristic Values	V Stiff CLAY		21				-	-	
of Geotechnical	V Stiff CLAY	` '	21		85		-	-	
Parameters	V Stiff CLAY		21	$-\!$	12			-	
	V Stiff CLAY		21		14		-	-	
	V Stiff CLAY	′(5)	21		15	n I	_	_	
	V Stiff GRA		21				37		

VE	VAN	ELL	_E
-	TOTAL FOUNDA	TION SOLU	TIONS

ional Emergency Area	Retiont Mil 323-2	Ja				TOTAL FOUNDATION SOLUT		
	V Soft Grav. CLAY	21	100		-	-		
	-Characteristic	Permanent Action (self-weight)	Permanent Action (removable)	Wine	d Action	Accidental Action		
	Compression	40kN	20kN	1:	20kN	-		
	Tension	10kN	-	1:	20kN	-		
Characteristic and	Shear	-	-	4	l0kN	-		
Factored Actions	Facto	red	A1			R1		
	DA4 C4	Compression	258k	N		849.6kN		
	DA1-C1	Tension	198k	N		622.4kN		
			A2		for M1	R4 for M2		
	DA1-C2	Compression	216kN		9.8kN	326.8kN		
	DAT-C2	Tension	166kN	36	6.1kN	237.2kN		
Design utilisation for ULS GEO/STR axial compression/tension (governing case)	DA1-	C1 32%)A1-C2 70			
Governing load case	Vertical Case:					ovable) + Wind Access Live Load		
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	Horizontal Case:		W	ind Load	d Load			
	Piling Technique	Pile Raking Angle		shear tub		configuration)		
Foundation Design Recommendations	Helical	9.0m pile comprising 406.4mm CHS A2m Gal 0 355.6mm CHS B2M Galv, C2M 600/600, C1l 600, E2M 550/550						
	Pile Spacing	No. of Piles						
	1.2m	8						
	Post-construction deflection (z-axis loading.) under characte	eristic wind		<(5mm		
	Post-construction deflection (z-axis) under full chara	ng.	<10mm				
Anticipated settlement	Deflection perper for wind loads	´	<7mm					
and elastic deflections	Deflection parallelloads	ina	<7mm					
	Rotation at top of plinth level perpendicular to carriageway (x axis) under wind load Rotation at top of plinth level parallel to				<1.6 mrad			
	carriageway (y a) Rotation at top of	kis) under wind l	load < 10.211Rad					
	axis) under wind		out vertical axis (2- <5.7 mRad					
Contaminated Land Assessment	Refer to main repo	ort						
BS EN 1993-5	The ground condit							
Corrosion Assessment	undisturbed soil, b non-compacted ar			aken as	Design I	ife: 30 Years		
Supervision,	Monitor of pile dep	th and torque re	adings.			,		
Instrumentation Monitoring and Testing Requirements		on and torque readings. ng requirements refer to Appendix 16/9 of Screwfast/Van-elle						

APPENDIX A2: Site Specific Datasheets Stair Piles

•	onal Emorgonoy	71104 110110111 1111 020 204		TOTAL FOUNDATION SOLUT				
	Geotechnical Design Statement Appendix to GDR							
	Structure:	Version No:	C00					
	MS4 190+485 STAIR PILES	HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0006	Last update:	19/12/23				

	Feature:	Contra			Cra	ound Level	20 7	, AOD	
Compred Details		Gantry MS4 Cont	34 Cantilever					38.7m AOD Embankment	
General Details	Type: Chainage:	190+485	Secti	on:		thwork: riageway:		bound (NB)	
	Borehole R		Jecti	Distan		Referenc		bound (ND)	
Relevant Exploratory				Distail	CC	Reference			
Holes	G23060	00 – BH190	4N	48	ßm		233	630	
Mapped Geology	be underlain Pleistocene Mercia Mud variably dolo	n by the Her to Holocen stone Grou pmitic siltsto sseminated	mington ne Epoc ip, mair one and d gypsu	Geolndex Onshore geology viewer indicates the site to in Member, comprising gravels, sands and loam of Late inch age overlying the Edwalton Member, part of the inly comprising Mudstone and Siltstone, with beds of divery fine grained sandstone, common in the lower half sum, common in the upper half and deposited in the					
Hydrogeology and Hydrology	previous nat with limited as Red-brow great thicknown l/s.	me of the k potential, ro vn marls an ess in Che	Keuper egions nd siltsto shire. N	ydrogeology maps record the Mercia Mudstone under its euper Marl. It is described as concealed aquifers; aquifers gions without significant groundwater. They are described siltstones, with important salt and gypsum horizons, reach hire. Minor sandstone intercalations can provide up to 0.3					
Recorded Ground Conditions	 39.2 38.3 38.0 31.7 31.2 30.0 29.7 27.5 27.3 27.2 24.3 	The vertical ground profile at this location consists of: 39.2 – 38.3mAD: Made Ground. 38.3 – 38.0mAD: Reddish Brown clayey sandy gravel. 38.0 – 31.7mAD: Very stiff gravelly silty sandy clay. 31.7 – 31.2mAD: Very stiff clayey sandy gravel 31.2 – 30.0mAD: Very soft slightly gravelly sandy clay. 30.0 – 29.7mAD: Very stiff slightly sandy slightly gravelly clay. 29.7 – 27.5mAD: Very stiff sandy gravelly clay. 27.5 – 27.3mAD: Fine to coarse sand. 27.3 – 27.2mAD: Firm gravelly sandy clay.							
	Material	ater was e	riodant			Top Note			
				of Stra	ata				
	Very Stiff Sa			38.4					
	Very Stiff Sa			36.2					
Geotechnical Ground	Very Stiff Sa				35.2				
Model for Design	Very Stiff Sa				33.2				
	Very Stiff Sa			32.2					
	Very Stiff Sa				31.7				
	Very Soft Gr			20	30.0	. 16		4	
	Groundwate	r ievel coin		with gro				ιτy.	
	Stratur	n	γ (kN/m	³)	Cu (kN/ı		Φ' (°)	UCS (MN/m²)	
	V Stiff CLAY		21		75		-	-	
Characteristic Values	V Stiff CLAY		21		85		-	-	
of Geotechnical	V Stiff CLAY	` '	21		125		-	-	
Parameters	V Stiff CLAY		21		140		-	-	
	V Stiff CLAY	` '	21		150		-	-	
	V Stiff GRAV	VEL	21		-		37	-	

National Emergency Area Retrofit M1 J23-25a

5	VAN	ELLE
	TOTAL FOUNDA	TION SOLUTIONS

			_				TOTAL	OUNDATION SULU
	-Characteristic	Permanent Action (self-weight)	Perma Acti (remov	ion	Variat	ole Action	A	ccidental Action
	Compression	5kN	-		;	5kN		-
	Tension	1	-			-		-
Characteristic and	Shear	1	-			-		-
Factored Actions	Facto	red		A1			R1	
	DA4 04	Compression		12.8kN			89.0	kN
	DA1-C1	Tension		-			61.1	kN
			A	2	R4	for M1	R	4 for M2
	DA4 00	Compression	10.8	3kN	52	2.3kN		37.4kN
	DA1-C2	Tension	-k	N	35	5.9kN		25.7kN
Design utilisation for ULS GEO/STR axial compression	DA1-	C1 14%			С)A1-C2 26	6%	
Governing load case	Vertical Case:	Permanent (self-weight) + Pedestrian						
Coverning road case	Horizontal Case:	n/a						
	Piling Technique	Pile Raking Angle						
Foundation Design	Helical	3.0m pile comprising 139.7mm CHS A1.0m Ga 114.3mm CHS, E2M 450.						.1.0m Galv,
Recommendations	Pile Spacing	No. of Piles	5					
	1.2m	1						
	Post-construction settlement and elastic vertical deflection (z-axis) under full characteristic loading.							
Contaminated Land Assessment	Refer to main repo							
BS EN 1993-5 Corrosion Assessment	The ground condit undisturbed soil, b non-compacted ar	ut have conserv nd non-aggressi	atively bove fills.			Design L	.ife:	30 Years
Supervision, Instrumentation Monitoring and Testing Requirements	Monitor of pile depth and torque readings. For static pile testing requirements refer to Appendix 16/9 of Screwfast/Van-elle GDR							

APPENDIX A3: Site Specific Datasheets Secondary Piles

onal Emorgoney	7 11 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1		TOTAL FOUNDATION SOLU
)R		
Structure:	Version No:	C00	
MS4 190+485 SECONDARY PILES	HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0007	Last update:	21/12/23

	Feature:	Gantry				Ground	l aval:	38.7m	AOD	
General Details	Type:	MS4 Car	ntilever			Earthwo		Embankment		
General Details	Chainage:	190+485		on:		Carriage			ound (NB)	
	Borehole R		0000		ance		erence	1401416	odila (IVD)	
Relevant Exploratory Holes		0 – BH190)4N		48m 233630				630	
					_					
Mapped Geology	The British Geological Survey GeoIndex Onshore geology viewer indicates the site to be underlain by the Hemington Member, comprising gravels, sands and loam of Late Pleistocene to Holocene Epoch age overlying the Edwalton Member, part of the Mercia Mudstone Group, mainly comprising Mudstone and Siltstone, with beds of variably dolomitic siltstone and very fine grained sandstone, common in the lower half and finely disseminated gypsum, common in the upper half and deposited in the Carnian Age (227.3-237Ma)									
Hydrogeology and Hydrology	previous nar with limited pas Red-brow	From BGS database, hydrogeology maps record the Mercia Mudstone under its previous name of the Keuper Marl. It is described as concealed aquifers; aquifers with limited potential, regions without significant groundwater. They are described as Red-brown marls and siltstones, with important salt and gypsum horizons, reach great thickness in Cheshire. Minor sandstone intercalations can provide up to 0.3								
Recorded Ground Conditions	The vertical ground profile at this location consists of: 39.2 – 38.3mAD: Made Ground. 38.3 – 38.0mAD: Reddish Brown clayey sandy gravel. 38.0 – 31.7mAD: Very stiff gravelly silty sandy clay. 31.7 – 31.2mAD: Very stiff clayey sandy gravel 31.2 – 30.0mAD: Very soft slightly gravelly sandy clay. 30.0 – 29.7mAD: Very stiff slightly sandy slightly gravelly clay. 29.7 – 27.5mAD: Very stiff sandy gravelly clay. 27.5 – 27.3mAD: Fine to coarse sand. 27.3 – 27.2mAD: Firm gravelly sandy clay. 27.2 – 24.35mAD: Very dense medium to coarse GRAVEL 24.35 – 23.2mAD: Very stiff reddish brown sandy clay. 23.2 – 19.2mAD: Bedrock identified as mudstone and sandstone.									
	No groundw Material	ator was c	oriocaric	Leve			Notes			
	Sandy GRA				38.2		Consideration only.	lered in	lateral analysis	
	Very Stiff Sa				38.					
Geotechnical Ground	Very Stiff Sa				36.					
Model for Design	Very Stiff Sa				35.					
	Very Stiff Sa				33.					
	Very Stiff Sa				32.					
	Very Stiff Sa				31.					
	Very Soft Gr				30.		<u> </u>		t	
	Groundwate	r ievel coil		with g	ground	_			ty.	
	Stratur		γ (kN/m	³)	(k	C _u (N/m²)		Φ' (°)	UCS (MN/m²)	
Characteristic Values	Sandy GRA		20			-		36	-	
Characteristic Values of Geotechnical	V Stiff CLAY	` '	21			75		-	-	
Parameters	V Stiff CLAY	` '	21		85			-	-	
r ai ailletei 5	V Stiff CLAY	` '	21			125		-	-	
	V Stiff CLAY		21			140		-	-	
	V Stiff CLAY	(5)	21			150		-	-	

onal Emergency Area	V Stiff GRAVEL	21		-		37	IUIALI	OUNDATION SOLU
	V Soft Grav. CLAY	21		100		-		_
	_Characteristic	Permanent Action (self-weight)		ermanent Action movable)		lestrian ction	A	ccidental Action
	Compression	20kN		-	2	20kN		-
	Tension	-		-				-
Characteristic and	Shear	-		-		-		5kN
Factored Actions	Facto	red		A1			R	1
	DA1-C1	Compression		51kN			180.3	3kN
	DAT-CT	Tension		-			-	
				A2		for M1		4 for M2
	DA1-C2	Compression	4	43.0kN	10	6.1kN		75.8kN
	5711 02	Tension		-		-		-
Design utilisation for ULS GEO/STR axial compression	DA1-	-C1 28% DA1-C2 57%						
Governing load case	Vertical Case:	Case: Permanent (self-weight) + Pedestrian Action					on	
Governing load case	Horizontal Case:			V	Wind			
	Piling Technique	Pile Raking Angle	Pile dimensions (length; shear tube; helix configuration)					
	Helical	5.0m pile comprising 139.7mm CHS A3m Galv 114.3mm CHS, E2M 350/500					A3m Galv,	
	Pile Spacing	No. of Piles						
Foundation Design	1.2m	4						
Recommendations	Post-construction deflection (z-axis) under full char	acteri	stic loading	g.	<10	Omm	
	Deflection perpendicular to carriageway for shear loads			> / Clomm				
	Shear loads	lel to carriageway (y axis) for <10mm						
Contaminated Land Assessment	Refer to main report							
BS EN 1993-5 Corrosion Assessment	The ground conditions are anticipated to be natural undisturbed soil, but have conservatively been taken as non-compacted and non-aggressive fills. Design Life: 30 Years							
Supervision, Instrumentation Monitoring and	Monitor of pile depth and torque readings. For static pile testing requirements refer to Appendix 16/9 of Screwfast/Van-elle GDR							

APPENDIX B1: Design Calculation Sheets Primary Piles

HELICAL PILE DESIGN

TOT GEU limit state to Eurocode /: Geotechnical Design - Part 1: BS EN 1997-1:2004+A1:2013, BS EN 14199:2015 and

SPECIAL TEMPLATE BS8004:2015 26/07/18

www.screwfast.com

ph. +44 (0) 1727 735 550

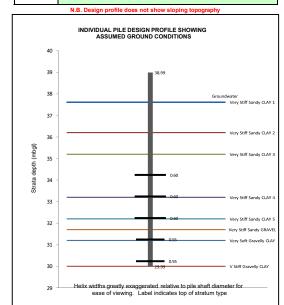
SFF JOB No:	233630
JOB NAME:	NEAR
CLIENT:	ВМЈУ

PILE DESIGN REF:	HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0001
LOAD REF:	HEINNOVA-ATK-SGY-SG_MULTI-DR-S-5400
SFF DRAWING REF:	
CLIENT GA DRAWING REF:	

SFF REV No:	00
DATE:	21/11/23
REVISION DESCRIPTION:	

LEVELS						
G.I. REF NUMBER:	G230600 Rev 001					
G.I. DATUM (mAOD)	39.20					
TOP OF PILE (mAOD)	38.99					
GROUND LEVEL (G.L.) (mAOD)	37.61					
GROUNDWATER DEPTH (mAOD) (See note)	37.61					

NOTE: Groundwater depth: 2.4.6.1(6)P: When dealing with ground-water pressures for limit states with severe consequences (generally utilimate limit states), design values shall represent the most unfavourable values that could occur during the design lifetime of the structure. For limit states with less severe consequences (generally serviceability limit states), design values shall be the most unfavourable values which could occur in normal circumstances. 2.4.5.1(11): Unless the adequacy of the drainage system can be demonstrated and its maintenance enter, the design ground-water table should be taken as the maximum possible level, which not be the ground valuer table.


PILE GROUP FOUNDATION DESIGN						
RAKE ANGLE FROM VERTICAL (°)	0					
ALTER PILE DESIGN TO ACCOUNT FOR RAKING	NO					
MINIMUM PILE SPACING C/C (m)	1.2					
PILES PER STRUCTURE	8					
TOPOGRAPHY AT SITE	Embankment					
MAXIMUM PILE PROJECTION ABOVE GROUND LEVEL (m)	1.38					
BRACING REQUIRED	YES					
PILE POSITION SELECTED FROM GROUP FOR DESIGN:	Furthest down slope; greatest projection					

PILE DETAILS							
Pile diameter at helix depth(s) (mm)	Wall thickness (mm)	Length (m)	Top (mAOD)	Bottom (mAOD)			
355.6	10.00	9.00	38.99	29.99			
Surface Area A	A _s (m ² per m)		1.12				
Helix plate	thickness		12mm				

SITE NAME:	M1 Junction 23-25a
STRUCTURE TYPE:	Gantry Foundation
CLIENT REF NUMBER:	

	DESIGNER	COMMENTS
NAME:	Michael Christie	P
DATE:	21/11/2023	Primary Piles

	REVIEWED & CHECKED								
NAME:	Andrej Podpriatov	COMPANY (IF NOT SFF):							
DATE:	28/11/2023								
COMMENTS:									

	GROUND CONDITIONS USING CHARACTERISTIC VALUES (₄) FROM GROUND TEST RESULTS									
Strata description	Top of layer (mAOD)	Bottom of layer (mAOD)	Cumulative depth (mbgl)	Strata type for purposes of analysis	Unit weight	Average SPT 'N' value	c _{u.k} (kPa)	Φ' _k (°)	α (see note)	Shaft resistance R _{s;k} (kN)
Very Stiff Sandy CLAY 1	37.61	36.20	1.41	Cohesive	21	15	75		0.80	94.51
Very Stiff Sandy CLAY 2	36.20	35.20	2.41	Cohesive	21	17	85		0.77	73.12
Very Stiff Sandy CLAY 3	35.20	33.20	4.41	Cohesive	21	25	125		0.68	189.92
Very Stiff Sandy CLAY 4	33.20	32.20	5.41	Cohesive	21	28	140		0.64	100.10
Very Stiff Sandy CLAY 5	32.20	31.70	5.91	Cohesive	21	30	150		0.62	51.95
Very Stiff Sandy GRAVEL	31.70	31.20	6.41	Non-cohesive	21	61		37		26.11
Very Soft Gravelly CLAY	31.20	30.00	7.61	Cohesive	21	61	100		0.74	99.20
V Stiff Gravelly CLAY	30.00	29.00	8.61	Cohesive	21	49	220.5		0.50	0.00
										0.00
NOTE: SPT 'N' value is used	NOTE: SPT 'N' value is used to calculate anticipated torque during installation; it is not used in pile capacity calculation					TOTAL SHAFT I	RESISTANCE R	$_{;k} = \Sigma A_s q_{s;k} (kN)$	634.90	
NOTE: Refer to A.3.3.2 ar	nd A.3.3.3 if characte	ristic values of grour	nd strength are derive	ed from static load tests	NOTE: Factored ground conditions for M1 Material Factors are same as R _{sk} value above since all factors = 1.0					

PARTIAL MATERIAL FACTORS FOR SOIL PARAMETERS (7 _M) (TABLE A.NA.4)												
		M1 SET	M2 SET	Reciprocal of M2 Set	Most onerous factor for M2							
Angle of shearing resistance	γ,	1.00	1.25	0.80	0.80	NOTE: The value of the partial factor should be taken as the reciprocal of the specified value if such a reciprocal						
Effective cohesion	Y .'	1.00	1.00 1.25 0.80		0.80	value produces a more onerous effect than the specified value (Note to Table A.NA.4). The characteristic values						
Undrained shear strength	You	You 1.00		0.71	0.71	may have to be adjusted to upper values for the M2 situation as per 7.3.2.1(2)						
Unconfined strength	Υqu	1.00	1.40	0.71	0.71							

FACTORED GROUND CONDITIONS FOR M2 MATERIAL FACTORS SET											
Strata description	Top of layer (mAOD)	Bottom of layer (mAOD)	Cumulative depth (mbgl)	Strata type for purposes of analysis	Unit weight	Average 'N' value	c _{urd} (kPa)	Φ' _d	α (see note)	Shaft resistance R _{s;d} (kN)	
Very Stiff Sandy CLAY 1	37.61	36.20	1.41	Cohesive	21	15	53.6		0.8	67.5	
Very Stiff Sandy CLAY 2	36.20	35.20	2.41	Cohesive	21	17	60.7		0.8	52.2	
Very Stiff Sandy CLAY 3	35.20	33.20	4.41	Cohesive	21	25	89.3		0.7	135.7	
Very Stiff Sandy CLAY 4	33.20	32.20	5.41	Cohesive	21	28	100.0		0.6	71.5	
Very Stiff Sandy CLAY 5	32.20	31.70	5.91	Cohesive	21	30	107.1		0.6	37.1	
Very Stiff Sandy GRAVEL	31.70	31.20	6.41	Non-cohesive	21	61		31.1		20.9	
Very Soft Gravelly CLAY	31.20	30.00	7.61	Cohesive	21	61	71.4		0.7	70.9	
V Stiff Gravelly CLAY	30.00	29.00	8.61	Cohesive	21	49	157.5		0.5	88.0	
TOTAL SHAFT RESISTANCE $\mathbf{R}_{v:d} = \mathbf{\Sigma} \mathbf{A}_{u} \mathbf{q}_{v:d}$ (kN)									543.7		

					BASE RESIS	TANCE FOR M1	MATERIAL FA	CTORS SET				
Helix Plate	Plate Area A _b	Helix Depth (m	Helix Depth z _h	Resista	nce in compress	ion (kN)	Resi	stance in tensio	ı (kN)	Plate base resistance in	Plate base resistance in	
Diameter (m)	(m²)	below top of pile)	(mAOD)	at z _h	at z _h -0.25m	at z _h -0.75m	at z _h	at z _h +0.25m	at z _h +0.75m	compression r _{b;k} (kN)	tension r _{b;k} (kN)	
0.60	0.18	4.75	34.24	206.4	206.4	206.4	206.4	206.4	206.4	206.4	206.4	
0.60	0.18	5.75	33.24	206.4	231.1	231.1	206.4	206.4	206.4	218.7	206.4	
0.60	0.18	6.75	32.24	231.1	247.6	542.4	231.1	231.1	231.1	298.3	231.1	
0.55	0.14	7.75	31.24	408.9	124.4	124.4	408.9	408.9	186.7	266.7	364.4	
0.55	0.14	8.75	30.24	124.4	274.4	274.4	124.4	124.4	124.4	199.4	124.4	
NOTE: $A_0 = A_{\text{locales}}$. For compression $\text{rb.k} = (0.5 r_{\text{locales}} t_{\text{compression}}) + (0.5 r_{\text{locales}} t_{\text{compression}}) + (0.2 r_{$					BASE RE	SISTANCE Zrb;k	R _{b;k} (kN):	1189.5	1132.7			

					BASE RESIS	STANCE FOR M2	MATERIAL FA	CTORS SET			
Helix Plate	Plate Area A _b	Helix Depth (m	Helix Depth z _h	Resista	nce in compress	sion (kN)	Resi	stance in tension	ı (kN)	Plate base resistance in	Plate base resistance in tension r _{b;k} (kN)
Diameter (m)	(m²)	below top of pile)	(mAOD)	at z _h	at z _h -0.25m	at z _h -0.75m	at z _h	at z _h +0.25m	at z _h +0.75m	compression r _{b;k} (kN)	
0.60	0.18	4.75	34.24	147.4	147.4	147.4	147.4	147.4	147.4	147.4	147.4
0.60	0.18	5.75	33.24	147.4	165.1	165.1	147.4	147.4	147.4	156.2	147.4
0.60	0.18	6.75	32.24	165.1	176.9	263.0	165.1	165.1	165.1	188.2	165.1
0.55	0.14	7.75	31.24	198.2	88.9	88.9	198.2	198.2	133.3	143.6	185.3
0.55	0.14	8.75	30.24	88.9	196.0	196.0	88.9	88.9	88.9	142.4	88.9
	NOTE: Ab = Ahelix - Abyshaft. For compression $r_{0,k} = (0.5 r_{0,k,\alpha,20}) + (0.3 r_{0,k,\alpha,20}) + (0.2 r_{0,k,\alpha,$				R _{b;k} (kN):	777.9	734.0				

NOTE: CALCULATION OF PILE RESISTANCE:

Pile capacity (resistance) is calculated as the sum of the helix resistances, assuming each acts like an end-bearing face. The helix plates are spaced far enough apart along the shaft to ensure that the effect of interference between the bulbs of loaded soil can be ignored in accordance with Boussinesq's theory. The skin friction over the embedded length of the pile shaft is considered negligible and is ignored for the purposes of pile capacity.

All input values are based on measured, site specific values where such information is available. Otherwise the input data is estimated using values taken from published literature.

Minimum helix spacing (m):	1
Distance between lowest helix and end of pile (m)	0.25

	PARTIAL RESISTANCE FACTORS (γ _R) FOR DRIVEN PILES FOR THE GEO LIMIT STATE (TABLE A.NA.6)										
		R1	R4 without	R4 with	DO YOU HAVE "EXPLICIT VERIFICATION OF SLS" FOR R4?	APPLICABLE R4 FACTORS					
SHAFT IN COMPRESSION	Ys	1.0	1.5	1.3		ver values in R4 may be adopted (a) if serviceability is verified by load tests (preliminary and/or working)					
SHAFT IN TENSION	Ys,t	1.0	2.0	1.7		arried out on more than 1% of the construction piles to loads not less than 1.5 times the representative load for which ley are designed, or (b) if settlement is explicitly predicted by a means no less reliable than in (a), or (c) if settlement at the serviceability limit state is of no concern. (Note A to Table A.NA.6)					
BASE	Y b	1.0	1.7	1.5	the serviceability limit state is of no concern. (Note A to Table A.NA.6)						
BASE IN TENSION	Y _{b,t}	1.3	2.2	2.0	NOTE: EC7 does not have a n_{21} factor since the base resistance does not contribute to tensile resistance in 'normal' pile design. The n_{21} factor is therefore a Screw-Rast addition to account for the fact that the soil will provide less resistance to a tensile load on the helbus plates than to the same load in compression.						
MODEL FACTOR	Y Rd	1.4	NOTE: The value	NOTE: The value of the model factor should be 1.4, except that it may be reduced to 1.2 if the resistance is verified by a maintained load test taken to the calculated, unfactored ultimate resistance. (A.3.3.2)							

PILE DESIGN ACTIONS (kN)										
			FAVOURABILITY		A1	SET		A2 SET		
CHARACTERISTIC DESIGN ACTIONS (kN) Permanent = G_k , Variable = Q_k		i.e. promotes stability (favourable) or instability (unfavourable)	PARTIAL FACTOR Y _G or Y _Q	FACTORED ACTIONS $G_k \cdot \gamma_G \& Q_k \cdot \gamma_Q$	DESIGN ACTIONS $F_{c;d} = G_{k} \cdot \gamma_G + Q_{k} \cdot \gamma_Q$	PARTIAL FACTOR Y _G or Y _Q	FACTORED ACTIONS $G_k \cdot \gamma_G \& Q_k \cdot \gamma_Q$	DESIGN ACTIONS $F_{c;d} = G_k.\gamma_G + Q_k.\gamma_Q$		
COMPRESSION:	PERMANENT	60	UNFAVOURABLE	1.20	72.0	258.0	1.00	60.0	216.0	
COMPRESSION:	VARIABLE	120	UNFAVOURABLE	1.55	186.0	256.0	1.30	156.0		
TENOION	PERMANENT	10.0	UNFAVOURABLE	1.20	12.0	400.0	1.00	10.0		
TENSION:	VARIABLE	120	UNFAVOURABLE	1.55	1.55 186.0 198.0		1.30	156.0	166.0	

	DESIGN APPROACH 1, COMBINATION 1: A1 + M1 + R1										
	A1	M1	R1	DESIGN CHECK							
	$F_d = G_k \cdot \gamma_G + Q_k \cdot \gamma_Q$	R _{bjk}	$R_{c;d} = R_{b;k}/\gamma_b/\gamma_{Rd}$	F _d ≤ R _d							
COMPRESSION	258.0	1189.5	849.6	Difference = 591.6							
COMPRESSION	256.0	1109.5	049.0	DESIGN OK							
TENGION	400.0	1132.7	000.4	Difference = 424.4							
TENSION	198.0	1132.7	622.4	DESIGN OK							

The critical design case is
Design Approach 1, Combination 2
A2 + M2 + R4

DESIGN APPROACH 1, COMBINATION 2: A2 + (M1 or M2) + R4										
	$F_d = G_k \cdot \gamma_G + Q_k \cdot \gamma_Q$	R _{b,k}		$R_d = R_t$;k ^{lYiJYRd}	DESIGN CHECK FOR M1	DESIGN CHECK FOR M2			
	A2	M1	M2	R4 for M1	R4 for M2	$F_d \le R_d$	$F_d \le R_d$			
COMPRESSION	216.0	1189.5	777.9	499.8	326.8	Difference = 283.8	Difference = 110.8			
COMI RECOICIT	210.0	1103.5	777.5	455.0	320.0	DESIGN OK	DESIGN OK			
TENSION	SION 166.0 1132.7 734		734.0	200.4	237.2	Difference = 200.1	Difference = 71.2			
IENSION	166.0	1132.7	734.0	366.1	237.2	DESIGN OK	DESIGN OK			

NOTE: The M2 situation covers unfavourable actions on piles e.g. negative skin friction. 7.3.2.1(2) states that: "for these situations, the design values of the strength and stiffness of the moving ground should usually be upper values".

INSTALLATION TORQUE							
MINIMUM (kNm)	115						
DESIGN (kNm)	234						
MAXIMUM (kNm)	250						

PILE HEAD SETTLEMENT PREDICTION AT THE SLS							
PREDICTED PILE HEAD SETTLEMENT (mm)	< 10						
NOTE: Pile settlement predictions are based on simplified methods as outlined in Pile Design and Construction Practice (Tomilinson and Woodward, 2006, P195). This is a prediction only which satisfies the provision of EC7 SLS design. Actual pile head settlement at the SLS is dependent on external construction factors which are outside of ScrewFast's control.							

STEEL CORROSION PROTECTION											
ENVIRONMENT	Soils/Rock	LOCAL CONDITIONS	Non-compacted and non-aggressive fills (clay, schist, sand, silt,) DESIGN LIFE 30 years								
THICKNESS OF GALVANIS	ING REQUIRED TO 2mbgl	85 μm	35 µm ADDITIONAL PROTECTION REQUIRED G2b ground section to SHW Series 1900								

NOTE: Refer to SFF pile drawings for full details of pile corrosion protection. Protection measures required are calculated in accordance with BS EN 1993-5:2007, BS EN ISO 14713 and advice from Kevin Davies of CorroCiv Ltd as appropriate.

SECTION RELEVANT T	CHECK:	2nd	OUTSIDE DIA	METER (mm)	354.8	WALL THICK	(NESS (mm)	9.6	Dimensions used reflect de	esign life
BUC	BUCKLING RESISTANCE OF PILE SHAFT SECTION, N _{b,Rd}					COMBIN	ED ACTION OF	BENDING MOM	ENT AND AXIAL FORCE	
		A = CROSS SECTIONA	L AREA (mm²) =	10388				W _{pl.y} = PLAST	IC SECTION MODULUS (cm3) =	1141.6
		I = SECOND MOMENT O	F AREA (mm ⁴) =	154827279					F _y = STEEL GRADE (N/mm ²) =	355
		i = RADIUS OF GY	122			γ _{MO} = PARTIAL SAFETY FACTOR =			1.00	
		F_y = STEEL GRADE (N/mm ²) =					M _{pl,Rd} = BENDING MOMENT RESISTANCE =			405.27
$N_{h,R_d} = \frac{\chi A F_{y}}{}$		γ_{M1} = PARTIAL SAFETY FACTOR =				N _{pl,Rd} = AXIAL RESIS		N _{pl,Rd} = AXIAL RESISTANCE =	3687.5	
$V_{b,R_d} = \frac{\chi_{a} - \chi_{b}}{\gamma_{M1}}$		ESTIMATED PILE FIXITY POINT =			М.	M _{Ed} * = ULS BENDING MOMENT (ki			LS BENDING MOMENT (kNm) =	75.90
		L _{eff} = EFFECTIVE LENGTH OF THE SECTION =					_{Ed} ** = ULS AXIAL FORCE (kN) =	261.00		
		λ = NON-DIMENSIONAL SLENDERNESS						$n = N_{ed} / N_{pl,Rd}$		
		$\Phi = 0.5[1+\alpha(\lambda-0.2)+\lambda^2] =$					$M_{N,Rd} = M_{pl,Rd} (1 - n^1)$			400.78
	χ = RED	UCTION FACTOR FOR THE BUC	CKLING MODE =	0.759						
		N _{b,Rd} =								
		N _{Ed} = ULS COMPRESSION FORCE (kN) =								
BUCKLING RESISTANO	E CHECK	$N_{Ed}/N_{b,Rd} \le 1$	0.093	ок	MOMENT A	ND AXIAL FOR	CE CHECK		M _{Ed} ≤ M _{N.Rd}	ОК

NOTE: The above buckling check applies to cold rolled tube section. Hot formed tube section of the same size will have greater buckling resistance. Design compression force is sum of positive permanent and variable actions.

* ULS pile bending moment force as advised by Structural Engineer. ** ULS pile compression or tension force - whichever is greater - as advised by Structural Engineer.

GR	ILLAGE REQUIRE	D?	Yes				
PILE CON	NECTION TYPE R	EQUIRED:	A-Section				
INFO	DRMATION FROM	PILE DESIGN S	PILE DESIGN SELECTIONS ABOVE				
Helix co	nfiguration						
Helix Plate Diameter (m)	Helix Depth (m below top of pile)	CHS dimen	355.6 x 10				
0.60	4.75	Distance betwe	0.25				
0.60	5.75	and end o					
0.60	6.75						
0.55	7.75						
0.55	8.75						
· · · · · · · · · · · · · · · · · · ·							

		PILE SECTION	N SELECTION							
CHS dimens	ions (mm)	SFF PILE SECTION	HELIX DEPTHS	BASE OF SECTION						
Diameter Wall		SFF PILE SECTION	(m below top of pile)	(m below top of pile)						
406.4	20.0	A2M GALV.	(Plain section)	2						
355.6	10.0	B2M GALV.	(Plain section)	4						
355.6	10.0	C2M 600/600	4.75 & 5.75	6						
355.6	10.0	C1M 600	6.75	7						
355.6	10.0	E2M 550/550	7.75 & 8.75	9						
		Sum of section leng	ths = total pile length	OKAY						
Checks		I owest helix to toe distance matches toe section selected								

INSTALLATION NOTES	
) Stop immediately if a void is encountered and contact project manager.	
) Ensure all buried services are detected and isolated prior to piling	
BH1904N used to formulate the ground model	
·	

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.	;	Sheet No.	Rev	V .
233630				
Drg. Ref.				
Made by	Date	Checked	Date	

Titles

Job No.: 233630

Job Title: HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0001

Sub-title: M1 Junction 23-25a

Calculation Heading: Lateral load analysis (40kN)

Initials: Checker:

Date Saved:

Date Checked:

SLS Primary Piles

06-Oct-2023

Notes: File Name:

File Path:

HE614830-VAE-SGY-P015 S2 ALLGENR-CA-CB-0002.alw $\tt J: \ 2023 \ 233630 \ 6. \ Des \overline{ign} \overline{\ Internally Checked} \ Primary$

Piles\ProjectNumbered

General Data

Number of increments = 1Increment applied loads only

Standard analysis type $% \frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1$

Apply layered soil adjustments to P-Y curves: No

Convergence Control

Maximum number of iterations = 300

Maximum displacement error [mm] = 0.0010000 Maximum pressure error [kN/m²] = 0.10000 Damping coefficient = 1.0000

Maximum incremental deflection [m] = 2.0000

Partial Factors

Partial Factor Set	Variable Load	Permanent Load	Unit	Drained	Undrained	Shear
	(Rest./Dist.)	(Rest./Dist.)	Weight	Cohesion	Cohesion	Angle
SLS	1.000000/	1.000000/	1.000000	1.000000	1.000000	1.000000
	1.000000	1.000000				

Soil Data

Soil model: Generated P-Y curves for static loads

	moder: Ge				Static ic								
No.	Level	Type	Unit wt	E50	$C_{\mathbf{u}}$ top	$dC_{\mathbf{u}}/d\mathbf{z}$	K ₀	K <u>1</u>	Phi	qur	a_r	k_{rm}	Eir
	[m]		[kN/m³]		[kN/m²]	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]
1	38.210000		20.000	-	-	-	0.41000	33930.	36.000	-	-	-	-
		(Reese											
		et											
		al.)											
2	38.000000		21.000	0.010000	75.000	0.0	-	-	-	-	-	_	-
		Clay											
3	36.100000		21.000	0.010000	85.000	0.0	-	-	-	-	-	-	-
	25 000000	Clay	01 000	0 010000	105 00	0 0							
4	35.200000		21.000	0.010000	125.00	0.0	-	-	-	-	-	-	-
-	33.200000	Clay	21 000	0.010000	140.00	0 0	_						
J	33.200000	Clay	21.000	0.010000	140.00	0.0	_	_	_	_	_	_	_
6	32.200000		21 000	0.010000	150.00	0.0	_	_	_	_	_	_	_
O	32.200000	Clay	21.000	0.010000	100.00	0.0							
7	31.700000		21.000	_	-	-	0.40000	33930.	37.000	_	_	_	-
,	011,00000	(Reese	21.000				0.10000	00300.	0,.000				
		et											
		al.)											
8	31.200000	Stiff	21.000	0.010000	100.00	0.0	_	-	-	-	-	-	-
		Clay											
9	30.500000	Stiff	21.000	0.010000	220.50	0.0	-	-	-	-	-	-	-
		Clay											
		_											

Sections

Oasys

HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0001

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.		Sheet	No.	Rev.	
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

No.	Level	Type	Unit wt	E50	$c_{\mathbf{u}}$ top	dC _u /dz	κ_0	K ₁	Phi	qur	a_r	k_{rm}	Eir	
	[m]		$[kN/m^3]$		$[kN/m^2]$	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]	

Name	Input Type	Description	Material	Class	Effective Width	EI
					[m]	[kNm²]
406.4 x	Wizard	STD%CHS%405.6%19.6	Steel		0.40691	88763.
20mm	Generated					
355.6 x	Wizard	STD%CHS%354.8%9.6	Steel		0.35594	31039.
10mm	Generated					

Pile Properties

Level Section
[m]
38.990 406.4 x 20mm
36.990 355.6 x 10mm

Pile base at 29.990000 m

Applied Loads and Displacements

No. Level Force Moment Displacement [m] [kN] [kNm] [mm] 1 38.990 40.000 0.0 0.0

Restraints

 $\begin{tabular}{lll} No. & Node & Lateral & Rotational \\ & Stiffness & Stiffness \\ & [kN/m] & [kNm/rad] \\ 1 & 1 & 0.0 & 10000. \end{tabular}$

Geometry and Initial state

Node	Level	Soil	EI	Effective	Water	Soil
				Width	Pressure	
	[m]		[kNm2]	[m]	[kN/m²]	[mm]
1	38.990	0	88763.	0.40691	0.0	0.0
2	38.766	0	88763.	0.40691	0.0	0.0
3	38.542	0	88763.	0.40691	0.0	0.0
4	38.318	0	88763.	0.40691	0.0	0.0
5	38.102	1	88763.	0.40691	1.0800	0.0
6	37.898	2	88763.	0.40691	3.1200	0.0
7	37.595	2	88763.	0.40691	6.1467	0.0
- 8	37.293	2	88763.	0.40691	9.1733	0.0
9	36.990	2	31039.	0.35594	12.200	0.0
10	36.736	2	31039.	0.35594	14.743	0.0
11	36.481	2	31039.	0.35594	17.286	0.0
12	36.227	2	31039.	0.35594	19.829	0.0
13	35.973	3	31039.	0.35594	22.371	0.0
14	35.749	3	31039.	0.35594	24.608	0.0
15	35.526	3	31039.	0.35594	26.844	0.0
16	35.302	3	31039.	0.35594	29.080	0.0
17	35.098	4	31039.	0.35594	31.120	0.0
18	34.806	4	31039.	0.35594	34.040	0.0
19	34.514	4	31039.	0.35594	36.960	0.0
20	34.222	4	31039.	0.35594	39.880	0.0
21	33.930	4	31039.	0.35594	42.800	0.0
22	33.638	4	31039.	0.35594	45.720	0.0
23	33.346	4	31039.	0.35594	48.640	0.0
24	33.054	5	31039.	0.35594	51.560	0.0
25	32.803	5	31039.	0.35594	54.067	0.0
26	32.553	5	31039.	0.35594	56.573	0.0
27	32.302	5	31039.	0.35594	59.080	0.0
28	32.098	6	31039.	0.35594	61.120	0.0
29	31.833	6	31039.	0.35594	63.773	0.0
30	31.567	7	31039.	0.35594	66.427	0.0
31	31.302	7	31039.	0.35594	69.080	0.0
32	31.098	8	31039.	0.35594	71.120	0.0
33	30.850	8	31039.	0.35594	73.600	0.0

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.		Sheet No.			Rev.		
233630							
Drg. Ref.							
Made by	Date		Checked	Date			

Latera	ii ioad an	alysis (40kN)				MC	06-Oct-2023	Onconca
Node	Level	Soil EI	Effective	Water	Soil			
	[m]	[kNm2]	Width [m]	Pressure [kN/m²]	Disp [mm]			
34	30.602	8 31039.	0.35594	76.080	0.0			
	30.398	9 31039.		78.120	0.0			
	30.194	9 31039.		80.160	0.0			
	29.990	9 31039. Soil P-y cur		82.200	0.0			
Node	P1	Y1 P2	Y2	P3 Y3	3			
	[kN/m]	[mm] [kN/m]	[mm] []	kN/m] [mn	n]			
5	0.0	0.0 1.6496 0.0 30.575		.6241 2.03 2.283 10.1				
7	0.0							
8	0.0	0.0 38.005	2.0345 64	1.987 10.1	.73			
9 10	0.0	0.0 38.170 0.0 41.249		5.270 8.89).535 8.89				
11	0.0	0.0 44.329						
12	0.0	0.0 47.408	1.7797 81	.067 8.89	86			
13 14	0.0	0.0 56.881 0.0 59.915		7.264 8.89)2.45 8.89				
15	0.0	0.0 62.950						
16	0.0	0.0 65.985		2.83 8.89				
17 18	0.0	0.0 71.006 0.0 74.009						
19	0.0	0.0 77.011						
20	0.0	0.0 80.014		36.82 8.89				
21	0.0	0.0 83.016 0.0 86.019						
23	0.0	0.0 89.021						
24	0.0	0.0 102.36		75.03 8.89				
25 26	0.0	0.0 105.21 0.0 108.07						
27	0.0							
28	0.0	0.0 120.83		06.62 8.89				
29 30	0.0	0.0 124.04 0.0 492.87		.2.11 8.89 .2.13 3.12				
31	0.0	0.0 512.70						
32	0.0	0.0 91.333		6.18 8.89				
33	0.0	0.0 93.430 0.0 93.671		59.76 8.89 50.17 8.89				
35	0.0							
36	0.0	0.0 206.54						
37 Node	0.0 P4	0.0 206.54 Y4 P5			786 76			
	[kN/m]	[mm] [kN/	m] [mm] [[kN/m] [m	nm]			
		3.6160 3.80						
		30.518 104. 30.518 117.						
8	93.582	30.518 129.	97 81.381 1	29.97 101	7.3			
		26.696 130. 26.696 141.						
		26.696 151.						
		26.696 162.						
		26.696 194. 26.696 204.						
		26.696 215.						
		26.696 225.						
		26.696 242. 26.696 253.						
		26.696 263.						
		26.696 273.						
		26.696 283. 26.696 294.						
		26.696 304.						
		26.696 350.						
		26.696 359. 26.696 369.						
27	273.12	26.696 379.	33 71.189 3	379.33 889	.86			
		26.696 413.						
		26.696 424. 4.0596 904.						
31	746.73	4.0599 940.	40 5.9324 1	655.1 13.	348			
		26.696 312. 26.696 319.						
33	230.06	20.090 319.	JJ /I.189 3	119.03 889	00.0			

Oasys

HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0001

M1 Junction 23-25a

Node

Lateral load analysis (40kN)

Job No.		Sheet	No.	R	Rev.
233630					
Drg. Ref.					
Made by	Date 06-Oct-2023		Checked	Date	

	[KN/M]	[mm]	[KN/M]	[mm]	[KN/M]	[mm]
34	230.65	26.696	320.35	71.189	320.35	889.86
35	501.56	26.696	696.61	71.189	696.61	889.86
36	508.59	26.696	706.37	71.189	706.37	889.86
37	508.59	26 696	706.37	71.189	706.37	889.86

Y5

Output for load increment 1

Iteration	Max at	Disp	Pressure
	Inc node	error	error
	Disp		
	[mm]	[mm]	[kN/m²]
10	5.98 1	0.0006	0.01

- The file is not completely converged till the specified tolerance limit.

Р6

Y6

			not completely conve.					111111 C •
Node	Level	Defl	Rotation	Soil		_	Shear	
	[m]	[mm]	[rad]		[kN/m²]	[kNm]	[kN]	
	38.990	-5.9811	-0.0022497	0	0.0	0.0	0.0	
	38.990					-22.497	-40.000	
	38.766		-0.0022952	0		-13.537		
	38.542		-0.0023181	0	0.0	-4.5775		
	38.318		-0.0023183	0	0.0			
5	38.102	-3.9360	-0.0022971	1	-7.8661	13.023	-39.664	1 P
	37.898	-3.4710	-0.0022580	2		21.045		
7	37.595	-2.8001	-0.0021704	2	-89.898	30.310	-25.076	5 P
8	37.293	-2.1598	-0.0020570	2		36.225	-13.726	5 P
9	36.990	-1.5563	-0.0019294	2	-93.775	38.619	-3.2639)
10	36.736	-1.1058	-0.0016145	2		38.267	4.6423	3
11	36.481	-0.73441	-0.0013093	2	-51.391	36.258	10.227	7
12	36.227	-0.43813	-0.0010253	2		33.066	14.036	5
13	35.973	-0.21047	-770.68E-6	3	-18.898	29.120	16.324	ļ.
14	35.749	-0.060551	-574.74E-6	3	-5.7270	25.290	17.355	5
15	35.526	0.048664	-406.77E-6	3	4.8359	21.358	17.391	_
16	35.302	0.12346	-266.83E-6	3	12.860	17.512	16.709)
17	35.098	0.16690	-162.68E-6	4	18.708	14.203	15.394	l
18	34.806	0.19686	-49.188E-6	4	22.999	9.9490	13.373	3
19	34.514	0.19920	27.557E-6	4	24.217	6.3930	10.919)
20	34.222	0.18369	74.294E-6	4	23.201	3.5721	8.4551	_
21	33.930	0.15808	97.794E-6	4	20.716	1.4552	6.1728	3
22	33.638	0.12823	104.32E-6	4	17.412	-0.032883	4.1914	ļ.
23	33.346	0.098275	99.329E-6	4	13.810	-0.99256	2.5689)
24	33.054	0.070908	87.265E-6	5	11.458	-1.5331	1.2979)
25	32.803	0.050670	73.962E-6	5	8.4156	-1.7198	0.36916	5
	32.553	0.033892	59.904E-6	5		-1.7182	-0.26420)
27	32.302	0.020594	46.371E-6	5	3.6059	-1.5873	-0.66801	
28	32.098	0.012177	36.327E-6	6				
29	31.833	0.0040774	25.106E-6	6	0.79841	-1.1538	-1.0456	5
30	31.567	-0.0013548	16.248E-6	7	-0.85787	-0.86639	-1.0428	3
31	31.302	-0.0047531	9.7444E-6	7	-3.1299	-0.60045	-0.87158	3
32	31.098	-0.0063532	6.1080E-6	8	-0.91599	-0.44931	-0.70402	2
33	30.850	-0.0074485	2.9441E-6	8	-1.0986	-0.28385	-0.61869)
			997.33E-9	8			-0.52314	
			173.26E-9	9		-0.045323		
			-144.03E-9				-0.19383	
			-207.36E-9	9			-0.0044210	
- ,		. ,						

- The letter "P" next to a result indicates that the effective earth pressure is greater than 0.99 times the passive limit, but within the convergence pressure limit.

EXTREME values so far:-

Deflections		Rotat	Momen	ts	Shears		
Min	Max	Min	Max	Min	Max	Min	Max
[mm]	[mm]	[rad]	[rad]	[kNm]	[kNm]	[kN]	[kN]
-5.9811	0.19920	-0.0023183	104.32E-6	-22.497	38.619	-40.000	17.391

RESTRAINT FORCES

No. Node Lateral Moment force

[kN] [kNm] 1 1 0.0 22.497

M1 Junction 23-25a Lateral load analysis (40kN)

Job No.		Sheet No	0.	R	lev.
233630					
Drg. Ref.					
Made by	Date 06-Oct-2023	(Checked	Date	

Titles

Job No.: 233630

Job Title: HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0003

Sub-title: M1 Junction 23-25a

Calculation Heading: Lateral load analysis (40kN)

Initials: Checker:

Date Saved:

06-Oct-2023

Date Checked:

Notes: DA1-1 Primary Piles

HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0003.alw File Name: File Path: $J:\2023\233630\6$. Des \overline{ign} InternallyChecked\Primary

Piles\ProjectNumbered

General Data

Number of increments = 1Increment applied loads only Standard analysis type

Apply layered soil adjustments to P-Y curves: No

Convergence Control

Maximum number of iterations = 300

Maximum displacement error [mm] = 0.0010000 Maximum pressure error [kN/m²] = 0.10000 Damping coefficient = 1.0000

Maximum incremental deflection [m] = 2.0000

Partial Factors

Partial Factor Set	Variable Load (Rest./Dist.)	Permanent Load (Rest./Dist.)	Unit Weight	Drained Cohesion	Undrained Cohesion	Shear Angle
BS EN 1997-1:2004	0.000000/	1.000000/	1.000000	1.000000	1.000000	1.000000
(EC7 - UK) DA1-1(4)	1.550000	1.200000				

Soil Data

Soil model : Generated P-Y curves for static loads

boll model . Generated I I carves for static loads						aub							
No.	Level	Type	Unit wt	E50	$C_{\mathbf{u}}$ top	dC_u/dz	κ_0	K ₁	Phi	qur	$\alpha_{\mathtt{r}}$	k_{rm}	Eir
	[m]		[kN/m³]		[kN/m²]	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]
1	38.210000	Sand	20.000	-	-	-	0.41000	33930.	36.000	-	-	-	-
		(Reese et al.)											
2	38.000000	Soft Clay	21.000	0.010000	75.000	0.0	-	-	-	-	-	-	-
3	36.100000	Soft Clay	21.000	0.010000	85.000	0.0	-	-	-	-	-	-	-
4	35.200000	Stiff Clay	21.000	0.010000	125.00	0.0	-	-	-	-	-	-	-
5	33.200000	Stiff	21.000	0.010000	140.00	0.0	-	-	-	-	-	-	-
6	32.200000	Clay Stiff Clay	21.000	0.010000	150.00	0.0	-	-	-	-	-	-	-
7	31.700000	Sand	21.000	-	-	-	0.40000	33930.	37.000	-	-	-	-
		(Reese et al.)											
8	31.200000	Stiff Clay	21.000	0.010000	100.00	0.0	-	-	-	-	-	-	-
9	29.500000	Stiff Clay	21.000	0.010000	220.50	0.0	-	-	-	-	-	-	-

Sections

Oasys

HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0003

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.		Sheet	No.	R	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

No.	Level	Type Unit wt	E50	$C_{\mathbf{u}}$ top	dC_u/dz	κ_0	K ₁	Phi	qur	$\alpha_{\mathtt{r}}$	k_{rm}	Eir
	[m]	[kN/m³]		[kN/m²]	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]

Name	Input Type	Description	Material	Class	Effective Width [m]	EI [kNm²]
406.4 x 20mm	Wizard Generated	STD%CHS%405.6%19.6	Steel		0.40691	88763.
355.6 x 10mm	Wizard Generated	STD%CHS%354.8%9.6	Steel		0.35594	31039.

Pile Properties

Level		Section	
[m]			
38.990	406.4	x 20mm	
36.990	355.6	x 10mm	

Pile base at 29.990000 m

Applied Loads and Displacements

No.		Level	Force	Moment	Displacement
		[m]	[kN]	[kNm]	[mm]
	1	38.990	40.000	0.0	0.0

Restraints

 $\begin{tabular}{lll} No. & Node & Lateral & Rotational \\ & Stiffness & Stiffness \\ & [kN/m] & [kNm/rad] \\ 1 & 1 & 0.0 & 10000. \end{tabular}$

Geometry and Initial state Node Level Soil EI Effective Water Soil

Node	Level	Soil	EI	Effective Water		Soil
				Width	Pressure	Disp
	[m]		[kNm2]	[m]	[kN/m²]	[mm]
1	38.990	0	88763.	0.40691	0.0	0.0
2	38.886	0	88763.	0.40691	0.0	0.0
3	38.782	0	88763.	0.40691	0.0	0.0
4	38.678	0	88763.	0.40691	0.0	0.0
5	38.574	0	88763.	0.40691	0.0	0.0
6	38.470	0	88763.	0.40691	0.0	0.0
7	38.366	0	88763.	0.40691	0.0	0.0
8	38.262	0	88763.	0.40691	0.0	0.0
9	38.158	1	88763.	0.40691	0.52000	0.0
10	38.052	1	88763.	0.40691	1.5800	0.0
11	37.948	2	88763.	0.40691	2.6200	0.0
12	37.828	2	88763.	0.40691	3.8175	0.0
13	37.709	2	88763.	0.40691	5.0150	0.0
14	37.589	2	88763.	0.40691	6.2125	0.0
15	37.469	2	88763.	0.40691	7.4100	0.0
16	37.349	2	88763.	0.40691	8.6075	0.0
17	37.230	2	88763.	0.40691	9.8050	0.0
18	37.110	2	88763.	0.40691	11.003	0.0
19	36.990	2	31039.	0.35594	12.200	0.0
20	36.853	2	31039.	0.35594	13.569	0.0
21	36.716	2	31039.	0.35594	14.938	0.0
22	36.579	2	31039.	0.35594	16.308	0.0
23	36.442	2	31039.	0.35594	17.677	0.0
24	36.305	2	31039.	0.35594	19.046	0.0
25	36.168	2	31039.	0.35594	20.415	0.0
26	36.032	3	31039.	0.35594	21.785	0.0
27	35.876	3	31039.	0.35594	23.338	0.0
28	35.721	3	31039.	0.35594	24.890	0.0
29	35.566	3	31039.	0.35594	26.443	0.0
30	35.410	3	31039.	0.35594	27.996	0.0
31	35.255	3	31039.	0.35594	29.549	0.0
32	35.145	4	31039.	0.35594	30.651	0.0
33	34.989	4	31039.	0.35594	32.211	0.0

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.		Sheet No.			Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

atera	ai ioad ar	iaiysis	(40KIN)			
Node	Level	Soil	EI	Effective		Soil
	F 3		[].37 07	Width	Pressure	-
	[m]		[kNm2]	[m]	[kN/m²]	[mm]
34	34.833	4	31039.	0.35594	33.771	0.0
	34.677		31039.	0.35594	35.331	0.0
36	34.521	4	31039.	0.35594	36.891	0.0
	34.365		31039.	0.35594	38.451	0.0
	34.209		31039.	0.35594	40.011	0.0
	34.053		31039.	0.35594		0.0
	33.897		31039. 31039.	0.35594	43.131	0.0
	33.585		31039.	0.35594	46.251	0.0
	33.429		31039.	0.35594	47.811	0.0
44	33.273		31039.	0.35594	49.371	0.0
	33.127		31039.	0.35594	50.829	0.0
	32.981		31039.	0.35594	52.288	0.0
	32.835		31039.	0.35594	53.746	0.0
	32.690 32.544		31039. 31039.	0.35594	55.205 56.663	0.0
	32.398		31039.	0.35594	58.122	0.0
	32.252		31039.	0.35594	59.580	0.0
	32.148		31039.	0.35594	60.620	0.0
53	32.020	6	31039.	0.35594	61.900	0.0
	31.892		31039.	0.35594	63.180	0.0
	31.764		31039.	0.35594	64.460	0.0
	31.636 31.508		31039. 31039.	0.35594	65.740 67.020	0.0
	31.308		31039.	0.35594	68.300	0.0
	31.252		31039.	0.35594		0.0
	31.148		31039.	0.35594	70.620	0.0
61	31.003	8	31039.	0.35594	72.068	0.0
	30.858		31039.	0.35594	73.515	0.0
	30.714		31039.	0.35594	74.963	0.0
	30.569		31039.	0.35594	76.410	0.0
	30.424		31039. 31039.	0.35594	77.858	
	30.135		31039.	0.35594	80.753	
	29.990		31039.	0.35594	82.200	0.0
CALC	ULATED	Soil :	P-y curv	res		
Node		Y1	P2	Y2		<i>t</i> 3
0			[kN/m]			nm] i051
9	0.0	0.0		2 0.41291 1 3 0.47909 4		
11				2.0345 5		
12	0.0	0.0	31.431		3.746 10.	
13	0.0	0.0	32.901		6.260 10.	
14	0.0	0.0	34.371		8.773 10.	
15	0.0	0.0	35.841		51.286 10.	
16	0.0	0.0	37.310		3.800 10.	
17 18	0.0	0.0	38.780 40.250		56.313 10. 58.826 10.	
19	0.0	0.0	38.170		55.270 8.8	
20	0.0	0.0	39.828		8.105 8.8	
21	0.0	0.0	41.486		0.940 8.8	
22	0.0	0.0	43.144	1.7797 7	3.776 8.8	986
23	0.0	0.0	44.802		6.611 8.8	
24	0.0	0.0	46.461		9.446 8.8	
25	0.0	0.0	48.119		32.282 8.8	
26 27	0.0	0.0	56.084 58.192		95.902 8.8 99.506 8.8	
28	0.0	0.0	60.299		.03.11 8.8	
29	0.0	0.0	62.407		.06.71 8.8	
30	0.0	0.0	64.515		10.32 8.8	
31	0.0	0.0	66.622		13.92 8.8	
32	0.0	0.0	70.524		20.59 8.8	
33	0.0	0.0	72.128		.23.34 8.8	
34 35	0.0	0.0	73.732		.26.08 8.8 .28.82 8.8	
36	0.0	0.0	76.940		.28.82 8.8	
37	0.0	0.0	78.544		.31.37 8.8	
38	0.0	0.0	80.148		.37.05 8.8	
39	0.0	0.0	81.752		39.79 8.8	
40	0.0	0.0	83.356	1.7797 1	42.54 8.8	986
41	0.0	0.0	84.960	1.7797 1	45.28 8.8	986

Oasys

HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0003

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.		Sheet	No.	F	Rev.		
233630)						
Drg. Ref.							
Made by MC	Date 06-Oct-2023		Checked	Date			

Node	P1	Y1	P2	Y2	Р3	¥3
-10ae	[kN/m]		kN/m]	[mm]	[kN/m]	[mm]
42	0.0	0.0	86.565	1.7797	148.02	8.8986
43	0.0	0.0	88.169	1.7797	150.77	8.8986
44	0.0	0.0	89.773		153.51	
45	0.0	0.0	101.53			8.8986
46	0.0	0.0	103.19		176.45	
47 48	0.0	0.0	104.85		179.29 182.13	
49	0.0	0.0	108.17		184.96	
50	0.0	0.0	109.83		187.80	
51	0.0	0.0	111.49	1.7797	190.64	8.8986
52	0.0	0.0	120.22		205.58	
53	0.0	0.0	121.77		208.23	
54	0.0	0.0	123.32		210.88	
55 56	0.0	0.0	478.46		213.53 597.57	
57	0.0	0.0	497.30		617.63	
58	0.0	0.0	506.87		629.48	
59	0.0	0.0	516.43	2.1875	641.34	3.1237
60	0.0	0.0	90.910		155.45	
61	0.0	0.0	92.134		157.55	
62	0.0	0.0	93.358		159.64	
63 64	0.0	0.0	93.671		160.17	
65	0.0	0.0	93.671		160.17	
66	0.0	0.0	93.671		160.17	
67	0.0	0.0	93.671	1.7797	160.17	8.8986
68	0.0	0.0	93.671		160.17	
Node	P4 [kN/m]	Y4 [mm]	P5 [kN/m]	Y5 [mm]	P6 [kN/m]	Y6 [mm]
9			3 1.7164			
10			5.8329		8.0896	
11			102.47			
12			3 107.49			
13			112.52			
14			3 117.55 3 122.57			
			3 127.60			
17			132.63			
18	99.110	30.518	3 137.65	81.381	137.65	1017.3
			130.54			
20			136.21		136.21	
21			5 141.88 5 147.55		141.88 147.55	
23			153.22		153.22	
24			158.89		158.89	
	118.49	26.696	164.56	71.189	164.56	889.86
			191.80		191.80	
27			199.01		199.01	
28 29			206.22		206.22	
30			213.43		220.64	
31			227.84		227.84	889.86
32			241.19		241.19	
33			246.67		246.67	889.86
34			252.16		252.16	889.86
35			257.65		257.65	
36 37			263.13		263.13 268.62	889.86
38			274.10		274.10	889.86
39			279.59		279.59	
40	205.25	26.696	285.07	71.189	285.07	889.86
41			290.56			889.86
42			296.05		296.05	
43			301.53		301.53	
44			307.02 347.23		307.02 347.23	889.86
45			352.90			889.86
47			358.58		358.58	
48	262.26	26.696	364.25	71.189	364.25	889.86
			369.93		369.93	
50	270.43	26.696	375.60	/1.189	375.60	889.86

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.		Sheet No.	Rev.	
233630				
Drg. Ref.				
Made by	Date	Checked	Date	

Node		P4	Y4	P5	Y 5	P6	Y 6
		[kN/m]	[mm]	[kN/m]	[mm]	[kN/m]	[mm]
	51	274.52	26.696	381.28	71.189	381.28	889.86
	52	296.03	26.696	411.16	71.189	411.16	889.86
	53	299.85	26.696	416.46	71.189	416.46	889.86
	54	303.67	26.696	421.76	71.189	421.76	889.86
	55	307.49	26.696	427.06	71.189	427.06	889.86
	56	702.96	4.0387	888.10	5.9324	1563.0	13.348
	57	724.37	4.0596	912.27	5.9324	1605.6	13.348
	58	738.26	4.0598	929.75	5.9324	1636.4	13.348
	59	752.16	4.0599	947.22	5.9324	1667.1	13.348
	60	223.85	26.696	310.91	71.189	310.91	889.86
	61	226.87	26.696	315.09	71.189	315.09	889.86
	62	229.88	26.696	319.28	71.189	319.28	889.86
	63	230.65	26.696	320.35	71.189	320.35	889.86
	64	230.65	26.696	320.35	71.189	320.35	889.86
	65	230.65	26.696	320.35	71.189	320.35	889.86
	66	230.65	26.696	320.35	71.189	320.35	889.86
	67	230.65	26.696	320.35	71.189	320.35	889.86
	68	230.65	26.696	320.35	71.189	320.35	889.86

Output for load increment 1

Iteration	Max at	Disp	Pressure		
	Inc node	error	error		
	Disp				
	[mm]	[mm]	[kN/m²]		
17	11.43 1	0.0007	0.02		

Node	Level	Defl	Rotation	Soil	Pressure	Bending	Shear	
	[m]	[mm]	[rad]		$[kN/m^2]$	[kNm]	[kN]	
1	38.990	-11.430	-0.0040321	0	0.0	0.0	0.0	
1	38.990					-40.321	-62.000	
2	38.886	-11.008	-0.0040756	0	0.0	-33.873	-62.000	
3	38.782	-10.583	-0.0041115	0	0.0	-27.425	-62.000	
	38.678	-10.154	-0.0041398	0	0.0	-20.977	-62.000	
5	38.574	-9.7218	-0.0041606	0	0.0	-14.529	-62.000	
6	38.470	-9.2884	-0.0041739	0	0.0	-8.0810	-62.000	
7	38.366	-8.8539	-0.0041796	0	0.0	-1.6330	-62.000	
8	38.262	-8.4193	-0.0041777	0	0.0	4.8150	-62.000	
	38.158		-0.0041683	1	-4.4475	11.263	-61.905	P
	38.052	-7.5443	-0.0041509	1	-14.834	17.815	-61.493	P
	37.948		-0.0041263	2		24.177	-58.758	P
	37.828		-0.0040892	2	-108.16	30.924	-53.704	P
	37.709		-0.0040433	2	-109.78	37.039	-48.394	P
	37.589		-0.0039896	2	-111.14	42.514	-43.012	P
	37.469	-5.1795	-0.0039290	2	-112.25	47.341	-37.569	P
	37.349		-0.0038624	2	-113.12	51.512	-32.079	P
	37.230		-0.0037905	2	-113.76	55.023	-26.551	P
	37.110		-0.0037143	2	-114.20	57.871	-20.997	P
	36.990		-0.0036348	2	-124.19	60.052	-15.378	P
-	36.853		-0.0033661	2		61.770	-9.5142	P
	36.716		-0.0030917	2	-124.27	62.658	-3.4584	P
	36.579		-0.0028152	2	-124.35	62.717	2.6000	P
-	36.442		-0.0025403	2		61.946	8.5130	
	36.305		-0.0022705	2		60.385	13.797	
	36.168		-0.0020091	2	-79.799	58.168	18.142	
	36.032		-0.0017586	3	-70.185	55.417	21.912	
	35.876		-0.0014906	3	-49.669	51.731	25.110	
	35.721		-0.0012421	3		47.618	27.347	
	35.566		-0.0010149	3	-15.153	43.237	28.631	
	35.410		-809.99E-6	3	-1.2632	38.726	29.085	
	35.255		-627.64E-6	3	10.404	34.204	28.874	
	35.145		-511.92E-6	4	17.990	31.050	28.202	
	34.989		-366.86E-6	4		26.717	27.050	
_	34.833		-243.01E-6	4	32.259	22.611	25.427	
	34.677		-139.10E-6	4	36.475	18.784	23.519	
	34.521		-53.639E-6	4	39.050	15.273	21.422	
	34.365	0.32432	15.019E-6	4	40.212	12.100	19.222	
	34.209	0.31761	68.599E-6	4	40.184	9.2758	16.990	
	34.053	0.30361	108.85E-6	4	39.181	6.7995	14.786	
40	33.897	0.28425	137.51E-6	4	37.403	4.6626	12.660	

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.		Sheet No.	Rev.	
233630				
Drg. Ref.				
Made by	Date	Checked	Date	

Node	Level	Defl	Rotation	Soil	Pressure	Bending	Shear	
	[m]	[mm]	[rad]		[kN/m²]	[kNm]	[kN]	
41	33.741	0.26122	156.23E-6	4	35.034	2.8497	10.649	
	33.585	0.23594	166.59E-6	4	32.242	1.3402	8.7808	
	33.429	0.20960	170.06E-6	4	29.173	0.11005	7.0757	
44	33.273	0.18317	167.98E-6	4	25.958	-0.86741	5.5686	
45	33.127	0.15906	162.06E-6	5	25.494	-1.5779	4.2096	
46	32.981	0.13604	153.25E-6	5	22.160	-2.0953	2.9727	
47	32.835	0.11446	142.40E-6	5	18.945	-2.4450	1.9057	
48	32.690	0.094567	130.24E-6	5	15.900	-2.6512	1.0013	
49	32.544	0.076505	117.38E-6	5	13.063	-2.7370	0.24951	
50	32.398	0.060337	104.35E-6	5	10.461	-2.7240	-0.36110	
51	32.252	0.046057	91.553E-6	5	8.1056	-2.6317	-0.81283	
	32.148	0.036996	82.755E-6	6	7.0212	-2.5284	-1.1380	
	32.020	0.027069	72.473E-6	6	5.2034	-2.3642	-1.4015	
	31.892	0.018411	62.927E-6	6	3.5843	-2.1697	-1.6017	
	31.764	0.010923	54.221E-6	6	2.1533	-1.9542	-1.7324	
	31.636	0.0044921	46.425E-6	7		-1.7262	-1.8456	
-		-0.0010027	39.598E-6		-0.64056	-1.4817	-1.8951	
		-0.0056875	33.767E-6	7		-1.2410	-1.7961	
		-0.0096873	28.879E-6	7		-1.0219	-1.5791	
	31.148	-0.012512	25.524E-6	8	-1.7956	-0.87149	-1.4067	
	31.003	-0.015916	21.660E-6	8		-0.67362	-1.3074	
	30.858	-0.018825	18.673E-6	8	-2.7743	-0.49301	-1.1763	
	30.714	-0.021360	16.474E-6	8	-3.1584	-0.33309	-1.0234	
	30.569	-0.023627	14.960E-6	8	-3.4937	-0.19672	-0.85206	
	30.424	-0.025718	14.015E-6	8	-3.8029	-0.086415	-0.66409	
	30.279	-0.027706	13.512E-6	8		-0.0044677	-0.46059	
	30.135	-0.029645	13.314E-6	8	-4.3835	0.046926	-0.24213	
68	29.990	-0.031568	13.273E-6	8	-4.6679	0.065628	-0.0089511	

- The letter "P" next to a result indicates that the effective earth pressure is greater than 0.99 times the passive limit, but within the convergence pressure limit.

EXTREME values so far:-

Deflections		Rotat	Momen	ts	Shears			
Min Max		Min	Min Max		Max	Min Max		
[mm]	[mm]	[rad]	[rad]	[kNm]	[kNm]	[kN]	[kN]	
-11 430	0 32432	-0 0041796	170 06E-6	-40 321	62 717	-62 000	29 085	

RESTRAINT FORCES

No. Node Lateral Moment force

[kN] [kNm] 1 1 0.0 40.321

M1 Junction 23-25a Lateral load analysis (40kN)

Job No.		Sheet	No.	F	Rev.
233630					
Drg. Ref.					
Made by	Date 06-Oct-2023		Checked	Date	

Titles

Job No.: 233630

Job Title: HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0004

06-Oct-2023

Sub-title: M1 Junction 23-25a

Calculation Heading: Lateral load analysis (40kN)

Initials:

Checker: Date Saved:

Date Checked:

Notes: DA1-2 Primary Piles

HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0004.alw File Name: File Path: $J:\2023\233630\6$. Des \overline{ign} InternallyChecked\Primary

Piles\ProjectNumbered

General Data

Number of increments = 1Increment applied loads only Standard analysis type

Apply layered soil adjustments to P-Y curves: No

Convergence Control

Maximum number of iterations = 300

Maximum displacement error [mm] = 0.0010000 Maximum pressure error [kN/m²] = 0.10000 Damping coefficient = 1.0000

Maximum incremental deflection [m] = 2.0000

Partial Factors

Partial Factor Set	Variable Load (Rest./Dist.)	Permanent Load (Rest./Dist.)	Unit Weight	Drained Cohesion	Undrained Cohesion	Shear Angle
BS EN 1997-1:2004	0.000000/	1.000000/	1.000000	1.250000	1.400000	1.250000
(EC7 - UK) DA1-2	1.300000	1.000000				

Soil Data

Soil model : Generated P-Y curves for static loads

DOTI	model . o	JIICI a cc	<i>a</i> 1 1 Cu1	VCD IOI C	reacie io	aab							
No.	Level	Type	Unit wt	E50	$c_{\mathbf{u}}$ top	dC _u /dz	ĸ ₀	K ₁	Phi	qur	$\alpha_{\mathtt{r}}$	k_{rm}	Eir
	[m]		[kN/m³]		[kN/m²]	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]
1	38.210000	Sand	20.000	_	-	-	0.41000	33930.	36.000	-	-	-	-
		(Reese et al.)											
2	38.000000		21.000	0.010000	75.000	0.0	-	_	-	-	-	-	-
3	36.100000		21.000	0.010000	85.000	0.0	-	-	-	-	-	-	-
4	35.200000		21.000	0.010000	125.00	0.0	-	-	-	-	-	-	-
5	33.200000	Stiff	21.000	0.010000	140.00	0.0	-	-	-	-	-	-	-
6	32.200000	Clay Stiff Clay	21.000	0.010000	150.00	0.0	-	-	-	-	-	-	-
7	31.700000	Sand	21.000	-	_	-	0.40000	33930.	37.000	-	-	-	-
		(Reese et al.)											
8	31.200000	Stiff Clay	21.000	0.010000	100.00	0.0	-	-	-	-	-	-	-
9	29.500000	Stiff Clay	21.000	0.010000	220.50	0.0	-	-	-	-	-	-	-

Sections

Oasys

HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0004

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.		Sheet	No.	R	ev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

No.	Level	Type Unit wt	E50	$c_{ m u}$ top	dC _u /dz	κ_0	K ₁	Phi	q_{ur}	$\alpha_{\mathtt{r}}$	k_{rm}	Eir
	[m]	[kN/m³]		$[kN/m^2]$	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]

Name	Input Type	Description	Material	Class	Effective Width	EI
					[m]	[kNm²]
406.4 x	Wizard	STD%CHS%405.6%19.6	Steel		0.40691	88763.
20mm	Generated					
355.6 x	Wizard	STD%CHS%354.8%9.6	Steel		0.35594	31039.

Pile Properties

10mm

Level Section
[m]
38.990 406.4 x 20mm
36.990 355.6 x 10mm

Generated

Pile base at 29.990000 m

Applied Loads and Displacements

No. Level Force Moment Displacement [m] [kN] [kNm] [mm] 1 38.990 40.000 0.0 0.0

Restraints

 $\begin{tabular}{lll} No. & Node & Lateral & Rotational \\ & Stiffness & Stiffness \\ & [kN/m] & [kNm/rad] \\ 1 & 1 & 0.0 & 10000. \end{tabular}$

Geometry and Initial state

Node	Level	Soil	EI	Effective	Water	Soil
				Width	Pressure	
	[m]		[kNm2]	[m]	[kN/m²]	[mm]
1	38.990	0	88763.	0.40691	0.0	0.0
2	38.886	0	88763.	0.40691	0.0	0.0
3	38.782	0	88763.	0.40691	0.0	0.0
4	38.678	0	88763.	0.40691	0.0	0.0
5	38.574	0	88763.	0.40691	0.0	0.0
6	38.470	0	88763.	0.40691	0.0	0.0
7	38.366	0	88763.	0.40691	0.0	0.0
8	38.262	0	88763.	0.40691	0.0	0.0
9	38.158	1	88763.	0.40691	0.52000	0.0
10	38.052	1	88763.	0.40691	1.5800	0.0
11	37.948	2	88763.	0.40691	2.6200	0.0
12	37.828	2	88763.	0.40691	3.8175	0.0
13	37.709	2	88763.	0.40691	5.0150	0.0
14	37.589	2	88763.	0.40691	6.2125	0.0
15	37.469	2	88763.	0.40691	7.4100	0.0
16	37.349	2	88763.	0.40691	8.6075	0.0
17	37.230	2	88763.	0.40691	9.8050	0.0
18	37.110	2	88763.	0.40691	11.003	0.0
19	36.990	2	31039.	0.35594	12.200	0.0
20	36.853	2	31039.	0.35594	13.569	0.0
21	36.716	2	31039.	0.35594	14.938	0.0
22	36.579	2	31039.	0.35594	16.308	0.0
23	36.442	2	31039.	0.35594	17.677	0.0
24	36.305	2	31039.	0.35594	19.046	0.0
25	36.168	2	31039.	0.35594	20.415	0.0
26	36.032	3	31039.	0.35594	21.785	0.0
27	35.876	3	31039.	0.35594	23.338	0.0
28	35.721	3	31039.	0.35594	24.890	0.0
29	35.566	3	31039.	0.35594	26.443	0.0
30	35.410	3	31039.	0.35594	27.996	0.0
31	35.255	3	31039.	0.35594	29.549	0.0
32	35.145	4	31039.	0.35594	30.651	0.0
33	34.989	4	31039.	0.35594	32.211	0.0

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.		Sheet	No.	R	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

Lutoru	ai ioad ai	· · · · · · · · · · · · · · · · · · ·	(,			
Node	Level	Soil	EI	Effective	Water	Soil
	, .		F1.5- 0.5	Width	Pressur	_
	[m]		[kNm2]	[m]	[kN/m²]	[mm]
2.4	24 022		21020	0 25504	22 77	1 0 0
	34.833		31039.	0.35594	33.77	
	34.677		31039.	0.35594	35.33	
	34.521		31039.	0.35594	36.89	
	34.365		31039.	0.35594	38.45	
	34.209		31039.	0.35594	40.01	
	34.053		31039.	0.35594	41.57	
	33.897		31039.	0.35594	43.13	
	33.741		31039.	0.35594	44.69	
	33.585		31039.	0.35594	46.25	
	33.429		31039.	0.35594	47.81	
	33.273		31039.	0.35594	49.37	
	33.127		31039.	0.35594	50.82	
	32.981		31039.	0.35594	52.28	
	32.835		31039.	0.35594	53.74	6 0.0
	32.690		31039.	0.35594	55.20	5 0.0
49	32.544	5	31039.	0.35594	56.66	3 0.0
50	32.398	5	31039.	0.35594	58.12	2 0.0
51	32.252	5	31039.	0.35594	59.58	0.0
52	32.148	6	31039.	0.35594	60.62	0.0
53	32.020) 6	31039.	0.35594	61.90	0.0
54	31.892		31039.	0.35594	63.18	
55	31.764	6	31039.	0.35594	64.46	0.0
56	31.636	5 7	31039.	0.35594	65.74	0.0
57	31.508		31039.	0.35594	67.02	0.0
58	31.380		31039.	0.35594	68.30	0.0
59	31.252	2 7	31039.	0.35594	69.58	0.0
60	31.148	8	31039.	0.35594	70.62	0.0
61	31.003		31039.	0.35594	72.06	8 0.0
62	30.858	8	31039.	0.35594	73.51	5 0.0
	30.714		31039.	0.35594	74.96	
	30.569		31039.	0.35594	76.41	
	30.424		31039.	0.35594	77.85	
	30.279		31039.	0.35594	79.30	
	30.135		31039.	0.35594	80.75	
	29.990		31039.	0.35594	82.20	
			P-y curv		0	
Node		Y1	P2	¥2	P3	Y3
	[kN/m]		[kN/m]		[kN/m]	[mm]
9				0.26388		
10				0.29142	2.7975	
11				2.0345	36.750	
12					38.622	
13					40.494	
14					42.366	
15					44.238	
16					46.109	
17					47.981	
18					49.853	
19					47.293	
20					49.395	
21					51.497	
22					53.598	
23					55.700 8	
24					57.802	
25					59.904	
26					69.710 8	
27					72.371	
28					75.032 8	
29					77.693	
30					80.354	
31					83.015	
32					87.843	
33					89.889	
34		0.0	53.764	1.7797	91.935	8.8986
35	0.0	0.0	54.961	1.7797	93.982	8.8986
36	0.0	0.0			96.028	
37		0.0			98.075	
38					100.12	
39					102.17	
40					104.21	
					106.26	
41						

M1 Junction 23-25a

Lateral load analysis (40kN)

 Job No.	:	Sheet	No.	F	Rev.	
233630						
Drg. Ref.						
Made by MC	Date 06-Oct-2023		Checked	Date		

Node	P1	Y1	P2	¥2	Р3	¥3
-10ue	[kN/m]		kN/m]	[mm]	[kN/m]	[mm]
	[1274/111]	[111111]	/ 111]	[111111]	[1214/111]	Lituit
42	0.0	0.0	63.338	1.7797		8.8986
43	0.0	0.0	64.535	1.7797		8.8986
44	0.0	0.0	65.732	1.7797		8.8986
45	0.0		74.177	1.7797		8.8986
46 47	0.0		75.410	1.7797		8.8986 8.8986
48	0.0	0.0	77.877	1.7797		7 8.8986
49	0.0		79.110	1.7797		8.8986
50	0.0	0.0	80.343	1.7797	137.38	8.8986
51	0.0		81.576	1.7797		8.8986
52	0.0	0.0	87.851	1.7797		8.8986
53 54	0.0	0.0	89.000 90.149	1.7797		8.8986 8.8986
55	0.0	0.0	91.298	1.7797		8.8986
56	0.0		71.511			1.7235
57	0.0		72.914			2 1.7236
58	0.0	0.0	74.316	0.32069	206.61	1.7236
59	0.0		75.719			1.7236
60	0.0	0.0	66.908	1.7797		8.8986
61	0.0	0.0	66.908	1.7797		8.8986
62 63	0.0	0.0	66.908	1.7797		8.8986 8.8986
64	0.0	0.0	66.908	1.7797		L 8.8986
65	0.0	0.0	66.908	1.7797		8.8986
66	0.0	0.0	66.908	1.7797		8.8986
67	0.0	0.0	66.908	1.7797	114.41	8.8986
68	0.0	0.0	66.908	1.7797		8.8986
Node	P4	Y4	P5	¥5	P6	Y6
0	[kN/m]	[mm]	[kN/m]	[mm]	[kN/m]	[mm]
			1.2581 4.1383			
			73.501			
			77.244			
			80.988			
			84.732			
			88.475			
			92.219			
			95.962			
			99.706 94.586			
			98.789			
			102.99			
			107.20			
			111.40			
			115.60			
			119.81			
			139.42 144.74			
			150.06			
			155.39			
			160.71			
			166.03			
32	126.49	26.696	175.69	71.189	175.69	889.86
			179.78			
			183.87			
			187.96			
			192.06			
			196.15 200.24			
			200.24			
			208.43			
			212.52			
4.0			216.61			
	158.91		220.71			
43		26.696				
43 44	161.86				253.68	889.86
43 44 45	182.65	26.696				222 06
43 44 45 46	182.65 185.69	26.696 26.696	257.90	71.189	257.90	
43 44 45 46 47	182.65 185.69 188.72	26.696 26.696 26.696	257.90 262.12	71.189 71.189	257.90 262.12	889.86
43 44 45 46 47 48	182.65 185.69 188.72 191.76	26.696 26.696 26.696 26.696	257.90	71.189 71.189 71.189	257.90 262.12 266.33	889.86 889.86
43 44 45 46 47 48	182.65 185.69 188.72 191.76 194.80	26.696 26.696 26.696 26.696	257.90 262.12 266.33	71.189 71.189 71.189 71.189	257.90 262.12 266.33 270.55	889.86 889.86 889.86

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.	;	Sheet No.	Rev.
233630			
Drg. Ref.			
Made by	Date	Checked	Date

Node	P4	Y4	P5	Y 5	P6	Y6
	[kN/m]	[mm]	[kN/m]	[mm]	[kN/m]	[mm]
5	1 200.87	26.696	278.99	71.189	278.99	889.86
5	2 216.32	26.696	300.45	71.189	300.45	889.86
5	3 219.15	26.696	304.38	71.189	304.38	889.86
5	4 221.98	26.696	308.31	71.189	308.31	889.86
5	5 224.81	26.696	312.23	71.189	312.23	889.86
5	6 285.59	3.1265	421.57	5.9324	741.97	13.348
5	7 291.17	3.1265	429.81	5.9324	756.46	13.348
5	8 296.75	3.1265	438.04	5.9324	770.95	13.348
5	9 302.33	3.1266	446.27	5.9324	785.44	13.348
6	0 164.75	26.696	228.82	71.189	228.82	889.86
6	1 164.75	26.696	228.82	71.189	228.82	889.86
6	2 164.75	26.696	228.82	71.189	228.82	889.86
6	3 164.75	26.696	228.82	71.189	228.82	889.86
6	4 164.75	26.696	228.82	71.189	228.82	889.86
6	5 164.75	26.696	228.82	71.189	228.82	889.86
6	6 164.75	26.696	228.82	71.189	228.82	889.86
6	7 164.75	26.696	228.82	71.189	228.82	889.86
6	8 164.75	26.696	228.82	71.189	228.82	889.86

Output for load increment 1

Iteration	Max at	Disp	Pressure
	Inc node	error	error
	Disp		
	[mm]	[mm]	[kN/m²]
17	11.43 1	0.0007	0.01

- The file is not completely converged till the specified tolerance limit.

							tolerance i	. IIIII L •
Node	Level	Defl	Rotation	Soil		_	Shear	
	[m]	[mm]	[rad]		[kN/m²]	[kNm]	[kN]	
	38.990	-11.435	-0.0037912	0	0.0	0.0	0.0	
	38.990					-37.912	-52.000	
	38.886		-0.0038325	0	0.0	-32.504	-52.000	
	38.782		-0.0038674	0	0.0	-27.096	-52.000	
	38.678		-0.0038960	0	0.0	-21.688		
	38.574		-0.0039182	0	0.0	-16.280	-52.000	
	38.470		-0.0039341	0	0.0	-10.872	-52.000	
	38.366		-0.0039437	0	0.0	-5.4641	-52.000	
	38.262		-0.0039469	0		-0.056064	-52.000	
	38.158		-0.0039438	1		5.3519	-51.930	P
	38.052		-0.0039341	1				P
	37.948		-0.0039183	2				P
	37.828		-0.0038926	2		21.929		P
	37.709		-0.0038594	2		27.202	-42.070	P
14	37.589	-5.9714	-0.0038195	2		32.005	-38.115	P
15	37.469	-5.5167	-0.0037734	2		36.331	-34.103	P
	37.349		-0.0037218	2				P
17	37.230	-4.6255	-0.0036653	2	-84.546	43.525	-25.940	P
18	37.110	-4.1902	-0.0036047	2		46.385	-21.806	P
19	36.990	-3.7623	-0.0035405	2	-93.065	48.748	-17.606	P
20	36.853	-3.2925	-0.0033208	2	-93.398	50.868	-13.205	P
21	36.716	-2.8533	-0.0030931	2		52.364	-8.6464	P
22	36.579	-2.4457	-0.0028603	2	-93.909	53.235	-4.0754	P
23	36.442	-2.0702	-0.0026249	2	-94.165	53.480	0.50762	P
24	36.305	-1.7269	-0.0023899	2	-92.146	53.096	5.0477	
25	36.168	-1.4156	-0.0021579	2	-78.282	52.098	9.2008	
26	36.032	-1.1357	-0.0019315	3	-73.084	50.577	13.009	
27	35.876	-0.85507	-0.0016843	3	-57.127	48.261	16.488	
28	35.721	-0.61190	-0.0014499	3	-42.384	45.456	19.238	
29	35.566	-0.40399	-0.0012305	3	-28.975	42.286	21.211	
30	35.410	-0.22888	-0.0010275	3	-16.979	38.868	22.481	
31	35.255	-0.083950	-842.05E-6	3	-6.4336	35.304		
32	35.145	0.0020755	-721.37E-6	4	0.16831	32.743	23.250	
33	34.989	0.10225	-566.01E-6	4	8.4853	29.116	23.010	
34	34.833	0.17961	-428.70E-6	4		25.564	22.351	
35	34.677	0.23692	-308.91E-6	4	20.555	22.143	21.358	
36	34.521	0.27686	-205.88E-6	4	24.544	18.900	20.105	
37	34.365	0.30197	-118.62E-6	4	27.340	15.870	18.665	
38	34.209	0.31463	-45.998E-6	4	29.081	13.077	17.098	
39	34.053	0.31702	13.211E-6	4	29.901	10.535	15.461	
40	33.897	0.31114	60.292E-6	4	29.934	8.2527	13.800	

M1 Junction 23-25a

Lateral load analysis (40kN)

Job No.	;	Sheet	No.	F	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

Node	Level	Defl		Soil	Pressure [kN/m²]	Bending	Shear	
	[m]	[mm]	[rad]		[\(\text{VIN \) \(\text{III \) \(\text{III \) \(\text{III \) \(\text{III \) \(\text{III \) \(\text{III \) \(\text{III \) \(\text{III \) \(\text{III \) \(\text{III \) \(\text{III \) \(\text{III \) \\ \end{Equation}}	[kNm]	[kN]	
41	33.741	0.29877	96.547E-6	4	29.309	6.2296	12.155	
42	33.585	0.28151	123.27E-6	4	28.147	4.4603	10.560	
43	33.429	0.26075	141.70E-6	4	26.563	2.9349	9.0408	
44	33.273	0.23767	153.04E-6	4	24.662	1.6396	7.6409	
45	33.127	0.21492	158.20E-6	5	25.166	0.62182	6.3253	
46	32.981	0.19174	159.02E-6	5	22.825	-0.20543	5.0796	
47	32.835	0.16870	156.36E-6	5	20.411	-0.85987	3.9574	
48	32.690	0.14626	150.97E-6	5	17.981	-1.3598	2.9609	
49	32.544	0.12476	143.56E-6	5	15.580	-1.7235	2.0897	
50	32.398	0.10446	134.70E-6	5	13.248	-1.9693	1.3415	
51	32.252	0.085516	124.92E-6	5	11.012	-2.1148	0.75276	
52	32.148	0.072902	117.61E-6	6	10.110	-2.1677	0.29920	
53	32.020	0.058432	108.48E-6	6	8.2093	-2.1792	-0.096527	
54	31.892	0.045130	99.393E-6	6	6.4223	-2.1429	-0.42984	
55	31.764	0.032978	90.530E-6	6	4.7528	-2.0692	-0.68441	
	31.636	0.021939	82.024E-6	7	13.748	-1.9677	-1.1059	
57	31.508	0.011955	74.097E-6	7	7.6375	-1.7861	-1.5930	
58	31.380	0.0029340	67.008E-6	7	1.9102	-1.5599	-1.8105	
		-0.0052397	60.869E-6	7	-3.4753	-1.3226		
	31.148	-0.011342	56.574E-6	8	-1.1979	-1.1447		
	31.003	-0.019155	51.566E-6	8		-0.90477	-1.6054	
	30.858	-0.026322	47.636E-6	8	-2.7801	-0.67993	-1.4817	
	30.714	-0.032993	44.701E-6	8	-3.4847	-0.47582	-1.3203	
	30.569	-0.039306	42.652E-6	8	-4.1514	-0.29770	-1.1236	
	30.424	-0.045377	41.356E-6	8	-4.7927	-0.15055	-0.89316	
	30.279	-0.051307	40.657E-6	8		-0.039133	-0.63009	
-		-0.057168	40.379E-6	8		0.031865	-0.33494	
68	29.990	-0.063007	40.321E-6	8	-6.6548	0.057832	-0.0079522	

- The letter "P" next to a result indicates that the effective earth pressure is greater than 0.99 times the passive limit, but within the convergence pressure limit.

EXTREME values so far:-

Deflections		Rotat	Rotations		ts	Shears		
Min	Max	Min	Max	Min	Max	Min	Max	
[mm]	[mm]	[rad]	[rad]	[kNm]	[kNm]	[kN]	[kN]	
_11 /35	0 31702	-0 0030460	150 025-6	-37 912	53 /80	-52 000	23 250	

RESTRAINT FORCES

No. Node Lateral Moment force

[kN] [kNm] 1 1 0.0 37.912

TITLE;	HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0005	Notes	
Pile Gro	up Efficiency in accordance with Perko, Section 5.4	PRIMARY PILES	
Symbol			Units
P_{ug}	Ultimate capacity of the group = $q_{ult}(m_1)(m_2)+2Ts(n-1)(m_1+m_2)$	11374.00	kN
q _{ult}	ultimate bearing pressure of soil or rock	675.00	kN/m²
	soil type	cohesive	
	q_{ult} for non cohesive soil = $q'(N_q-1)$	529.07	kN/m²
	q _{ult} for cohesive soil = 9s _u	675.00	kN/m²
m ₁	width of pile group in plan view	4.2	m
m ₂	breadth of pile group in plan view		
Т	installation torque	115	kN/m³
S	spacing of helical bearing plates along the length of the shaft	:	
n	number of helical bearing plates per pile	5	
η	group efficiency of a helical pile system = $P_{ug}/\Sigma_i P_u$	1.32	
q'	effective overburden stress at bearing depth	27.85	kN/m ²
d	Embedment depth of group, i.e. bearing level for group (worst case s	3.4	m
γ	unit weight of soil	18	kN/m³
N_{q}	Bearing capacity factor	20	
ф	Angle of internal friction	30	•
Su	undrained shear strength	75	
i	number of piles in group	8	
Pu	Ultimate axial capacity of a helical pile	1076	kN

Group capacity exceeds sum of individual capacities so no issues related to group effects

APPENDIX B2: Design Calculation Sheets Stair Piles

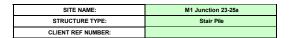
HELICAL PILE DESIGN

tor GEU limit state to Eurocode /: Geotechnical Design - Part 1: BS EN 1997-1:2004+A1:2013, BS EN 14199:2015 and BS8004:2015 secons www.screwfast.com

ph. +44 (0) 1727 735 550

SFF JOB No:	233630
JOB NAME:	NEAR
CLIENT:	BMJV

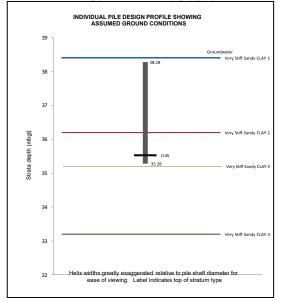
PILE DESIGN REF:	HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0006
LOAD REF:	See email from AP dated 14/11/23
SFF DRAWING REF:	
CLIENT GA DRAWING REF:	


SFF REV No:	00
DATE:	20/11/23
REVISION DESCRIPTION:	

LEVELS	
G.I. REF NUMBER:	G230600 Rev 001
G.I. DATUM (mAOD)	39.20
TOP OF PILE (mAOD)	38.28
GROUND LEVEL (G.L.) (mAOD)	38.40
GROUNDWATER DEPTH (mAOD) (See note)	38.40

NOTE: Groundwater depth: 2.4.6.1(6)P: When dealing with ground-water pressures for limit states with severe consequences (generally utilimate limit states), design values shall represent the most unfavourable values that could occur during the design lifetime of the structure. For limit states with less severe consequences (generally sevinceability intri states), design values shall be the most unfavourable values which could occur in normal circumstances. 2.4.6.1(11): Unless the adequacy of the drainage system can be demonstrated and its maintenance snarred, the design ground-water table should be taken as the maximum possible level, which may be the ground surface.

PILE GROUP FOUNDATIO	N DESIGN
RAKE ANGLE FROM VERTICAL (°)	0
ALTER PILE DESIGN TO ACCOUNT FOR RAKING	NO
MINIMUM PILE SPACING C/C (m)	0.9
PILES PER STRUCTURE	1
TOPOGRAPHY AT SITE	Embankment
MAXIMUM PILE PROJECTION ABOVE GROUND LEVEL (m)	-0.12
BRACING REQUIRED	NO
PILE POSITION SELECTED FROM GROUP FOR DESIGN:	Middle pile; average projection


PILE DETAILS									
Pile diameter at helix depth(s) (mm)	Wall thickness (mm)	Length (m)	Top (mAOD)	Bottom (mAOD)					
114.3	10.00	3.00	38.28	35.28					
Surface Area A	A _s (m² per m)	0.36							
Helix plate	thickness	12mm							

	DESIGNER	COMMENTS				
NAME:	Michael Christie	Out - Piles				
DATE:	20/11/2023	Stair Piles				

	REVIEWED & CHECKED									
NAME:	Andrej Podpriatov	COMPANY (IF NOT SFF):								
DATE:	28/11/2023									
COMMENTS:										

N.B. Design profile does not show sloping topography

		-	GROUND COND	ITIONS USING CHARACTERIST	IC VALUES (_k) F	ROM GROUND	TEST RESULTS			
Strata description	Top of layer (mAOD)	Bottom of layer (mAOD)	Cumulative depth (mbgl)	Strata type for purposes of analysis	Unit weight ? (kN/m³)	Average SPT 'N' value	c _{u;k} (kPa)	Φ' _k (°)	α (see note)	Shaft resistance R _{s;k} (kN)
Very Stiff Sandy CLAY 1	38.40	36.20	2.20	Cohesive	21	15	75		0.80	47.40
Very Stiff Sandy CLAY 2	36.20	35.20	3.20	Cohesive	21	17	85		0.77	0.00
Very Stiff Sandy CLAY 3	35.20	33.20	5.20	Cohesive	21	25	125		0.68	0.00
Very Stiff Sandy CLAY 4	33.20	32.20	6.20	Cohesive	21	28	140		0.64	0.00
										0.00
										0.00
										0.00
										0.00
										0.00
NOTE: SPT 'N' value is used	NOTE: SPT 'N' value is used to calculate anticipated torque during installation; it is not used in pile capacity calculation					TOTAL SHAFT RESISTANCE $R_{s;k} = \Sigma A_s q_{s;k}$ (kN) 47.40				
NOTE: Refer to A.3.3.2 ar	nd A.3.3.3 if characte	ristic values of grour	nd strength are derive	ed from static load tests	NOT	E: Factored ground	conditions for M1 Ma	aterial Factors are sa	me as R _{s/s} value abov	ve since all factors = 1.0

	PARTIAL MATERIAL FACTORS FOR SOIL PARAMETERS (γ_M) (TABLE A.NA.4)											
	M1 SET M2 SET Reciprocal of M2 Set Most onerous factor for M2											
Angle of shearing resistance	γ,	1.00	1.25	0.80	0.80	NOTE: The value of the partial factor should be taken as the reciprocal of the specified value if such a reciprocal						
Effective cohesion	Y c'	1.00	1.25	0.80	0.80	value produces a more onerous effect than the specified value (Note to Table A.NA.4). The characteristic values						
Undrained shear strength	You	1.00	1.40	0.71	0.71	may have to be adjusted to upper values for the M2 situation as per 7.3.2.1(2)						
Unconfined strength	Υqu	1.00	1.40	0.71	0.71							

			FAC	TORED GROUND CONDITIONS	FOR M2 MATER	RIAL FACTORS	SET			
Strata description	Top of layer (mAOD)	Bottom of layer (mAOD)	Cumulative depth (mbgl)	Strata type for purposes of analysis	Unit weight Y (kN/m³)	Average 'N' value	c _{upd} (kPa)	Φ' _d	α (see note)	Shaft resistance R _{s;d} (kN)
Very Stiff Sandy CLAY 1	38.40	36.20	2.20	Cohesive	21	15	53.6		0.8	33.9
Very Stiff Sandy CLAY 2	36.20	35.20	3.20	Cohesive	21	17	60.7		0.8	16.8
Very Stiff Sandy CLAY 3	35.20	33.20	5.20	Cohesive	21	25	89.3		0.7	43.6
Very Stiff Sandy CLAY 4	33.20	32.20	6.20	Cohesive	21	28	100.0		0.6	23.0
· · · · · · · · · · · · · · · · · · ·	-				-		TOTAL SHAFT	RESISTANCE R	$R_{s;d} = \Sigma A_s q_{s;d} (kN)$	117.2

					BASE RESIS	TANCE FOR M1	MATERIAL FA	CTORS SET			
Helix Plate	Plate Area A _b	Helix Depth (m	Helix Depth z _h	Resista	nce in compress	ion (kN)	Resi	stance in tension	ı (kN)	Plate base resistance in	Plate base resistance in
Diameter (m)	(m²)	below top of pile)	(mAOD)	at z _h	at z _h -0.25m	at z _h -0.75m	at z _h	at z _h +0.25m	at z _h +0.75m	compression r _{b;k} (kN)	tension r _{b;k} (kN)
0.45	0.15	2.75	35.53	113.8	113.8	167.4	113.8	113.8	100.4	124.5	111.1
	NOTE: $A_b = A_{h_{BB} a^*} \cdot A_{b_1 a_2 a_3}$. For compression $rb \cdot k = (0.5 r_{b_1 k \cdot d} \cdot m) + (0.3 r_{b_2 k \cdot d} \cdot m_{2,0.25 a_3}) + (0.2 r_{b_2 k \cdot d} \cdot m_{2,0.25 a_3}) + (0.2 r_{b_2 k \cdot d} \cdot m_{2,0.25})$ For tension $rb \cdot k = (0.5 r_{b_2 k \cdot d} \cdot m) + (0.3 r_{b_2 k \cdot d} \cdot m_{2,0.25 a_3}) + (0.2 r_{b_2 k \cdot d} \cdot m_{2,0.25})$				BASE RESISTANCE Σrb;k = Rb;k (kN):			124.5	111.1		

					BASE RESIS	STANCE FOR M2	MATERIAL FA	CTORS SET			
Helix Plate	Plate Area A _b	Helix Depth (m	Helix Depth z _h	Resista	nce in compress	ion (kN)	Resis	stance in tension	n (kN)	Plate base resistance in	Plate base resistance in
Diameter (m)	(m²)	below top of pile)	(mAOD)	at z _h	at z _h -0.25m	at z _h -0.75m	at z _h	at z _h +0.25m	at z _h +0.75m	compression r _{b;k} (kN)	tension r _{b;k} (kN)
0.45	0.15	2.75	35.53	81.3	81.3	119.6	81.3	81.3	71.7	89.0	79.4
	NOTE: Ab = Aheix: -Ab;shaft. For compression $r_{0:k} = (0.5 r_{0:k} a_{2:h}) + (0.3 r_{0:k} a_{2:h}) + ($				BASE RESISTANCE Σr _{b;k} = R _{b;k} (kN):			89.0	79.4		

NOTE: CALCULATION OF PILE RESISTANCE:

Pile capacity (resistance) is calculated as the sum of the helix resistances, assuming each acts like an end-bearing face. The helix plates are spaced far enough apart along the shaft to ensure that the effect of interference between the bulbs of loaded soil can be ignored in accordance with Boussinesq's theory. The skin friction over the embedded length of the pile shaft is considered negligible and is ignored for the purposes of pile capacity.

All input values are based on measured, site specific values where such information is available. Otherwise the input data is estimated using values taken from published literature.

Minimum helix spacing (m):	Single helix only
Distance between lowest helix and end of pile (m)	0.25

	PARTIAL RESISTANCE FACTORS (γ _R) FOR DRIVEN PILES FOR THE GEO LIMIT STATE (TABLE A.NA.6)										
		R1	R4 without	R4 with	DO YOU HAVE "EXPLICIT VERIFICATION OF SLS" FOR R4?	APPLICABLE R4 FACTORS					
SHAFT IN COMPRESSION	Y s	1.0	1.5	1.3	NOTE: The lower values in R4 may be adopted (a) if serviceability is verified by load tests (prelimina	1.5					
SHAFT IN TENSION	Y s;t	1.0	2.0	1.7		ore than 1% of the construction piles to loads not less than 1.5 times the representative load for which d, or (b) if settlement is explicitly predicted by a means no less reliable than in (a), or (c) if settlement at					
BASE	Y _b	1.0	1.7	1.5	the serviceability limit state is of no concern. (Note A to Table A.NA.6)						
BASE IN TENSION	Y _{b,t}	1.3	2.2	2.0	IOTE: EC7 does not have a γ_{01} factor since the base resistance does not contribute to tensile resistance in 'normal' pile design. The γ_{01} factor is therefore a ScrewFast addition to account for the fact that the soil will provide less resistance to a tensile load on the helix plates than to the same load in compression.		2.2				
MODEL FACTOR	TOR NOTE: The value of the model factor should be 1.4, except that it may be reduced to 1.2 if the resistance is verified by a maintained load test taken to the calculated, unfactored ultimate resistance. (A.3.3.2)										

PILE DESIGN ACTIONS (kN)											
					A1	SET		A2	SET		
CHARACTERISTIC DESIGN ACTIONS (kN) Permanent = G_k , Variable = Q_k		i.e. promotes stability (favourable) or instability (unfavourable)	PARTIAL FACTOR Y _G or Y _Q	FACTORED ACTIONS G _k ·γ _G & Q _k ·γ _Q	DESIGN ACTIONS $F_{c;d} = G_k.\gamma_G + Q_k.\gamma_Q$	PARTIAL FACTOR Y _G or Y _Q	FACTORED ACTIONS G _k ·γ _G & Q _k ·γ _Q	DESIGN ACTIONS $F_{c;d} = G_k.\gamma_G + Q_k.\gamma_Q$			
0040050000	PERMANENT	5 UNFAVOURABLE 1.20 6		6.0	12.8	1.00	5.0	10.8			
COMPRESSION:	VARIABLE	5	UNFAVOURABLE	1.35	6.8	12.0	1.15	5.8	10.8		
	PERMANENT			1.20	0.0		1.00	0.0	0.0		
TENSION:	VARIABLE			1.55	0.0	0.0	0.00	0.0			
NOTE: Refer to drawing re	NOTE: Refer to drawing referenced above for pile design load derivation and pile key plan. Partial factors from BS EN 1990:2002 as referenced in Table A.NA.3. Refer to A.NA.3 if actions relate to water level as factors may not be appropriate.										

	DESIGN APPROACH 1, COMBINATION 1: A1 + M1 + R1											
	A1	M1	R1	DESIGN CHECK								
	$F_d = G_k \cdot \gamma_G + Q_k \cdot \gamma_Q$	R _{bjk}	$F_d \le R_d$									
COMPRESSION	12.8	124.5	89.0	Difference = 76.2								
COMPRESSION	12.0	124.5	05.0	DESIGN OK								
TENSION	0.0	111.1	61.1									
TENSION	0.0	111.3	01.1	DESIGN OK								

The critical design case is
Design Approach 1, Combination 2
A2 + M2 + R4

DESIGN APPROACH 1, COMBINATION 2: A2 + (M1 or M2) + R4							
	$F_d = G_k \cdot \gamma_G + Q_k \cdot \gamma_Q$	R	b;k	$R_d = R_{b;k}/\gamma_b/\gamma_{Rd}$		DESIGN CHECK FOR M1	DESIGN CHECK FOR M2
	A2	M1	M2	R4 for M1	R4 for M2	$F_d \le R_d$	$F_d \leq R_d$
COMPRESSION	10.8	124.5	89.0	52.3	37.4	Difference = 41.5 DESIGN OK	Difference = 26.6 DESIGN OK
TENSION	0.0	111.1	79.4	35.9	25.7	NO TENSILE ACTION	DESIGN OK

NOTE: The M2 situation covers unfavourable actions on piles e.g. negative skin friction. 7.3.2.1(2) states that: "for these situations, the design values of the strength and stiffness of the moving ground should usually be upper values".

INSTALLATION TORQUE				
MINIMUM (kNm)	5			
DESIGN (kNm)	11			
MAXIMUM (kNm)	32			

PILE HEAD SETTLEMENT PREDICTION AT THE SLS					
PREDICTED PILE HEAD SETTLEMENT (mm)	< 10				
NOTE: Pile settlement predictions are based on simplified methods as outlined in Pile Design and Construction Practice (Tomlinson and Woodward, 2006, F satisfies the provision of EC7 SLS design. Actual pile head settlement at the SLS is dependent on external construction factors which are outsi					

STEEL CORROSION PROTECTION							
ENVIRONMENT	Soils/Rock	LOCAL CONDITIONS Non-compacted and non-aggressive fills (clay, schist, sand, silt,) DESIGN LIFE 30 years					
THICKNESS OF GALVANISING REQUIRED TO 2mbgl 85 µm ADDITIONAL PROTECTION REQUIRED G2b ground section to SHW Series 1900							

SECTION RELEVANT T	O CHECK:	2nd	OUTSIDE DIA	METER (mm)	113.5	WALL THICK	(NESS (mm)	9.6	Dimensions used reflect de	esign life
BU	CKLING RESISTAN	NCE OF PILE SHAFT SECTION,	N _{b,Rd}			COMBIN	ED ACTION OF	BENDING MOM	ENT AND AXIAL FORCE	
		A = CROSS SECTIONA	AL AREA (mm²) =	3126				W _{pl.y} = PLAS	FIC SECTION MODULUS (cm ³) =	103.66
		I = SECOND MOMENT C	OF AREA (mm4) =	4252464					F _y = STEEL GRADE (N/mm ²) =	355
		i = RADIUS OF G	YRATION (mm) =	37			γ _{MO} = PARTIAL SAFETY FACTOR =		1.00	
		F _y = STEEL G	GRADE (N/mm²) =	355			M _{pl,Rd} = BENDING MOMENT RESISTANCE =		36.80	
$N_{b,R_d} = \frac{\chi A F_{y}}{\chi}$		γ _{M1} = PARTIAL SA	FETY FACTOR =	1] $=$			N _{pl,Rd} = AXIAL RESISTANCE =	1109.75	
$\gamma_{b,R_d} - \gamma_{M1}$		ESTIMATED PILE	FIXITY POINT =	3.00			M _{Ed} * = U	JLS BENDING MOMENT (kNm) =	0.64	
		L_{eff} = EFFECTIVE LENGTH OF THE SECTION = 6.00 $M_{\text{Ed}} \leq M_{N,\text{Rd}}$		IVI _{N,Rd}	N _{Ed} ** = ULS AXIAL FORCE (kN) =		14.25			
		λ = NON-DIMENSIONAL	SLENDERNESS	2.129					$n = N_{ed} / N_{pl,Rd}$	0.01
		Φ = 0	$0.5[1+\alpha(\lambda-0.2)+\lambda^2] =$	3.240					$M_{N,Rd} = M_{pl,Rd} (1 - n^{1.7})$	36.78
	χ = RED	UCTION FACTOR FOR THE BU	CKLING MODE =	0.176						
			N _{b,Rd} =	195.33						
		N _{Ed} = ULS COMPRESSIO	N FORCE (kN) =	14	1					
BUCKLING RESISTAN	CE CHECK	$N_{Ed}/N_{b,Rd} \le 1$	0.073	OK	MOMENT A	AND AXIAL FOR	CE CHECK		$M_{Ed} \le M_{N,Rd}$	OK

GRILLAGE REQUIRED?			No		
PILE CONNECTION TYPE REQUIRED:			A-Section		
INFO	DRMATION FROM	ELECTIONS AB	OVE		
Helix co	nfiguration				
Helix Plate Diameter (m)	Helix Depth (m below top of pile)	CHS dimen		114.3 x 10	
0.45	2.75	Distance between lowest helix and end of pile (m)		0.25	

	PILE SECTION SELECTION						
CHS dimensions (mm)		SFF PILE SECTION	HELIX DEPTHS	BASE OF SECTION			
Diameter	Wall	SFF PILE SECTION	(m below top of pile)	(m below top of pile)			
139.7	10.0	A1M (GALV)	(Plain section)	1			
114.3	10.0	E2M 450 (GALV)	2.75	3			
1							
1							
		Sum of section leng	ths = total pile length	OKAY			
Checks		I owest helix to toe distance	matches toe section selected	OKAY			

INSTALLATION NOTES
Stop immediately if a void is encountered and contact project manager.
2) Ensure all buried services are detected and isolated prior to piling
3) BH1904N used to formulate the ground model

smp alliance

APPENDIX B3: Design Calculation Sheets Secondary Piles

HELICAL PILE DESIGN

TOT GEU limit state to Eurocode /: Geotechnical Design - Part 1: BS EN 1997-1:2004+A1:2013, BS EN 14199:2015 and

SPECIAL TEMPLATE BS8004:2015 26/07/18

www.screwfast.com

ph. +44 (0) 1727 735 550

SFF JOB No:	233630
JOB NAME:	NEAR
CLIENT:	ВМЈУ

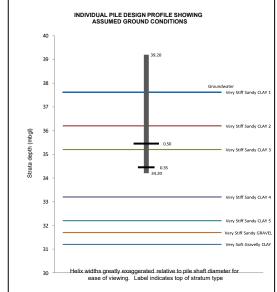
PILE DESIGN REF:	HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0007
LOAD REF:	See AP email dated 14/11/23
SFF DRAWING REF:	
CLIENT GA DRAWING REF:	

SFF REV No:	00
DATE:	21/11/23
REVISION DESCRIPTION:	

LEVELS				
G.I. REF NUMBER:	G230600 Rev 001			
G.I. DATUM (mAOD)	39.20			
TOP OF PILE (mAOD)	39.20			
GROUND LEVEL (G.L.) (mAOD)	37.61			
GROUNDWATER DEPTH (mAOD) (See note)	37.61			

NOTE: Groundwater depth: 2.4.6.1(6)P: When dealing with ground-water pressures for limit states with severe consequences (generally utilimate limit states), design values shall represent the most unfavourable values that could occur during the design lifetime of the structure. For limit states with less severe consequences (generally serviceability limit states), design values shall be the most unfavourable values which could occur in normal circumstances. 2.4.5.1(11): Unless the adequacy of the drainage system can be demonstrated and its maintenance enter, the design ground-water table should be taken as the maximum possible level, which now be the ground surface.

PILE GROUP FOUNDATION	N DESIGN			
RAKE ANGLE FROM VERTICAL (°)	0			
ALTER PILE DESIGN TO ACCOUNT FOR RAKING	NO			
MINIMUM PILE SPACING C/C (m)	1.2			
PILES PER STRUCTURE	4			
TOPOGRAPHY AT SITE	Embankment			
MAXIMUM PILE PROJECTION ABOVE GROUND LEVEL (m)	1.59			
BRACING REQUIRED	YES			
PILE POSITION SELECTED FROM GROUP FOR DESIGN:	Furthest down slope; greatest projection			


PILE DETAILS								
Pile diameter at helix depth(s) (mm)	Wall thickness (mm)	Length (m)	Top (mAOD)	Bottom (mAOD)				
114.3	10.00	5.00	39.20	34.20				
Surface Area A	A _s (m² per m)		0.36					
Helix plate	thickness		12mm					

SITE NAME:	M1 Junction 23-25a
STRUCTURE TYPE:	Secondary Piles
CLIENT REF NUMBER:	

	DESIGNER	COMMENTS
NAME:	Michael Christie	0
DATE:	21/11/2023	Secondary Piles

	REVIEWED & CHECKED						
NAME: Andrej Podpriatov COMPANY (IF NOT SFF):							
DATE:	28/11/2023						
COMMENTS:							

		-	GROUND COND	ITIONS USING CHARACTERIST	IC VALUES (k) F	ROM GROUND	TEST RESULTS			
Strata description	Top of layer (mAOD)	Bottom of layer (mAOD)	Cumulative depth (mbgl)	Strata type for purposes of analysis	Unit weight Y (kN/m³)	Average SPT 'N' value	c _{u;k} (kPa)	Φ' _k (°)	α (see note)	Shaft resistance R _{s;k} (kN)
Very Stiff Sandy CLAY 1	37.61	36.20	1.41	Cohesive	21	15	75		0.80	30.38
Very Stiff Sandy CLAY 2	36.20	35.20	2.41	Cohesive	21	17	85		0.77	23.50
Very Stiff Sandy CLAY 3	35.20	33.20	4.41	Cohesive	21	25	125		0.68	0.00
Very Stiff Sandy CLAY 4	33.20	32.20	5.41	Cohesive	21	28	140		0.64	0.00
Very Stiff Sandy CLAY 5	32.20	31.70	5.91	Cohesive	21	30	150		0.62	0.00
Very Stiff Sandy GRAVEL	31.70	31.20	6.41	Non-cohesive	21	61		37		0.00
Very Soft Gravelly CLAY	31.20	30.20	7.41	Cohesive	21	61	100		0.74	0.00
										0.00
										0.00
NOTE: SPT 'N' value is used to calculate anticipated torque during installation; it is not used in pile capacity calculation				TOTAL SHAFT RESISTANCE $R_{s;k} = \Sigma A_s q_{s;k}$ (kN) 53.88					53.88	
NOTE: Refer to A.3.3.2 ar	nd A.3.3.3 if character	ristic values of grour	nd strength are derive	d from static load tests	NOTE: Factored ground conditions for M1 Material Factors are same as R _{sk} value above since all factors = 1.0					

PARTIAL MATERIAL FACTORS FOR SOIL PARAMETERS (γ_{tt}) (TABLE A.NA.4)										
Angle of shearing resistance	γ,	1.00	1.25	0.80	0.80	NOTE: The value of the partial factor should be taken as the reciprocal of the specified value if such a reciprocal value produces a more onerous effect than the specified				
Effective cohesion	Effective cohesion γc' 1.00 1.25 0.80 0.80 Undrained shear strength γcu 1.00 1.40 0.71 0.71									
Undrained shear strength										
Unconfined strength	situation as per 7.3.2.1(2)									

	FACTORED GROUND CONDITIONS FOR M2 MATERIAL FACTORS SET									
Strata description	Top of layer (mAOD)	Bottom of layer (mAOD)	Cumulative depth (mbgl)	Strata type for purposes of analysis	Unit weight	Average 'N' value	c _{upd} (kPa)	Φ' _d	α (see note)	Shaft resistance R _{s;d} (kN)
Very Stiff Sandy CLAY 1	37.61	36.20	1.41	Cohesive	21	15	53.6		0.8	21.7
Very Stiff Sandy CLAY 2	36.20	35.20	2.41	Cohesive	21	17	60.7		0.8	16.8
Very Stiff Sandy CLAY 3	35.20	33.20	4.41	Cohesive	21	25	89.3		0.7	43.6
Very Stiff Sandy CLAY 4	33.20	32.20	5.41	Cohesive	21	28	100.0		0.6	23.0
Very Stiff Sandy CLAY 5	32.20	31.70	5.91	Cohesive	21	30	107.1		0.6	11.9
Very Stiff Sandy GRAVEL	31.70	31.20	6.41	Non-cohesive	21	61		31.1		6.7
Very Soft Gravelly CLAY	31.20	30.20	7.41	Cohesive	21	61	71.4		0.7	19.0
	Total shaft resistance $R_{\rm s,d}$ = $\Sigma A_{\rm s} Q_{\rm s,d}$ (kN)								142.7	

					BASE RESIS	TANCE FOR M1	MATERIAL FA	CTORS SET			
Helix Plate		Helix Depth (m below top of	Helix Depth z _h	Resista	nce in compress		Resi	stance in tension		Plate base resistance in	Plate base resistance in
Diameter (m)	(m²)	pile)	(mAOD)	at z _h	at z _h -0.25m	at z _h -0.75m	at z _h	at z _h +0.25m	at z _h +0.75m	compression r _{b;k} (kN)	tension r _{b;k} (kN)
0.50	0.19	3.75	35.45	142.4	142.4	209.3	142.4	142.4	125.6	155.8	139.0
0.35	0.09	4.75	34.45	96.7	96.7	96.7	96.7	96.7	65.8	96.7	90.5
		A _{b;shaft} . For compress r tension rb;k = (0.5.r _j					BASE RE	SISTANCE Trb;k	R _{b;k} (kN):	252.5	229.5

	BASE RESISTANCE FOR M2 MATERIAL FACTORS SET										
Helix Plate	Plate Area A _b	Helix Depth (m	Helix Depth z _h	Resista	nce in compress	sion (kN)	Resi	stance in tension	n (kN)	Plate base resistance in	Plate base resistance in tension r _{b;k} (kN)
Diameter (m)	(m²)	below top of pile)	(mAOD)	at z _h	at z _h -0.25m	at z _h -0.75m	at z _h	at z _h +0.25m	at z _h +0.75m	compression r _{b;k} (kN)	
0.50	0.19	3.75	35.45	101.7	101.7	149.5	101.7	101.7	89.7	111.3	99.3
0.35	0.09	4.75	34.45	69.1	69.1	69.1	69.1	69.1	47.0	69.1	64.6
	NOTE: Ab = Ahelix -	Ab;shaft. For compro					BASE RE	SISTANCE Erb;k	= R _{b;k} (kN):	180.3	163.9

NOTE: CALCULATION OF PILE RESISTANCE:

Pile capacity (resistance) is calculated as the sum of the helix resistances, assuming each acts like an end-bearing face. The helix plates are spaced far enough apart along the shaft to ensure that the effect of interference between the bulbs of loaded soil can be ignored in accordance with Boussinesq's theory. The skin friction over the embedded length of the pile shaft is considered negligible and is ignored for the purposes of pile capacity.

All input values are based on measured, site specific values where such information is available. Otherwise the input data is estimated using values taken from published literature.

Minimum helix spacing (m):	1
Distance between lowest helix and end of pile (m)	0.25

	PARTIAL RESISTANCE FACTORS (γ _k) FOR DRIVEN PILES FOR THE GEO LIMIT STATE (TABLE A.NA.6)									
	R1 R4 without. R4 with DO YOU HAVE "EXPLICIT VERIFICATION OF SLS" FOR R4? NO									
SHAFT IN COMPRESSION	Y s	1.0	1.5	1.3		NOTE: The lower values in R4 may be adopted (a) if serviceability is verified by load tests (preliminary and/or working)				
SHAFT IN TENSION	Y s;t	1.0	2.0	1.7	carried out on more than 1% of the construction piles to loads not less than 1.5 times the representative are designed, or (b) if settlement is explicitly predicted by a means no less reliable than in (a), or	2.0				
BASE	Y _b	1.0	1.7	1.5	the serviceability limit state is of no concern. (Note A to Table A.NA.6)					
BASE IN TENSION	Y _{b,t}	1.3	2.2	2.0	NOTE: EC7 does not have a $\gamma_{0.1}$ factor since the base resistance does not contribute to tensilie resistant design. The $\gamma_{0.1}$ factor is therefore a ScrewFast addition to account for the fact that the soil will provid to a tensile load on the helix plates than to the same load in compression.	2.2				
MODEL FACTOR The NOTE: The value of the model factor should be 1.4, except that it may be reduced to 1.2 if the resistance is verified by a maintained load test taken to the calculated, unfactored ultimate resistance. (A.3.2)										

PILE DESIGN ACTIONS (kN)										
			FAVOURABILITY		A1 SET			A2 SET		
CHARACTERISTIC DESIGN ACTIONS (kN) $Permanent = G_k, Variable = Q_k$		i.e. promotes stability (favourable) or instability (unfavourable)	PARTIAL FACTOR γ _G or γ _Q	FACTORED ACTIONS G _k ·γ _G & Q _k ·γ _Q	DESIGN ACTIONS $F_{c;d} = G_k.\gamma_G + Q_k.\gamma_Q$	PARTIAL FACTOR Y _G or Y _Q	FACTORED ACTIONS G _k ·γ _G & Q _k ·γ _Q	DESIGN ACTIONS $F_{c;d} = G_k.\gamma_G + Q_k.\gamma_Q$		
004400500000	PERMANENT	20	UNFAVOURABLE	1.20	24.0	54.0	1.00	20.0	40.0	
COMPRESSION:	VARIABLE	20	UNFAVOURABLE	1.35	27.0	51.0	1.15	23.0	43.0	
	PERMANENT			1.20	0.0		1.00	0.0		
TENSION:	VARIABLE			1.35	0.0	0.0	1.15	0.0	0.0	
NOTE: Refer to drawing referenced above for pile design load derivation and pile key plan. Partial factors from BS EN 1990-2002 as referenced in Table A.N.A.3. Refer to A.N.A.3 if actions relate to water level as factors may not be appropriate.										

	DESIGN APPROACH 1, COMBINATION 1: A1 + M1 + R1								
	A1	M1	R1	DESIGN CHECK					
	$F_d = G_k \cdot \gamma_G + Q_k \cdot \gamma_Q$	R _{b,k}	$R_{c;d} = R_{b;k}/\gamma_b/\gamma_{Rd}$	F _d ≤ R _d					
COMPRESSION	51.0	252.5	180.3	Difference = 129.3					
COMPRESSION	51.0	202.0	100.3	DESIGN OK					
TENSION	0.0	229.5	126.1						
IENSION	0.0	229.5	126.1	DESIGN OK					

The critical design case is
Design Approach 1, Combination 2
A2 + M2 + R4

DESIGN APPROACH 1, COMBINATION 2: A2 + (M1 or M2) + R4								
	$F_d = G_k \cdot \gamma_G + Q_k \cdot \gamma_Q$	R _{b;k}		$R_d = R_{b;k}/\gamma_b/\gamma_{Rd}$		DESIGN CHECK FOR M1	DESIGN CHECK FOR M2	
	A2	M1	M2	R4 for M1	R4 for M2	F _d ≤ R _d	F _d ≤ R _d	
COMPRESSION	43.0	252.5	180.3	106.1	75.8	Difference = 63.1 DESIGN OK	Difference = 32.8 DESIGN OK	
TENSION	0.0	229.5	163.9	74.2	53.0	NO TENSILE ACTION	DESIGN OK	

NOTE: The M2 situation covers unfavourable actions on piles e.g. negative skin friction. 7.3.2.1(2) states that: "for these situations, the design values of the strength and stiffness of the moving ground should usually be upper values".

INSTALLATION TORQUE						
MINIMUM (kNm)	12					
DESIGN (kNm)	18					
MAXIMUM (kNm)	32					

PILE HEAD SETTLEMENT PREDICTION AT THE SLS	
PREDICTED PILE HEAD SETTLEMENT (mm)	< 10
NOTE: Pile settlement predictions are based on simplified methods as outlined in Pile Design and Construction Practice (Tomlinson and Woodward, 2006, P satisfies the provision of EC7 SLS design. Actual pile head settlement at the SLS is dependent on external construction factors which are outsi	

STEEL CORROSION PROTECTION								
ENVIRONMENT	ENVIRONMENT Soils/Rock LOCAL CONDITIONS Non-compacted and non-aggressive fills (clay, schist, sand, silt) DESIGN LIFE 30 years							
THICKNESS OF GALVANIS	THICKNESS OF GALVANISING REQUIRED TO 2mbgl 85 μm ADDITIONAL PROTECTION REQUIRED G2b ground section to SHW Series 1900							

NOTE: Refer to SFF pile drawings for full details of pile corrosion protection. Protection measures required are calculated in accordance with BS EN 1993-5:2007, BS EN ISO 14713 and advice from Kevin Davies of CorroCiv Ltd as appropriate.

SECTION RELEVANT T	O CHECK:	2nd	OUTSIDE DIAI	METER (mm)	113.5	WALL THICK	(NESS (mm)	9.6	Dimensions used reflect de	esign life
BUCKLING RESISTANCE OF PILE SHAFT SECTION, N _{b,Rd}					COMBIN	ED ACTION OF	BENDING MOM	ENT AND AXIAL FORCE		
		A = CROSS SECTIONA	L AREA (mm²) =	3126				W _{pl.y} = PLAST	IC SECTION MODULUS (cm3) =	103.66
$N_{b} = \frac{\chi A F_{y}}{2}$		I = SECOND MOMENT OF AREA (mm4) =							F _y = STEEL GRADE (N/mm ²) =	355
		i = RADIUS OF GYRATION (mm) =						Υмс	= PARTIAL SAFETY FACTOR =	1.00
		F _y = STEEL GRADE (N/mm ²) =					M _{c.} ,* = ULS BENDING MOMENT (kNm) =		DING MOMENT RESISTANCE =	36.80
		γ_{M1} = PARTIAL SAFETY FACTOR =							N _{pl,Rd} = AXIAL RESISTANCE =	1109.7
$\gamma_{b,R_d} - \gamma_{M1}$		ESTIMATED PILE FIXITY POINT =			М.				LS BENDING MOMENT (kNm) =	10.05
		L _{eff} = EFFECTIVE LENGTH OF THE SECTION =			M _{Ed} ≤	IVI _{N,Rd}			_{Ed} ** = ULS AXIAL FORCE (kN) =	57.00
		λ = NON-DIMENSIONAL SLENDERNESS					$n = N_{ed} / N_{pl,Rd}$	0.05		
		Φ = 0.	$.5[1+\alpha(\lambda-0.2)+\lambda^2] =$	3.240					$M_{N,Rd} = M_{pl,Rd} (1 - n^{1.7})$	36.56
	χ = RED	UCTION FACTOR FOR THE BUC	CKLING MODE =	0.176						
		N _{b,Rd} =								
		N _{Ed} = ULS COMPRESSION FORCE (kN) =		57						
BUCKLING RESISTANO	E CHECK	$N_{Ed}/N_{b,Rd} \le 1$	0.292	ОК	MOMENT	ND AXIAL FOR	CE CHECK		M _{Ed} ≤ M _{N,Rd}	ОК

NOTE: The above buckling check applies to cold rolled tube section. Hot formed tube section of the same size will have greater buckling resistance. Design compression force is sum of positive permanent and variable actions.

* ULS pile bending moment force as advised by Structural Engineer. ** ULS pile compression or tension force - whichever is greater - as advised by Structural Engineer.

GR	ILLAGE REQUIRE	D?	Y	es	
PILE CON	NECTION TYPE R	EQUIRED:	A-Section		
INFO	RMATION FROM	PILE DESIGN S	ELECTIONS AB	OVE	
Helix co	nfiguration				
Helix Plate Diameter (m)	Helix Depth (m below top of pile)	CHS dimen		114.3 x 10	
0.50	3.75	Distance between lowest helix and end of pile (m)		0.25	
0.35	4.75			0.25	

		PILE SECTIO	N SELECTION		
CHS dimensions (mm)		SFF PILE SECTION	HELIX DEPTHS	BASE OF SECTION	
Diameter	Wall		(m below top of pile)	(m below top of pile)	
139.7	10.0	A3M (GALV)	(Plain section)	3	
114.3	10.0	E2M 350/500 GALV	3.75 & 4.75	5	
Checks	Sum of section lengths = total pile length				OKAY
0.100.10		Lowest helix to toe distance i	natches toe section selected		OKAY

		IN	STALLATION NOTES	1	
1) Stop immediately	f a void is encou	ntered and conta	ct project manage	er.	
2) Ensure all buried	ervices are detec	ted and isolated	prior to piling		
3) BH1904N used to	ormulate the gro	und model			

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.	;	Sheet No.		R	Rev.	
233630						
Drg. Ref.						
Made by	Date 06-Oct-2023		Checked	Date		

Titles

Job No.: 233630

Job Title: HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0008

Sub-title: M1 Junction 23-25a

Calculation Heading: Lateral load analysis (5kN)

Initials: Checker:

Date Saved:

06-Oct-2023

Date Checked:

Notes: SLS Secondary Piles

File Name: HE614830-VAE-SGY-P015 S2 ALLGENR-CA-CB-0008.alw File Path: J:\2023\233630\6. Design\InternallyChecked\Secondary

Piles\ProjectNumbered

General Data

Number of increments = 1Increment applied loads only Standard analysis type $% \frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1$

Apply layered soil adjustments to P-Y curves: No

Convergence Control

Maximum number of iterations = 300

Maximum displacement error [mm] = 0.0010000 Maximum pressure error [kN/m²] = 0.10000 Damping coefficient = 1.0000

Maximum incremental deflection [m] = 2.0000

Partial Factors

Partial Factor Set	Variable Load	Permanent Load	Unit	Drained	Undrained	Shear
	(Rest./Dist.)	(Rest./Dist.)	Weight	Cohesion	Cohesion	Angle
SLS	1.000000/	1.000000/	1.000000	1.000000	1.000000	1.000000
	1.000000	1.000000				

Soil Data

Soil model : Generated P-Y curves for static loads

DOTI	model: Ge	JIICIACC	a i i cui	ACD TOT '	JUAUTU TO	aus							
No.	Level	Type	Unit wt	E50	$c_{\mathbf{u}}$ top	$dC_{\mathbf{u}}/d\mathbf{z}$	ĸ ₀	к ₁	Phi	qur	$\alpha_{\mathtt{r}}$	$\mathbf{k}_{\mathbf{rm}}$	$\mathtt{E_{ir}}$
	[m]		[kN/m³]		[kN/m²]	$[kN/m^2/m]$		[kN/m²/m]	[°]	[kPa]			[kPa]
1	38.430000	Sand	18.000	-	-	-	0.50000		30.000	-	-	-	-
		(Reese et al.)											
2	38.300000	Sand (Reese et al.)	20.000	-	-	-	0.41000	33930.	36.000	-	-	_	_
3	38.000000	Soft	21.000	0.010000	75.000	0.0	-	-	-	-	-	-	-
4	36.100000	Clay Soft Clay	21.000	0.010000	85.000	0.0	-	-	-	-	-	-	-
5	35.200000	Stiff	21.000	0.010000	125.00	0.0	-	_	-	-	-	-	-
6	33.200000	Clay Stiff Clay	21.000	0.010000	140.00	0.0	-	-	-	_	-	-	-
7	32.200000	Stiff	21.000	0.010000	150.00	0.0	-	-	-	-	-	-	-
8	31.700000	Clay Sand (Reese et al.)	21.000	-	-	-	0.40000	33930.	37.000	-	-	-	-

Sections

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.	;	Sheet	No.	R	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

No.	Level	Type	Unit wt	E50	Cu top	dC _u /dz	κ_0	K ₁	Phi	q_{ur}	$\alpha_{\mathtt{r}}$	k_{rm}	Eir	
	[m]		[kN/m³]		$[kN/m^2]$	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]	

Name	Input Type	Description	Material	Class	Effective Width	EI
					[m]	$[kNm^2]$
139.7 x	Wizard	STD%CHS%138.9%9.	6 Steel		0.13935	1638.9
10mm	Generated					
114.3 x	Wizard	STD%CHS%113.5%9.	6 Steel		0.11387	852.91
1 0mm	Cenerated					

Pile Properties

Level		Se	ection
[m]			
39.200	139.7	x	10mm
36.200	114.3	x	10mm

Pile base at 34.200000 m

Applied Loads and Displacements

No.		Level	Force	Moment	Displacement
		[m]	[kN]	[kNm]	[mm]
	1	39.200	5.0000	0.0	0.0

Restraints

No. Node Lateral Rotational Stiffness Stiffness [kN/m] [kNm/rad] 0.0 10000.

Geometry and Initial state Node Level Soil EI Effective Water Soil

Node	Level	Soil	EI	Effective	Water	Soil
				Width	Pressure	
	[m]		[kNm2]	[m]	[kN/m²]	[mm]
1	39.200	0	1638.9	0.13935	0.0	0.0
2	39.138	0	1638.9	0.13935	0.0	0.0
3		0	1638.9	0.13935	0.0	0.0
4	39.015	0	1638.9	0.13935	0.0	0.0
5	38.954	0	1638.9	0.13935	0.0	0.0
6	38.892	0	1638.9	0.13935	0.0	0.0
7	38.830	0	1638.9	0.13935	0.0	0.0
8	38.769	0	1638.9	0.13935	0.0	0.0
9	38.707	0	1638.9	0.13935	0.0	0.0
10	38.646	0	1638.9	0.13935	0.0	0.0
11	38.584	0	1638.9	0.13935	0.0	0.0
12	38.522	0	1638.9	0.13935	0.0	0.0
13	38.461	0	1638.9	0.13935	0.0	0.0
14	38.399	1	1638.9	0.13935	0.0	0.0
15	38.331	1	1638.9	0.13935	0.0	0.0
16	38.269	2	1638.9	0.13935	0.0	0.0
17		2	1638.9	0.13935	0.19624	0.0
18		2	1638.9	0.13935	0.98448	0.0
19		2	1638.9	0.13935	1.7727	0.0
20		3	1638.9	0.13935	2.4273	0.0
21	37.902	3	1638.9	0.13935	3.0818	0.0
22	37.836	3	1638.9	0.13935	3.7364	0.0
23		3	1638.9	0.13935	4.3909	0.0
24		3	1638.9	0.13935	5.0455	0.0
25		3	1638.9	0.13935	5.7000	0.0
26		3	1638.9	0.13935	6.3545	0.0
27		3	1638.9	0.13935	7.0091	0.0
28	37.444	3	1638.9	0.13935	7.6636	0.0
29	37.378	3	1638.9	0.13935	8.3182	0.0
30	37.313	3	1638.9	0.13935	8.9727	0.0
31	37.247	3	1638.9	0.13935	9.6273	0.0
32	37.182	3	1638.9	0.13935	10.282	0.0
33	37.116	3	1638.9	0.13935	10.936	0.0

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.		Sheet	No.	R	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

atera	ai ioad ar	iaiysis	(SKIV)			
Node	Level	Soil	EI	Effective		Soil
	[w-1		[]=N7 O 3	Width	Pressure	_
	[m]		[kNm2]	[m]	[kN/m²]	[mm]
34	37.051	3	1638.9	0.13935	11.591	L 0.0
	36.985		1638.9	0.13935	12.245	
	36.920		1638.9	0.13935	12.900	
	36.855		1638.9	0.13935	13.555	
	36.789		1638.9	0.13935	14.209	
	36.724		1638.9	0.13935	14.864	
	36.658		1638.9	0.13935	15.518	
	36.593		1638.9	0.13935	16.173	
	36.527		1638.9	0.13935	16.827	
	36.462		1638.9	0.13935	17.482	
	36.396		1638.9	0.13935	18.136 18.791	
	36.331 36.265		1638.9	0.13935 0.13935	19.445	
	36.200		852.91	0.13933	20.100	
	36.133		852.91	0.11387	20.767	
	36.067		852.91	0.11387	21.433	
	35.974		852.91	0.11387	22.357	
	35.882		852.91	0.11387	23.281	
	35.789		852.91	0.11387	24.205	
	35.697		852.91	0.11387	25.129	
54	35.605	4	852.91	0.11387	26.053	3 0.0
	35.512	4	852.91	0.11387	26.977	
	35.420		852.91	0.11387	27.901	
	35.327		852.91	0.11387	28.825	
	35.235		852.91	0.11387	29.749	
	35.165		852.91	0.11387	30.451	
	35.077		852.91	0.11387	31.328	
	34.989		852.91	0.11387	32.205	
	34.902		852.91 852.91	0.11387 0.11387	33.082 33.960	
	34.726		852.91	0.11387	34.837	
	34.639		852.91	0.11387	35.714	
	34.551		852.91	0.11387	36.591	
67	34.463	5	852.91	0.11387	37.468	0.0
68	34.375	5	852.91	0.11387	38.346	
	34.288		852.91	0.11387	39.223	
	34.200		852.91	0.11387	40.100	0.0
			P-y curv			***
Node	P1	Y1	P2 [kN/m]	Y2 [mm]	P3 [kN/m]	Y3
14	0.0			0.21968 ([mm] 174537
15	0.0			0.25405		
16	0.0			0.48747	3.2810 0	
17	0.0			0.53213	5.1990 0	
18	0.0			0.41528	5.7368 0	
19	0.0			0.23998	5.1775 0	
20	0.0			0.69674		3.4837
21	0.0	0.0	15.258	0.69674	26.090	3.4837
22	0.0	0.0	16.005	0.69674	27.367	3.4837
23	0.0			0.69674		3.4837
24	0.0			0.69674		3.4837
25	0.0			0.69674		3.4837
26	0.0			0.69674		3.4837
27	0.0			0.69674		3.4837
28	0.0			0.69674		3.4837
29	0.0			0.69674		3.4837
30	0.0			0.69674		3.4837
31	0.0			0.69674		3.4837
32	0.0			0.69674		3.4837
34	0.0			0.69674		3.4837
35	0.0			0.69674		3.4837
36	0.0			0.69674		3.4837
37	0.0			0.69674		3.4837
38	0.0			0.69674		3.4837
39	0.0			0.69674		3.4837
	0.0			0.69674		3.4837
40						3.4837
40		0.0	27.503	0.090/4		
	0.0			0.69674		3.4837
41	0.0	0.0	27.503		47.030	
41 42	0.0	0.0	27.503 27.503	0.69674	47.030 47.030	3.4837 3.4837 3.4837

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.		Sheet	No.	F	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

Latera	ii ioad ana	arysis (t	JKIN)				MC	06-Oct-2023	
Node	P1	Y1	P2	¥2	Р3	Y3			
1.00.0	[kN/m]				[kN/m]	[mm]			
	. , .								
45	0.0	0.0	27.503	0.69674	47.030	3.4837			
46	0.0	0.0	27.503	0.69674	47.030	3.4837			
47	0.0				38.430	2.8466			
48	0.0	0.0			38.430	2.8466			
49	0.0	0.0			43.554	2.8466			
50	0.0	0.0			43.554	2.8466			
51	0.0	0.0				2.8466			
52	0.0	0.0			43.554	2.8466			
53	0.0	0.0			43.554	2.8466			
54 55	0.0	0.0				2.8466			
56	0.0	0.0			43.554	2.8466			
57	0.0				43.554	2.8466			
58	0.0	0.0			43.554	2.8466			
59	0.0	0.0			64.049	2.8466			
60	0.0	0.0		0.56933	64.049	2.8466			
61	0.0	0.0			64.049	2.8466			
62	0.0	0.0	37.456	0.56933	64.049	2.8466			
63	0.0	0.0			64.049	2.8466			
64	0.0	0.0		0.56933	64.049	2.8466			
65	0.0					2.8466			
66	0.0	0.0			64.049	2.8466			
67	0.0					2.8466			
68	0.0	0.0				2.8466			
69 70	0.0	0.0		0.56933	64.049	2.8466			
Node	P4	Y4	27.436 P5	V.36933 Y5	P6	2.8466 Y6			
Node	[kN/m]	[mm]			[kN/m]	[mm]			
1.4				389 2.3225					
15	1.4248			149 2.3225		5.2255			
16	3.7184			597 2.3225		5.2255			
17	5.8225			414 2.3225		5.2255			
18	6.5830	1.368	7.80	019 2.3225	10.936	5.2255			
19	6.4040	1.281	.2 8.16	617 2.3225	12.321	5.2255			
20	35.730			625 27.870	49.625	348.37			
21	37.570			180 27.870		348.37			
22	39.409			735 27.870		348.37			
23	41.249			290 27.870		348.37			
24 25	43.088			345 27.870 400 27.870		348.37			
26	46.767			954 27.870		348.37			
27	48.607			509 27.870		348.37			
28	50.446			064 27.870		348.37			
29	52.286			619 27.870		348.37			
30	54.125			174 27.870		348.37			
31	55.965	10.45	1 77.7	729 27.870	77.729	348.37			
32	57.804	10.45	80.2	284 27.870	80.284	348.37			
33	59.644			339 27.870		348.37			
34	61.483			393 27.870		348.37			
35	63.323			948 27.870		348.37			
36	65.162			503 27.870		348.37			
37	67.002			058 27.870		348.37			
38	67.723 67.723			060 27.870 060 27.870		348.37 348.37			
40	67.723			060 27.870 060 27.870		348.37			
41	67.723			060 27.870		348.37			
42	67.723			060 27.870		348.37			
43	67.723			060 27.870		348.37			
44	67.723			060 27.870		348.37			
45	67.723			060 27.870		348.37			
46	67.723			060 27.870		348.37			
47	55.339			359 22.773	76.859	284.66			
48	55.339			359 22.773		284.66			
49	62.717			107 22.773		284.66			
50	62.717			107 22.773		284.66			
51	62.717			107 22.773		284.66			
52	62.717			107 22.773		284.66			
53	62.717			107 22.773		284.66			
54	62.717			107 22.773		284.66			
55	62.717			107 22.773		284.66			
56	62.717	8.535	צו א פי	107 22.773	ο 0/.1U/	284.66			

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.		Sheet	No.	F	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

Node	P4	Y4	P5	Y 5	P6	Y6
	[kN/m]	[mm]	[kN/m]	[mm]	[kN/m]	[mm]
57	62.717	8.5399	87.107	22.773	87.107	284.66
58	62.717	8.5399	87.107	22.773	87.107	284.66
59	92.231	8.5399	128.10	22.773	128.10	284.66
60	92.231	8.5399	128.10	22.773	128.10	284.66
61	92.231	8.5399	128.10	22.773	128.10	284.66
62	92.231	8.5399	128.10	22.773	128.10	284.66
63	92.231	8.5399	128.10	22.773	128.10	284.66
64	92.231	8.5399	128.10	22.773	128.10	284.66
65	92.231	8.5399	128.10	22.773	128.10	284.66
66	92.231	8.5399	128.10	22.773	128.10	284.66
67	92.231	8.5399	128.10	22.773	128.10	284.66
68	92.231	8.5399	128.10	22.773	128.10	284.66
69	92.231	8.5399	128.10	22.773	128.10	284.66
7.0	92.231	8.5399	128.10	22.773	128.10	284.66

Output for load increment 1

Iteration	Max at	Disp	Pressure
	Inc node	error	error
	Disp		
	[mm]	[mm]	[kN/m²]
6	2.11 1	0.0004	0.01

- The file is not completely converged till the specified tolerance limit.

							olerance iir	nıt.
Node	Level	Defl	Rotation	Soil	Pressure	-	Shear	
	[m]	[mm]	[rad]	•	[kN/m²]	[kNm]	[kN]	
	39.200	-2.1062	-414.99E-6	0	0.0	0.0	0.0	
	39.200					-4.1499	-5.0000	
	39.138		-565.18E-6	0	0.0	-3.8419		
	39.077		-703.79E-6	0	0.0	-3.5339	-5.0000	
	39.015		-830.83E-6	0	0.0	-3.2259	-5.0000	
5	38.954	-1.9347	-946.29E-6	0	0.0	-2.9179	-5.0000	
	38.892	-1.8731	-0.0010502	0	0.0	-2.6099	-5.0000	
7	38.830	-1.8056	-0.0011425	0	0.0	-2.3019	-5.0000	
8	38.769	-1.7326	-0.0012232	0	0.0	-1.9939		
9	38.707	-1.6551	-0.0012924	0	0.0	-1.6859	-5.0000	
10	38.646	-1.5737	-0.0013499	0	0.0	-1.3779	-5.0000	
11	38.584	-1.4890	-0.0013959	0	0.0	-1.0699	-5.0000	
12	38.522	-1.4019	-0.0014304	0	0.0	-0.76186	-5.0000	
13	38.461	-1.3130	-0.0014532	0	0.0	-0.45386	-5.0000	
14	38.399	-1.2231	-0.0014645	1	-2.7867	-0.14586	-4.9874	P
	38.331		-0.0014635	1	-9.7375	0.19442		P
	38.269		-0.0014505	2	-24.140	0.49543		P
	38.190		-0.0014179	2	-36.473	0.86199	-4.4501	P
	38.112		-0.0013684	2	-39.625	1.1970	-4.0321	P
	38.033		-0.0013036	2	-35.655	1.4977	-3.6353	P
	37.967		-0.0012392	3		1.7239		_
	37.902		-0.0011670	3	-85.262	1.8946	-2.2203	
	37.836		-0.0011070	3	-77.262	2.0145	-1.4791	
	37.771		-0.0010070	3	-69.031	2.0883	-0.81192	
	37.705		-922.95E-6	3	-60.724	2.1208	-0.22018	
	37.703		-838.33E-6	3	-52.484	2.1171	0.29610	
	37.575		-754.49E-6	3	-44.437	2.0820	0.73810	
	37.509		-672.57E-6	3	-36.692	2.0205	1.1081	
	37.444 37.378		-593.56E-6	3		1.9370		
			-518.23E-6		-22.457	1.8360	1.6454	
	37.313		-447.21E-6	3		1.7216		
	37.247		-380.94E-6	3	-10.308	1.5976		
	37.182		-319.76E-6	3	-5.1094	1.4674	2.0120	
			-263.83E-6		-0.51420	1.3342		
	37.051		-213.24E-6	3	3.4779	1.2006		
	36.985		-167.93E-6	3		1.0692		
	36.920		-127.80E-6	3	9.7088	0.94185		
	36.855		-92.636E-6	3	11.997	0.82030	1.8023	
	36.789		-62.186E-6	3		0.70591		
	36.724		-36.145E-6	3	14.460	0.59962		
	36.658		-14.177E-6	3	14.920	0.50195		
	36.593	0.052982		3	15.009	0.41320	1.2875	
42	36.527	0.052211	18.943E-6	3	14.790	0.33340	1.1516	
43	36.462	0.050568	30.807E-6	3	14.325	0.26244	1.0189	
44	36.396	0.048236	40.007E-6	3	13.664	0.20003	0.89121	

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.		Sheet	No.	R	ev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

Node	Level	Defl	Rotation	Soil	Pressure	-	Shear	
	[m]	[mm]	[rad]		[kN/m²]	[kNm]	[kN]	
45	36.331	0.045381	46.876E-6	3	12.856	0.14577	0.77027	
46	36.265	0.042144	51.729E-6	3	11.938	0.099193	0.65719	
47	36.200	0.038647	54.864E-6	3	13.398	0.059740	0.55236	
48	36.133	0.034865	58.146E-6	3	12.087	0.026275	0.45609	
49	36.067	0.030947	59.048E-6	4	12.159	-0.0010727	0.35516	
50	35.974	0.025548	57.311E-6	4	10.038	-0.028802	0.24730	
51	35.882	0.020432	53.093E-6	4	8.0278	-0.046774	0.15227	
52	35.789	0.015783	47.346E-6	4	6.2013	-0.056941	0.077412	
53	35.697	0.011707	40.819E-6	4	4.5995	-0.061080	0.020593	
54	35.605	0.0082465	34.081E-6	4	3.2400	-0.060747	-0.020648	
55	35.512	0.0054023	27.545E-6	4	2.1225	-0.057264	-0.048858	
56	35.420	0.0031414	21.492E-6	4	1.2342	-0.051718	-0.066517	
	35.327	0.0014102	16.100E-6	4	0.55408	-0.044972	-0.075924	
	35.235	142.88E-6	11.463E-6		0.056138	-0.037687	-0.079099	
		-553.36E-6	8.4680E-6		-0.31973	-0.032121	-0.077922	
		-0.0011544	5.3493E-6		-0.66699			
-		-0.0015110	2.8860E-6		-0.87306	-0.019287	-0.065463	
-		-0.0016779	1.0087E-6		-0.96945	-0.013927	-0.056261	
		-0.0017027				-0.0094163		
-		-0.0016259				-0.0057678	-0.036901	
		-0.0014799				-0.0029424		
		-0.0012899				-866.12E-6		
-		-0.0010745			-0.62084	557.09E-6		
		-846.24E-6			-0.48895		-0.0075811	
		-612.79E-6			-0.35406		-0.0033709	
70	34.200	-378.01E-6	-2.6780E-6	5	-0.21841	0.0020277	-511.89E-6	

- The letter "P" next to a result indicates that the effective earth pressure is greater than 0.99 times the passive limit, but within the convergence pressure limit.

EXTREME values so far:-

Deflections		Rotat:	ions	Momen	ts	Shears		
Min	Max	Min	Max	Min	Max	Min	Max	
[mm]	[mm]	[rad]	[rad]	[kNm]	[kNm]	[kN]	[kN]	
-2 1062	0.052982	-0 0014645	59 048E-6	-4.1499	2 1208	-5.0000	2 0377	

RESTRAINT FORCES

No. Node Lateral Moment force

[kN] [kNm] 1 1 0.0 4.1499

M1 Junction 23-25a Lateral load analysis (5kN)

Job No.	;	Sheet No.	R	lev.
233630				
Drg. Ref.				
Made by	Date 06-Oct-2023	Checked	Date	

Titles

Job No.: 233630

Job Title: HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0009

Sub-title: M1 Junction 23-25a

Calculation Heading: Lateral load analysis (5kN)

Initials:

Date Saved:

Checker:

06-Oct-2023

Date Checked:

Notes: DA1-1 Secondary Piles

HE614830-VAE-SGY-P015 S2 ALLGENR-CA-CB-0009.alw File Name: File Path: J:\2023\233630\6. Design\InternallyChecked\Secondary

Piles\ProjectNumbered

General Data

Number of increments = 1Increment applied loads only Standard analysis type

Apply layered soil adjustments to P-Y curves: No

Convergence Control

Maximum number of iterations = 300

Maximum displacement error [mm] = 0.0010000 Maximum pressure error [kN/m²] = 0.10000 Damping coefficient = 1.0000

Maximum incremental deflection [m] = 2.0000

Partial Factors

Partial Factor Set	Variable Load (Rest./Dist.)	Permanent Load (Rest./Dist.)	Unit Weight	Drained Cohesion	Undrained Cohesion	Shear Angle
BS EN 1997-1:2004	0.000000/	1.000000/	1.000000	1.000000	1.000000	1.000000
(EC7 - UK) DA1-1(4)	1.550000	1.200000				

Soil Data

model · Generated P-Y curves for static loads

SOLI	model : Ge	enerated	a P-1 Cur	ves for s	static ic	aus							
No.	Level	Type	Unit wt	E50	$C_{\mathbf{u}}$ top	dC_u/dz	ĸ ₀	к ₁	Phi	qur	$\alpha_{\mathtt{r}}$	k_{rm}	Eir
	[m]		[kN/m³]		[kN/m²]	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]
1	38.430000	Sand (Reese et al.)	18.000	-	-	-	0.50000	33930.	30.000	-	-	-	-
2	38.300000	Sand (Reese et al.)	20.000	-	-	-	0.41000	33930.	36.000	-	-	-	-
3	38.000000	Soft	21.000	0.010000	75.000	0.0	-	-	-	-	-	-	-
4	36.100000	Clay Soft Clay	21.000	0.010000	85.000	0.0	-	-	-	-	-	-	-
5	35.200000	Stiff	21.000	0.010000	125.00	0.0	-	-	-	-	-	-	-
6	33.200000	Clay Stiff Clay	21.000	0.010000	140.00	0.0	-	-	-	-	-	-	-
7	32.200000	Stiff	21.000	0.010000	150.00	0.0	-	-	-	-	-	-	-
8	31.700000	Clay Sand (Reese et al.)	21.000	-	-	-	0.40000	33930.	37.000	-	-	-	-

J:\2023\233630\6. Design\Internal...\HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0009.alw

Oasys

HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0009

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.	;	Sheet	No.	R	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

No.	Level	Type Unit wt	E50	$\mathtt{C}_{\mathbf{u}}$ top	dC_u/dz	ĸ ₀	K ₁	Phi	qur	$\alpha_{\mathtt{r}}$	k_{rm}	Eir
	[m]	[kN/m³]		[kN/m²]	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]

Name	Input Type	Description	Material	Class	Effective	EI
					Width	
					[m]	$[kNm^2]$
139.7 x	Wizard	STD%CHS%138.9%9.	6 Steel		0.13935	1638.9
10mm	Generated					
114.3 x	Wizard	STD%CHS%113.5%9.	6 Steel		0.11387	852.91
1 0mm	Conorated					

Pile Properties

Level		Se	ection
[m]			
39.200	139.7	x	10mm
36.200	114.3	х	10mm

Pile base at 34.200000 m

Applied Loads and Displacements

No.		Level	Force	Moment	Displacement	
		[m]	[kN]	[kNm]	[mm]	
	1	39 200	5 0000	0 0	0 0)

Restraints

N	١o.	Node	Lateral	Rotational
			Stiffness	Stiffness
			[kN/m]	[kNm/rad]
	1	1	0.0	10000.

Geometry and Initial state Node Level Soil EI Effective Water Soil

Node	Level	Soil	EI	Effective	Water	Soil
				Width	Pressure	
	[m]		[kNm2]	[m]	[kN/m²]	[mm]
1	39.200	0	1638.9	0.13935	0.0	0.0
2	39.138	0	1638.9	0.13935	0.0	0.0
3	39.077	0	1638.9	0.13935	0.0	0.0
4	39.015	0	1638.9	0.13935	0.0	0.0
5	38.954	0	1638.9	0.13935	0.0	0.0
6	38.892	0	1638.9	0.13935	0.0	0.0
7	38.830	0	1638.9	0.13935	0.0	0.0
8	38.769	0	1638.9	0.13935	0.0	0.0
9	38.707	0	1638.9	0.13935	0.0	0.0
10	38.646	0	1638.9	0.13935	0.0	0.0
11	38.584	0	1638.9	0.13935	0.0	0.0
12	38.522	0	1638.9	0.13935	0.0	0.0
13	38.461	0	1638.9	0.13935	0.0	0.0
14	38.399	1	1638.9	0.13935	0.0	0.0
15	38.331	1	1638.9	0.13935	0.0	0.0
16	38.269	2	1638.9	0.13935	0.0	0.0
17	38.190	2	1638.9	0.13935	0.19624	0.0
18	38.112	2	1638.9	0.13935	0.98448	0.0
19	38.033	2	1638.9	0.13935	1.7727	0.0
20	37.967	3	1638.9	0.13935	2.4273	0.0
21	37.902	3	1638.9	0.13935	3.0818	0.0
22	37.836	3	1638.9	0.13935	3.7364	0.0
23	37.771	3	1638.9	0.13935	4.3909	0.0
24	37.705	3	1638.9	0.13935	5.0455	0.0
25	37.640	3	1638.9	0.13935	5.7000	0.0
26	37.575	3	1638.9	0.13935	6.3545	0.0
27	37.509	3	1638.9	0.13935	7.0091	0.0
28	37.444	3	1638.9	0.13935	7.6636	0.0
29	37.378	3	1638.9	0.13935	8.3182	0.0
30	37.313	3	1638.9	0.13935	8.9727	0.0
31	37.247	3	1638.9	0.13935	9.6273	0.0
32	37.182	3	1638.9	0.13935	10.282	0.0
33	37.116	3	1638.9	0.13935	10.936	0.0

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.		Sheet	No.	F	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

Latera	ai ioad an	arysis	(0.11)			
Node	Level	Soil	EI	Effective	Water	Soil
				Width	Pressur	e Disp
İ	[m]		[kNm2]	[m]	[kN/m²]	[mm]
21	37 051	2	1630 0	0 12025	11 50	1 0 0
	37.051 36.985		1638.9	0.13935 0.13935		
	36.920		1638.9	0.13935		
	36.855		1638.9	0.13935		
	36.789		1638.9	0.13935		
	36.724	3	1638.9	0.13935	14.86	
	36.658		1638.9	0.13935		
	36.593		1638.9	0.13935		
	36.527		1638.9	0.13935		
	36.462 36.396		1638.9	0.13935 0.13935		
	36.331		1638.9	0.13935		
	36.265		1638.9	0.13935		
	36.200		852.91	0.11387		
	36.133		852.91	0.11387		
	36.067		852.91	0.11387		
50	35.974	4	852.91	0.11387	22.35	7 0.0
	35.882		852.91	0.11387		
	35.789		852.91	0.11387		
	35.697		852.91	0.11387		
	35.605		852.91	0.11387		
	35.512 35.420		852.91	0.11387		
	35.420		852.91 852.91	0.11387 0.11387		
	35.235		852.91	0.11387		
	35.165		852.91	0.11387		
	35.077		852.91	0.11387		
	34.989		852.91	0.11387		
62	34.902	5	852.91	0.11387	33.08	2 0.0
	34.814		852.91	0.11387		0.0
	34.726		852.91	0.11387		
	34.639		852.91	0.11387		
	34.551		852.91	0.11387		
	34.463		852.91	0.11387		
	34.375		852.91 852.91	0.11387 0.11387		
	34.200		852.91	0.11387		
			-y curv			
Node	P1	Y1	P2	¥2	P3	Y3
	[kN/m]		[kN/m]	[mm]	[kN/m]	[mm]
14	0.0			0.21968		
15	0.0			0.25405		
16	0.0	0.0		0.48747		
17 18	0.0	0.0		0.53213	5.7368	
19	0.0	0.0		0.23998		
20	0.0	0.0		0.69674	24.813	3.4837
21	0.0	0.0		0.69674	26.090	3.4837
22	0.0	0.0		0.69674	27.367	3.4837
23	0.0	0.0	16.752	0.69674	28.645	3.4837
24	0.0	0.0		0.69674	29.922	3.4837
25	0.0	0.0		0.69674	31.200	3.4837
26	0.0	0.0		0.69674	32.477	3.4837
27	0.0	0.0		0.69674	33.755	3.4837
28	0.0	0.0		0.69674	35.032	3.4837
29	0.0	0.0		0.69674	36.310	3.4837
30	0.0	0.0		0.69674	37.587 38.864	3.4837
21	0.0	0.0		0.69674	40.142	3.4837
31	\cap			0.69674	41.419	3.4837
32	0.0		24.222		42.697	3.4837
	0.0	0.0		0.69674	42.001	
32 33	0.0	0.0	24.969	0.69674 0.69674	43.974	3.4837
32 33 34	0.0	0.0	24.969 25.716			3.4837 3.4837
32 33 34 35	0.0 0.0 0.0	0.0	24.969 25.716 26.463 27.210	0.69674 0.69674 0.69674	43.974	
32 33 34 35 36 37 38	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	24.969 25.716 26.463 27.210 27.503	0.69674 0.69674 0.69674 0.69674	43.974 45.252 46.529 47.030	3.4837 3.4837 3.4837
32 33 34 35 36 37 38 39	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	24.969 25.716 26.463 27.210 27.503 27.503	0.69674 0.69674 0.69674 0.69674 0.69674	43.974 45.252 46.529 47.030 47.030	3.4837 3.4837 3.4837 3.4837
32 33 34 35 36 37 38 39 40	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	24.969 25.716 26.463 27.210 27.503 27.503 27.503	0.69674 0.69674 0.69674 0.69674 0.69674 0.69674	43.974 45.252 46.529 47.030 47.030	3.4837 3.4837 3.4837 3.4837 3.4837
32 33 34 35 36 37 38 39 40 41	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	24.969 25.716 26.463 27.210 27.503 27.503 27.503 27.503	0.69674 0.69674 0.69674 0.69674 0.69674 0.69674	43.974 45.252 46.529 47.030 47.030 47.030	3.4837 3.4837 3.4837 3.4837 3.4837
32 33 34 35 36 37 38 39 40 41 42	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	24.969 25.716 26.463 27.210 27.503 27.503 27.503 27.503	0.69674 0.69674 0.69674 0.69674 0.69674 0.69674 0.69674	43.974 45.252 46.529 47.030 47.030 47.030 47.030	3.4837 3.4837 3.4837 3.4837 3.4837 3.4837
32 33 34 35 36 37 38 39 40 41	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	24.969 25.716 26.463 27.210 27.503 27.503 27.503 27.503 27.503	0.69674 0.69674 0.69674 0.69674 0.69674 0.69674	43.974 45.252 46.529 47.030 47.030 47.030	3.4837 3.4837 3.4837 3.4837 3.4837

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.		Sheet	No.	R	lev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

_atera	l load ana	alysis ((5kN)					MC	06-Oct-202
Node	P1	Y1	P2	Y2	Р3	¥3			
	[kN/m]	[mm]	[kN/m]	[mm]	[kN/m]	[mm]			
45	0.0	0.0	27.503	0.69674	47.030	3.4837			
46	0.0	0.0		0.69674	47.030	3.4837			
47	0.0	0.0		0.56933	38.430	2.8466			
48	0.0	0.0		0.56933	38.430	2.8466			
49 50	0.0	0.0		0.56933	43.554	2.8466			
51	0.0	0.0		0.56933	43.554	2.8466			
52	0.0	0.0		0.56933	43.554	2.8466			
53	0.0	0.0		0.56933	43.554	2.8466			
54	0.0	0.0		0.56933	43.554	2.8466			
55	0.0	0.0		0.56933	43.554	2.8466			
56	0.0	0.0		0.56933	43.554	2.8466			
57 58	0.0	0.0		0.56933	43.554	2.8466			
59	0.0	0.0		0.56933	64.049	2.8466			
60	0.0	0.0		0.56933	64.049	2.8466			
61	0.0	0.0	37.456	0.56933	64.049	2.8466			
62	0.0	0.0		0.56933	64.049	2.8466			
63	0.0	0.0		0.56933	64.049	2.8466			
64 65	0.0	0.0		0.56933	64.049	2.8466			
66	0.0	0.0		0.56933	64.049	2.8466			
67	0.0	0.0		0.56933	64.049	2.8466			
68	0.0	0.0		0.56933	64.049	2.8466			
69	0.0	0.0		0.56933	64.049	2.8466			
70	0.0	0.0		0.56933	64.049	2.8466			
Node	P4	Y4		Y5 n] [mm]	P6	Y6			
14	[kN/m] 0.39375	[mm 1.27		389 2.322					
15				149 2.322		1 5.2255			
16	3.7184			597 2.322		9 5.2255			
17	5.8225			414 2.322		9 5.2255			
18	6.5830			019 2.322		6 5.2255			
19	6.4040 35.730			617 2.322		1 5.2255 5 348.37			
20 21	37.570			625 27.87 180 27.87		0 348.37			
22	39.409			735 27.87		5 348.37			
23	41.249	10.4	51 57.2	290 27.87		0 348.37			
24	43.088			845 27.87		5 348.37			
25	44.928			400 27.87		0 348.37			
26 27	46.767			954 27.87 509 27.87		4 348.37 9 348.37			
28	50.446			064 27.87		4 348.37			
29	52.286			619 27.87		9 348.37			
30	54.125	10.4	51 75.1	174 27.87	0 75.17	4 348.37			
31	55.965			729 27.87		9 348.37			
32	57.804			284 27.87		4 348.37			
33 34	61.483			839 27.87 393 27.87		9 348.37 3 348.37			
35	63.323			948 27.87		8 348.37			
36	65.162			503 27.87		3 348.37			
37	67.002	10.4	51 93.0	058 27.87	0 93.05	8 348.37			
38	67.723			060 27.87		0 348.37			
39	67.723			060 27.87		0 348.37			
40	67.723			060 27.87		0 348.37			
41 42	67.723 67.723			060 27.87 060 27.87		0 348.37 0 348.37			
43	67.723			060 27.87		0 348.37			
44	67.723			060 27.87		0 348.37			
45	67.723	10.4	51 94.0	060 27.87	0 94.06	0 348.37			
46	67.723			060 27.87		0 348.37			
47	55.339			859 22.77		9 284.66			
48 49	55.339 62.717			859 22.77 107 22.77		9 284.66 7 284.66			
50	62.717			107 22.77 107 22.77		7 284.66			
51	62.717			107 22.77		7 284.66			
52	62.717			107 22.77		7 284.66			
53	62.717			107 22.77		7 284.66			
54	62.717			107 22.77		7 284.66			
55	62.717	8.53		107 22.77	3 87.10	7 284.66			
56	62.717	0 = 0	00 07 1	107 22.77	12 07 10	7 284.66			

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.	,	Sheet	No.	F	Rev.
233630					
Drg. Ref.					
Made by	Date		Checked	Date	

Node	P4	Y4	P5	Y 5	P6	Y6
	[kN/m]	[mm]	[kN/m]	[mm]	[kN/m]	[mm]
57	62.717	8.5399	87.107	22.773	87.107	284.66
58	62.717	8.5399	87.107	22.773	87.107	284.66
59	92.231	8.5399	128.10	22.773	128.10	284.66
60	92.231	8.5399	128.10	22.773	128.10	284.66
61	92.231	8.5399	128.10	22.773	128.10	284.66
62	92.231	8.5399	128.10	22.773	128.10	284.66
63	92.231	8.5399	128.10	22.773	128.10	284.66
64	92.231	8.5399	128.10	22.773	128.10	284.66
65	92.231	8.5399	128.10	22.773	128.10	284.66
66	92.231	8.5399	128.10	22.773	128.10	284.66
67	92.231	8.5399	128.10	22.773	128.10	284.66
68	92.231	8.5399	128.10	22.773	128.10	284.66
69	92.231	8.5399	128.10	22.773	128.10	284.66
7.0	92.231	8.5399	128.10	22.773	128.10	284.66

Output for load increment 1

Iteration	Max at	Disp	Pressure
	Inc node	error	error
	Disp		
	[mm]	[mm]	[kN/m²]
10	3.52 1	0.0006	0.04

- The file is not completely converged till the specified tolerance limit.

							tolerance il	mıt.
Node	Level	Defl	Rotation	Soil	Pressure	-	Shear	
	[m]	[mm]	[rad]	_	[kN/m²]	[kNm]	[kN]	
	39.200	-3.5192	-663.45E-6	0	0.0	0.0		
	39.200					-6.6345		
	39.138		-903.85E-6	0	0.0			
	39.077		-0.0011263	0	0.0	-5.6797		
	39.015		-0.0013308	0	0.0	-5.2023		
5	38.954		-0.0015174	0	0.0	-4.7249		
6	38.892	-3.1459	-0.0016860	0	0.0	-4.2475	-7.7500	
7	38.830	-3.0373	-0.0018367	0	0.0	-3.7701	-7.7500	
8	38.769	-2.9200	-0.0019694	0	0.0	-3.2927	-7.7500	
9	38.707	-2.7950	-0.0020842	0	0.0	-2.8153	-7.7500	
10	38.646	-2.6636	-0.0021810	0	0.0	-2.3379	-7.7500	
11	38.584	-2.5267	-0.0022599	0	0.0	-1.8605	-7.7500	
12	38.522	-2.3855	-0.0023209	0	0.0	-1.3831	-7.7500	
13	38.461	-2.2411	-0.0023639	0	0.0	-0.90570	-7.7500	
	38.399		-0.0023890	1	-3.2761	-0.42830		P
	38.331		-0.0023958	1		0.099767		P
	38.269		-0.0023833	2	-28.583			P
	38.190		-0.0023420	2	-43.035	1.1472		P
	38.112		-0.0022738	2				P
	38.033		-0.0021806	2		2.1880		P
	37.967		-0.0021855	3				P
	37.902		-0.0019765	3				P
	37.836		-0.0019763	3				P
	37.771		-0.0018301	3		3.3124		P
	37.771		-0.0017274	3				P
				3				
	37.640		-0.0014559					
	37.575		-0.0013184	3				
	37.509		-0.0011828	3				
	37.444		-0.0010508	3				
	37.378		-923.93E-6	3				
	37.313		-803.43E-6	3				
	37.247		-690.23E-6	3	-23.347			
	37.182		-585.01E-6	3				
	37.116		-488.20E-6	3	-5.7294			
	37.051		-400.06E-6	3				
	36.985		-320.62E-6	3			3.2855	
	36.920		-249.78E-6	3		1.6699		
37	36.855		-187.28E-6	3	17.510	1.4651	3.0500	
	36.789		-132.76E-6	3				
39	36.724	0.080020	-85.766E-6	3	22.668	1.0886	2.6784	
40	36.658	0.084288	-45.780E-6	3	23.877	0.92005	2.4661	
41	36.593	0.086154	-12.247E-6	3	24.406	0.76576	2.2459	
42	36.527	0.086020	15.408E-6	3			2.0235	
	36.462		37.767E-6					
	36.396	0.081179		3				
_								

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.		Sheet	No.	F	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

Node	Level [m]	Defl [mm]	Rotation [rad]	Soil	$\begin{array}{c} \textbf{Pressure} \\ [kN/m^{2}] \end{array}$	Bending [kNm]	Shear [kN]	
45	36.331	0.077090	68.882E-6	3	21.838	0.29274	1.3853	
46	36.265	0.072241	78.730E-6	3	20.464	0.20858	1.1924	
47	36.200	0.066852	85.455E-6	3	23.176	0.13664	1.0119	
48	36.133	0.060864	93.383E-6	3	21.100	0.074990	0.84469	
49	36.067	0.054499	96.896E-6	4	21.412	0.024016	0.66765	
50	35.974	0.045537	96.128E-6	4	17.891	-0.028716	0.47657	
51	35.882	0.036882	90.564E-6	4	14.491	-0.064055	0.30622	
52	35.789	0.028896	81.912E-6	4	11.353	-0.085306	0.17027	
53	35.697	0.021798	71.531E-6	4	8.5643	-0.095521	0.065494	
54	35.605	0.015698	60.470E-6	4	6.1676	-0.097409	-0.012005	
55	35.512	0.010620	49.505E-6	4	4.1726	-0.093302	-0.066400	
56	35.420	0.0065294	39.181E-6	4	2.5654	-0.085139	-0.10185	
57	35.327	0.0033487	29.853E-6	4	1.3157	-0.074481	-0.12226	
58	35.235	975.60E-6	21.724E-6	4	0.38331	-0.062544	-0.13096	
59	35.165	-357.30E-6	16.412E-6	5	-0.20644	-0.053236	-0.13180	
60	35.077	-0.0015431	10.817E-6	5	-0.89157	-0.041755	-0.12642	
61	34.989	-0.0022877	6.3403E-6	5	-1.3218	-0.031056	-0.11537	
62	34.902	-0.0026852	2.8832E-6	5	-1.5515	-0.021514	-0.10102	
63	34.814	-0.0028195	315.90E-9	5	-1.6291	-0.013333	-0.085134	
64	34.726	-0.0027625	-1.5050E-6	5	-1.5961	-0.0065783	-0.069027	
65	34.639	-0.0025731	-2.7249E-6	5	-1.4867	-0.0012224	-0.053631	
66	34.551	-0.0022979	-3.4826E-6	5	-1.3277	0.0028308	-0.039575	
		-0.0019719		5	-1.1393	0.0057207	-0.027254	
68	34.375	-0.0016194	-4.1030E-6	5	-0.93567	0.0076123	-0.016891	
69	34.288	-0.0012559	-4.1705E-6	5	-0.72562	0.0086841	-0.0085941	
70	34.200	-889.34E-6	-4.1820E-6	5	-0.51385	0.0091201	-0.0024038	

- The letter "P" next to a result indicates that the effective earth pressure is greater than 0.99 times the passive limit, but within the convergence pressure limit.

EXTREME values so far:-

Defle	ctions	Rotat:	ions	Momen	ts	Shear	s
Min	Max	Min	Max	Min	Max	Min	Max
[mm]	[mm]	[rad]	[rad]	[kNm]	[kNm]	[kN]	[kN]
-3 5192	0.086154	-0.0023958	96 896E-6	-6 6345	3.4531	-7 7500	3 3283

RESTRAINT FORCES

No. Node Lateral Moment force

[kN] [kNm] 1 1 0.0 6.6345

M1 Junction 23-25a Lateral load analysis (5kN)

Job No.		Sheet No	0.	R	lev.
233630					
Drg. Ref.					
Made by	Date 06-Oct-2023	(Checked	Date	

Titles

Job No.: 233630

Job Title: HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0010

06-Oct-2023

Sub-title: M1 Junction 23-25a

Calculation Heading: Lateral load analysis (5kN)

Initials:

Checker: Date Saved:

Date Checked:

Notes: DA1-2 Secondary Piles

HE614830-VAE-SGY-P015 S2 ALLGENR-CA-CB-0010.alw File Name: File Path:

J:\2023\233630\6. Design\InternallyChecked\Secondary

Piles\ProjectNumbered

General Data

Number of increments = 1Increment applied loads only

Standard analysis type

Apply layered soil adjustments to P-Y curves: No

Convergence Control

Maximum number of iterations = 300

Maximum displacement error [mm] = 0.0010000 Maximum pressure error [kN/m²] = 0.10000

Damping coefficient = 1.0000

Maximum incremental deflection [m] = 2.0000

Partial Factors

	riable Load Rest./Dist.)	Permanent Load (Rest./Dist.)	Unit Weight	Drained Cohesion	Undrained Cohesion	Shear Angle
BS EN 1997-1:2004 (EC7 - UK) DA1-2	0.000000/ 1.300000	1.000000/ 1.000000	1.000000	1.250000	1.400000	1.250000

Soil Data

· Generated P-Y curves for static loads

SOII	model: Ge	sile La ce d	a r r cur	AG2 IOI 3	statit it	aus							
No.	Level	Type	Unit wt	E50	$C_{\mathbf{u}}$ top	$dC_{\mathbf{u}}/d\mathbf{z}$	ĸ ₀	к ₁	Phi	qur	$\alpha_{\mathtt{r}}$	k_{rm}	Eir
	[m]		[kN/m³]		[kN/m²]	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa
1	38.430000	Sand	18.000	-	-	-	0.50000	33930.	30.000	-	-	-	-
0	20. 200000	(Reese et al.)	00.000				0 41000	22020	26,000				
	38.300000	(Reese et al.)	20.000		-	_	0.41000	33930.	36.000	-	_	-	-
3	38.000000	Soft	21.000	0.010000	75.000	0.0	-	-	-	-	-	-	-
4	36.100000	Clay Soft Clay	21.000	0.010000	85.000	0.0	-	-	-	-	-	-	-
5	35.200000	Stiff	21.000	0.010000	125.00	0.0	-	_	-	-	-	-	-
6	33.200000	Clay Stiff Clay	21.000	0.010000	140.00	0.0	-	-	-	-	-	-	-
7	32.200000	Stiff	21.000	0.010000	150.00	0.0	-	-	-	-	-	-	-
8	31.700000	Clay Sand (Reese et al.)	21.000	-	-	-	0.40000	33930.	37.000	-	-	-	-

Sections

Oasys

HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0010

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.			No.	R	Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

No.	Level	Type Unit wt	E50	$\mathtt{C}_{\mathbf{u}}$ top	dC_u/dz	κ_0	ĸ ₁	Phi	qur	$\alpha_{\mathtt{r}}$	$\mathbf{k}_{\mathbf{rm}}$	Eir
	[m]	[kN/m³]		[kN/m²]	$[kN/m^2/m]$		$[kN/m^2/m]$	[°]	[kPa]			[kPa]

Name	Input Type	Description	Material	Class	Effective Width	EI
					[m]	$[kNm^2]$
139.7 x	Wizard	STD%CHS%138.9%9.	6 Steel		0.13935	1638.9
10mm	Generated					
114.3 x	Wizard	STD%CHS%113.5%9.	6 Steel		0.11387	852.91
1 0	Canamatad					

Pile Properties

Level	S	ection
[m]		
39.200	139.7 x	10mm
36.200	114.3 x	10mm

Pile base at 34.200000 m

Applied Loads and Displacements

No		Level	Force	Moment	Displaceme	nt
		[m]	[kN]	[kNm]	[mm]	
	1	39 200	5 0000	0 0	() ()

Restraints

 $\begin{tabular}{lll} No. & Node & Lateral & Rotational \\ & Stiffness & Stiffness \\ & [kN/m] & [kNm/rad] \\ 1 & 1 & 0.0 & 10000. \end{tabular}$

Geometry and Initial state

Node	Node Level Soil EI		Effective	Water	Soil	
				Width	Pressure	
	[m]		[kNm2]	[m]	[kN/m²]	[mm]
1	39.200	0	1638.9	0.13935	0.0	0.0
2	39.138	0	1638.9	0.13935	0.0	0.0
3	39.077	0	1638.9	0.13935	0.0	0.0
4	39.015	0	1638.9	0.13935	0.0	0.0
5	38.954	0	1638.9	0.13935	0.0	0.0
6	38.892	0	1638.9	0.13935	0.0	0.0
7	38.830	0	1638.9	0.13935	0.0	0.0
8	38.769	0	1638.9	0.13935	0.0	0.0
9	38.707	0	1638.9	0.13935	0.0	0.0
10	38.646	0	1638.9	0.13935	0.0	0.0
11	38.584	0	1638.9	0.13935	0.0	0.0
12	38.522	0	1638.9	0.13935	0.0	0.0
13	38.461	0	1638.9	0.13935	0.0	0.0
14	38.399	1	1638.9	0.13935	0.0	0.0
15	38.331	1	1638.9	0.13935	0.0	0.0
16	38.269	2	1638.9	0.13935	0.0	0.0
17		2	1638.9	0.13935	0.19624	0.0
18	38.112	2	1638.9	0.13935	0.98448	0.0
19	38.033	2	1638.9	0.13935	1.7727	0.0
20	37.967	3	1638.9	0.13935	2.4273	0.0
21	37.902	3	1638.9	0.13935	3.0818	0.0
22	37.836	3	1638.9	0.13935	3.7364	0.0
23	37.771	3	1638.9	0.13935	4.3909	0.0
24	37.705	3	1638.9	0.13935	5.0455	0.0
25	37.640	3	1638.9	0.13935	5.7000	0.0
26	37.575	3	1638.9	0.13935	6.3545	0.0
27	37.509	3	1638.9	0.13935	7.0091	0.0
28	37.444	3	1638.9	0.13935	7.6636	0.0
29	37.378	3	1638.9	0.13935	8.3182	0.0
30	37.313	3	1638.9	0.13935	8.9727	0.0
31	37.247	3	1638.9	0.13935	9.6273	0.0
32	37.182	3	1638.9	0.13935	10.282	0.0
33	37.116	3	1638.9	0.13935	10.936	0.0

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.	;	Sheet No.	Rev.		
233630					
Drg. Ref.					
Made by	Date	Checked	Date		

de Level Soil EI Effective Width Width Pressure [kN/m²] Water [kN/m²] Soil [kNm2] 34 37.051 3 1638.9 0.13935 11.591 0.0 35 36.985 3 1638.9 0.13935 12.245 0.0 36 36.920 3 1638.9 0.13935 12.900 0.0 37 36.855 3 1638.9 0.13935 14.209 0.0 38 36.789 3 1638.9 0.13935 14.209 0.0 39 36.724 3 1638.9 0.13935 14.209 0.0 40 36.658 3 1638.9 0.13935 16.173 0.0 41 36.593 3 1638.9 0.13935 16.827 0.0 43 36.462 3 1638.9 0.13935 16.827 0.0 44 36.396 3 1638.9 0.13935 18.136 0.0 45 36.331 3 1638.9 0.13935 18.136 0.0 48 36.133 3 852.91 0
[m] [kNm2] [m] [kNm2] [m] [kN/m²] [mm] 34 37.051
34 37.051
35 36.985
35 36.985
36 36.920
37 36.855
38 36.789
39 36.724
40 36.658
41 36.593 3 1638.9 0.13935 16.173 0.0 42 36.527 3 1638.9 0.13935 16.827 0.0 43 36.462 3 1638.9 0.13935 17.482 0.0 44 36.396 3 1638.9 0.13935 18.791 0.0 45 36.331 3 1638.9 0.13935 18.791 0.0 46 36.265 3 1638.9 0.13935 19.445 0.0 47 36.200 3 852.91 0.11387 20.100 0.0 48 36.133 3 852.91 0.11387 20.767 0.0 48 36.067 4 852.91 0.11387 21.433 0.0 50 35.974 4 852.91 0.11387 22.357 0.0 51 35.882 4 852.91 0.11387 24.205 0.0 52 35.789 4 852.91 0.11387 25.129 0.0 53 35.512 4 852.91
42 36.527
43 36.462 3 1638.9 0.13935 17.482 0.0 44 36.396 3 1638.9 0.13935 18.136 0.0 45 36.331 3 1638.9 0.13935 18.791 0.0 46 36.265 3 1638.9 0.13935 19.445 0.0 47 36.200 3 852.91 0.11387 20.100 0.0 48 36.133 3 852.91 0.11387 20.767 0.0 49 36.067 4 852.91 0.11387 21.433 0.0 50 35.974 4 852.91 0.11387 22.357 0.0 51 35.789 4 852.91 0.11387 24.205 0.0 52 35.789 4 852.91 0.11387 24.205 0.0 53 35.5697 4 852.91 0.11387 25.129 0.0 54 35.605 4 852.91 0.11387 26.977 0.0 56 35.512 4 852.91 0.11387 27.901 0.0 57 35.327 4 852.91 0.11387 29.749
44 36.396 3 1638.9 0.13935 18.136 0.6 45 36.331 3 1638.9 0.13935 18.791 0.0 46 36.265 3 1638.9 0.13935 19.445 0.0 47 36.200 3 852.91 0.11387 20.100 0.0 48 36.133 3 852.91 0.11387 20.767 0.0 49 36.067 4 852.91 0.11387 21.433 0.0 50 35.974 4 852.91 0.11387 23.281 0.0 51 35.882 4 852.91 0.11387 24.205 0.0 52 35.789 4 852.91 0.11387 24.205 0.0 53 35.697 4 852.91 0.11387 26.053 0.0 54 35.505 4 852.91 0.11387 26.053 0.0 55 35.512 4 852.91 0.11387 26.977 0.0 56 35.420 4 852.91 0.11387 27.901 0.0 58 35.235 4 852.91 0.11387 30.451
45 36.331
46 36.265 3 1638.9 0.13935 19.445 0.0 47 36.200 3 852.91 0.11387 20.100 0.0 48 36.133 3 852.91 0.11387 20.767 0.0 48 36.067 4 852.91 0.11387 21.433 0.0 50 35.974 4 852.91 0.11387 22.357 0.0 51 35.882 4 852.91 0.11387 23.281 0.0 52 35.789 4 852.91 0.11387 24.205 0.0 54 35.607 4 852.91 0.11387 25.129 0.0 55 35.512 4 852.91 0.11387 26.977 0.0 56 35.420 4 852.91 0.11387 27.901 0.0 57 35.327 4 852.91 0.11387 29.749 0.0 59 35.165 5 852.91 0.11387 30.451 0.0 50 35.777 5 852.91 0.11387 31.328 0.0 51 34.989 5 852.91 0.11387 33.982
47 36.200 3 852.91 0.11387 20.100 0.0 188 36.133 3 852.91 0.11387 20.767 0.0 199 36.067 4 852.91 0.11387 21.433 0.0 150 35.974 4 852.91 0.11387 22.357 0.0 151 35.882 4 852.91 0.11387 23.281 0.0 152 35.789 4 852.91 0.11387 24.205 0.0 153 35.697 4 852.91 0.11387 25.129 0.0 154 35.605 4 852.91 0.11387 26.053 0.0 155 35.512 4 852.91 0.11387 26.053 0.0 156 35.420 4 852.91 0.11387 27.901 0.0 157 35.327 4 852.91 0.11387 28.825 0.0 158 35.235 4 852.91 0.11387 29.749 0.0 158 35.235 4 852.91 0.11387 29.749 0.0 159 35.165 5 852.91 0.11387 29.749 0.0 150 35.077 5 852.91 0.11387 30.451 0.0 150 35.077 5 852.91 0.11387 30.451 0.0 151 34.989 5 852.91 0.11387 32.205 0.0 152 34.902 5 852.91 0.11387 33.960 0.0 153 34.814 5 852.91 0.11387 33.960 0.0 153 34.814 5 852.91 0.11387 34.837 0.0 158 34.639 5 852.91 0.11387 35.714 0.0 159 34.463 5 852.91 0.11387 37.468 0.0 150 34.288 5 852.91 0.11387 37.468 0.0 150 34.288 5 852.91 0.11387 39.223 0.0
48 36.133
49 36.067 4 852.91 0.11387 21.433 0.0 50 35.974 4 852.91 0.11387 22.357 0.0 51 35.882 4 852.91 0.11387 24.205 0.0 52 35.789 4 852.91 0.11387 24.205 0.0 53 35.697 4 852.91 0.11387 25.129 0.0 54 35.605 4 852.91 0.11387 26.053 0.0 55 35.512 4 852.91 0.11387 26.977 0.0 56 35.420 4 852.91 0.11387 27.901 0.0 57 35.327 4 852.91 0.11387 27.901 0.0 58 35.235 4 852.91 0.11387 29.749 0.0 59 35.165 5 852.91 0.11387 30.451 0.0 59 35.165 5 852.91 0.11387 31.328 0.0 50 35.077 5 852.91 0.11387 31.328 0.0 51 34.989 5 852.91 0.11387 32.205 0.0 52 34.902 5 852.91 0.11387 33.082 0.0 53 34.814 5 852.91 0.11387 33.982 0.0 53 34.814 5 852.91 0.11387 33.960 0.0 54 34.726 5 852.91 0.11387 34.837 0.0 55 34.639 5 852.91 0.11387 35.714 0.0 56 34.551 5 852.91 0.11387 37.468 0.0 57 34.463 5 852.91 0.11387 37.468 0.0 58 34.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0 58 24.288 5 852.91 0.11387 39.223 0.0
50 35.974
51 35.882
52 35.789
53 35.697 4 852.91 0.11387 25.129 0.0 54 35.605 4 852.91 0.11387 26.053 0.0 55 35.512 4 852.91 0.11387 26.977 0.0 56 35.420 4 852.91 0.11387 27.901 0.0 57 35.327 4 852.91 0.11387 28.825 0.0 58 35.235 4 852.91 0.11387 29.749 0.0 58 35.235 4 852.91 0.11387 30.451 0.0 59 35.165 5 852.91 0.11387 30.451 0.0 50 35.077 5 852.91 0.11387 31.328 0.0 51 34.989 5 852.91 0.11387 32.205 0.0 53 34.814 5 852.91 0.11387 33.082 0.0 53 34.814 5 852.91 0.11387 33.082 0.0 55 34.639 5 852.91 0.11387 34.837 0.0 56 34.551 5 852.91 0.11387 35.714 0.0 57 34.463 5 852.91 0.11387 37.468 0.0 58 34.375 5 852.91 0.11387 37.468 0.0 58 34.288 5 852.91 0.11387 39.223 0.0 58 34.288 5 852.91 0.11387 39.223 0.0 58 34.288 5 852.91 0.11387 39.223 0.0 58 34.200 5 852.91 0.11387 39.223 0.0 58 34.280 5 852.91 0.11387 39.223 0.0 58 34.280 5 852.91 0.11387 40.100 0.0
54 35.605
55 35.512
56 35.420
57 35.327 4 852.91 0.11387 28.825 0.0 58 35.235 4 852.91 0.11387 29.749 0.0 59 35.165 5 852.91 0.11387 30.451 0.0 50 35.077 5 852.91 0.11387 32.205 0.0 51 34.989 5 852.91 0.11387 32.205 0.0 52 34.902 5 852.91 0.11387 33.082 0.0 53 34.814 5 852.91 0.11387 33.082 0.0 54 34.726 5 852.91 0.11387 34.837 0.0 55 34.639 5 852.91 0.11387 34.837 0.0 55 34.639 5 852.91 0.11387 35.714 0.0 56 34.551 5 852.91 0.11387 36.591 0.0 56 34.375 5 852.91 0.11387 37.468 0.0 58 34.375 5 852.91 0.11387 37.468 0.0 58 34.288 5 852.91 0.11387 39.223 0.0 58 34.288 5 852.91 0.11387 39.223 0.0 58 34.200 5 852.91 0.11387 39.223 0.0 58 34.200 5 852.91 0.11387 39.223 0.0 58 34.200 5 852.91 0.11387 39.223 0.0 58 34.200 5 852.91 0.11387 40.100 0.0 58 54 55 55 55 55 55 55 55 55 55 55 55 55
58 35.235
59 35.165 5 852.91 0.11387 30.451 0.0 50 35.077 5 852.91 0.11387 31.328 0.0 51 34.989 5 852.91 0.11387 32.205 0.0 52 34.902 5 852.91 0.11387 33.082 0.0 53 34.814 5 852.91 0.11387 33.960 0.0 54 34.726 5 852.91 0.11387 34.837 0.0 55 34.639 5 852.91 0.11387 35.714 0.0 65 34.551 5 852.91 0.11387 35.714 0.0 66 34.551 5 852.91 0.11387 37.468 0.0 67 34.463 5 852.91 0.11387 37.468 0.0 68 34.375 5 852.91 0.11387 38.346 0.0 69 34.288 5 852.91 0.11387 39.223 0.0 60 34.280 5 852.91 0.11387 39.223 0.0 60 34.280 5 852.91 0.11387 40.100 0.0 60 34.280 5 852.91 0.11387 40.100 0.0 60 34.280 5 852.91 0.11387 40.100 0.0
50 35.077 5 852.91 0.11387 31.328 0.0 51 34.989 5 852.91 0.11387 32.205 0.0 53 34.814 5 852.91 0.11387 33.082 0.0 54 34.726 5 852.91 0.11387 34.837 0.0 55 34.639 5 852.91 0.11387 35.714 0.0 56 34.551 5 852.91 0.11387 35.714 0.0 57 34.463 5 852.91 0.11387 37.468 0.0 58 34.375 5 852.91 0.11387 37.468 0.0 59 34.288 5 852.91 0.11387 38.346 0.0 59 34.288 5 852.91 0.11387 39.223 0.0 50 34.200 5 852.91 0.11387 40.100 0.0 50 0.0000000000000000000000000000
51 34.989 5 852.91 0.11387 32.205 0.0 52 34.902 5 852.91 0.11387 33.082 0.0 53 34.814 5 852.91 0.11387 33.960 0.0 55 34.639 5 852.91 0.11387 35.714 0.0 56 34.551 5 852.91 0.11387 36.591 0.0 57 34.463 5 852.91 0.11387 37.468 0.0 58 34.375 5 852.91 0.11387 37.468 0.0 58 34.288 5 852.91 0.11387 38.346 0.0 58 34.288 5 852.91 0.11387 39.223 0.0 58 34.200 5 852.91 0.11387 40.100 0.0 58 52.91 0.11387 40.100 0.0
52 34.902 5 852.91 0.11387 33.082 0.0 53 34.814 5 852.91 0.11387 33.960 0.0 54 34.726 5 852.91 0.11387 34.837 0.0 55 34.639 5 852.91 0.11387 35.714 0.0 56 34.551 5 852.91 0.11387 36.591 0.0 57 34.463 5 852.91 0.11387 37.468 0.0 58 34.375 5 852.91 0.11387 38.346 0.0 59 34.288 5 852.91 0.11387 39.223 0.0 59 34.200 5 852.91 0.11387 40.100 0.0 50 34.200 5 852.91 0.11387 40.100 0.0 50 34.200 5 852.91 0.11387 40.100 0.0
53 34.814 5 852.91 0.11387 33.960 0.0 54 34.726 5 852.91 0.11387 34.837 0.0 55 34.639 5 852.91 0.11387 35.714 0.0 56 34.551 5 852.91 0.11387 36.591 0.0 57 34.463 5 852.91 0.11387 37.468 0.0 58 34.375 5 852.91 0.11387 38.346 0.0 59 34.288 5 852.91 0.11387 39.223 0.0 59 34.200 5 852.91 0.11387 40.100 0.0 50 34.200 5 852.91 0.11387 40.100 0.0 50 34.200 5 852.91 0.11387 40.100 0.0
54 34.726 5 852.91 0.11387 34.837 0.0 55 34.639 5 852.91 0.11387 35.714 0.0 56 34.551 5 852.91 0.11387 36.591 0.0 57 34.463 5 852.91 0.11387 37.468 0.0 58 34.375 5 852.91 0.11387 38.346 0.0 58 34.288 5 852.91 0.11387 39.223 0.0 58 34.200 5 852.91 0.11387 40.100 0.0 58 34.200 5 852.91 0.11387 40.100 0.0 58 34.200 5 852.91 0.11387 40.100 0.0
55 34.639 5 852.91 0.11387 35.714 0.0 66 34.551 5 852.91 0.11387 36.591 0.0 67 34.463 5 852.91 0.11387 37.468 0.0 68 34.375 5 852.91 0.11387 38.346 0.0 69 34.288 5 852.91 0.11387 39.223 0.0 70 34.200 5 852.91 0.11387 40.100 0.0 64 CULATED Soil P-y curves
56 34.551 5 852.91 0.11387 36.591 0.0 57 34.463 5 852.91 0.11387 37.468 0.0 58 34.375 5 852.91 0.11387 38.346 0.0 59 34.288 5 852.91 0.11387 39.223 0.0 50 34.200 5 852.91 0.11387 40.100 0.0 50 34.200 5 852.91 0.11387 40.100 0.0
57 34.463 5 852.91 0.11387 37.468 0.0 68 34.375 5 852.91 0.11387 38.346 0.0 69 34.288 5 852.91 0.11387 39.223 0.0 70 34.200 5 852.91 0.11387 40.100 0.0 4.CULATED Soil P-y curves
58 34.375 5 852.91 0.11387 38.346 0.0 69 34.288 5 852.91 0.11387 39.223 0.0 70 34.200 5 852.91 0.11387 40.100 0.0 LCULATED Soil P-y curves
59 34.288
70 34.200 5 852.91 0.11387 40.100 0.0 LCULATED Soil P-y curves
LCULATED Soil P-y curves
de P1 Y1 P2 Y2 P3 Y3
[kN/m] [mm] [kN/m] [mm] [kN/m] [mm]
15 0.0 0.0 0.52497 0.15597 0.84087 0.6975
L6
17 0.0 0.0 2.3727 0.29182 3.2135 0.7994
l8
20 0.0 0.0 11.662 0.69674 19.942 3.483
28 0.0 0.0 16.490 0.69674 28.198 3.483
29 0.0 0.0 17.094 0.69674 29.230 3.483
30
31
32
33
37 0.0 0.0 21.922 0.69674 37.486 3.483
38 0.0 0.0 22.003 0.69674 37.624 3.483
39 0.0 0.0 22.003 0.69674 37.624 3.483
40
12 0.0 0.0 22.003 0.69674 37.624 3.483
42
15 0.0 0.0 22.005 0.050/4 5/.024 3.483
0.0 0.0 22.003 0.69674 37.624 3.483

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.		Sheet No.			Rev.
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

Latera	ai ioad ana	ilysis (JKIN)				MC	06-Oct-2023	
Node	P1	Y1	P2	Y2	Р3	Y3			
Node	[kN/m]				[kN/m]	[mm]			
	[1214/111]	[Ituiti]	[IZIV/ III]	[IIIII]	[1214/ 111]	Littati			
45	0.0	0.0	22.003	0.69674	37.624	3.4837			
46	0.0	0.0		0.69674	37.624	3.4837			
47	0.0	0.0		0.56933	30.744	2.8466			
48	0.0	0.0		0.56933	30.744	2.8466			
49	0.0	0.0		0.56933	34.843	2.8466			
50	0.0	0.0	20.376	0.56933	34.843	2.8466			
51	0.0	0.0	20.376	0.56933	34.843	2.8466			
52	0.0	0.0		0.56933	34.843	2.8466			
53	0.0	0.0		0.56933	34.843	2.8466			
54	0.0	0.0		0.56933	34.843	2.8466			
55	0.0	0.0			34.843	2.8466			
56	0.0	0.0		0.56933	34.843	2.8466			
57	0.0	0.0			34.843	2.8466			
58 59	0.0	0.0		0.56933	34.843 51.240	2.8466			
60	0.0	0.0		0.56933	51.240	2.8466			
61	0.0	0.0		0.56933	51.240	2.8466			
62	0.0	0.0		0.56933	51.240	2.8466			
63	0.0	0.0		0.56933	51.240	2.8466			
64	0.0	0.0		0.56933	51.240	2.8466			
65	0.0	0.0		0.56933	51.240	2.8466			
66	0.0	0.0	29.965	0.56933	51.240	2.8466			
67	0.0	0.0	29.965	0.56933	51.240	2.8466			
68	0.0	0.0	29.965	0.56933	51.240	2.8466			
69	0.0	0.0		0.56933	51.240	2.8466			
70	0.0	0.0		0.56933	51.240	2.8466			
Node	P4	Y4	P5	¥5	P6	¥6			
1.4	[kN/m]	[mm]			[kN/m]	[mm]			
				243 2.3225					
15				274 2.3225					
16 17	2.4358 3.7260			288 2.3225 298 2.3225		5.2255			
18	4.1605			503 2.3225		5.2255			
19	4.0167			263 2.3225		5.2255			
20	28.717			884 27.870		348.37			
21	30.203			948 27.870		348.37			
22	31.689			012 27.870		348.37			
23	33.175			076 27.870		348.37			
24	34.661	10.45	51 48.3	140 27.870	48.140	348.37			
25	36.147	10.45	50.2	204 27.870	50.204	348.37			
26	37.633	10.45		268 27.870		348.37			
27	39.119	10.45		332 27.870		348.37			
28	40.605			396 27.870		348.37			
29	42.091			460 27.870		348.37			
30	43.577			524 27.870		348.37			
31	45.063			588 27.870		348.37			
32	46.549			652 27.870		348.37			
33	48.035 49.521			716 27.870 780 27.870		348.37			
35				844 27.870		348.37			
36				908 27.870		348.37			
37				972 27.870		348.37			
38	54.178			248 27.870		348.37			
39				248 27.870		348.37			
40				248 27.870		348.37			
41	54.178	10.45	51 75.2	248 27.870	75.248	348.37			
42	54.178	10.45	51 75.2	248 27.870	75.248	348.37			
43	54.178	10.45	51 75.2	248 27.870	75.248	348.37			
44	54.178	10.45	51 75.2	248 27.870	75.248	348.37			
45				248 27.870		348.37			
46				248 27.870		348.37			
47				487 22.773		284.66			
48				487 22.773		284.66			
49				686 22.773		284.66			
50				686 22.773		284.66			
51				686 22.773		284.66			
52	50.174			686 22.773		284.66			
53 54	50.174			686 22.773 686 22.773		284.66			
55				686 22.773		284.66			
56				686 22.773		284.66			
30	JU.114	0.003		200 22.110		. 201.00			

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.	Sheet No.			Rev.	
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

ì	Node	P4 [kN/m]	Y4 [mm]	P5 [kN/m]	Y5 [mm]	P6 [kN/m]	Y6 [mm]
	57	50.174	8.5399	69.686	22.773	69.686	284.66
	58	50.174	8.5399	69.686	22.773	69.686	284.66
	59	73.785	8.5399	102.48	22.773	102.48	284.66
	60	73.785	8.5399	102.48	22.773	102.48	284.66
	61	73.785	8.5399	102.48	22.773	102.48	284.66
	62	73.785	8.5399	102.48	22.773	102.48	284.66
	63	73.785	8.5399	102.48	22.773	102.48	284.66
	64	73.785	8.5399	102.48	22.773	102.48	284.66
	65	73.785	8.5399	102.48	22.773	102.48	284.66
	66	73.785	8.5399	102.48	22.773	102.48	284.66
	67	73.785	8.5399	102.48	22.773	102.48	284.66
	68	73.785	8.5399	102.48	22.773	102.48	284.66
	69	73.785	8.5399	102.48	22.773	102.48	284.66
	70	73.785	8.5399	102.48	22.773	102.48	284.66

Output for load increment 1

Iteration	Max at	Disp	Pressure
	Inc node	error	error
	Disp		
	[mm]	[mm]	[kN/m²]
11	3.22 1	0.0005	0.03

- The file is not completely converged till the specified tolerance limit.

	ne file is not completely converged						mıt.	
Node	Level	Defl	Rotation	Soil	Pressure	-	Shear	
	[m]	[mm]	[rad]	_	[kN/m²]	[kNm]	[kN]	
	39.200	-3.2237	-574.84E-6	0	0.0	0.0		
	39.200					-5.7484		
	39.138		-783.38E-6	0	0.0			
	39.077		-976.87E-6	0	0.0	-4.9476		
	39.015		-0.0011553	0	0.0	-4.5472	-6.5000	
5	38.954		-0.0013187	0	0.0	-4.1468		
	38.892	-2.8996	-0.0014670	0	0.0	-3.7464	-6.5000	
7	38.830	-2.8051	-0.0016003	0	0.0	-3.3460	-6.5000	
8	38.769	-2.7028	-0.0017186	0	0.0	-2.9456	-6.5000	
9	38.707	-2.5937	-0.0018218	0	0.0	-2.5452	-6.5000	
10	38.646	-2.4787	-0.0019099	0	0.0	-2.1448	-6.5000	
11	38.584	-2.3587	-0.0019830	0	0.0	-1.7444	-6.5000	
12	38.522	-2.2347	-0.0020410	0	0.0	-1.3440	-6.5000	
13	38.461	-2.1075	-0.0020840	0	0.0	-0.94361	-6.5000	
14	38.399	-1.9782	-0.0021120	1	-2.3878	-0.54321	-6.4892	P
	38.331		-0.0021254	1	-8.0953	-0.10009		P
	38.269		-0.0021217	2	-18.878			P
	38.190		-0.0020958	2	-27.877			P
	38.112		-0.0020468	2	-30.476			P
	38.033		-0.0019761	2	-28.780	1.6908		P
	37.967		-0.0019017	3				P
	37.902		-0.0018145	3	-94.041			P
	37.836		-0.0017168	3	-95.948			P
	37.771		-0.0016109	3	-97.764			P
	37.705		-0.0014990	3	-92.613			-
	37.640		-0.0013835	3				
	37.575		-0.0013633	3				
	37.509		-0.0011496	3	-61.957	2.9124		
	37.309		-0.0011496	3				
	37.378		-922.81E-6	3		2.7515		
	37.373		-815.40E-6	3				
	37.313		-713.25E-6	3	-25.687			
			-617.08E-6	3				
			-527.40E-6	3	-11.122			
			-444.57E-6	3	-4.8848			
			-368.78E-6	3				
						1.8106		
	36.920		-300.08E-6	3				
	36.855		-238.39E-6	3		1.4596		
	36.789		-183.54E-6	3				
	36.724		-135.26E-6	3	15.094			
	36.658		-93.216E-6	3	16.781			
	36.593		-57.030E-6	3	17.889			
	36.527		-26.289E-6	3	18.500			
	36.462		-558.77E-9		18.693			
44	36.396	0.081807	20.604E-6	3	18.539	0.47831	1.5757	

M1 Junction 23-25a

Lateral load analysis (5kN)

Job No.	;	Sheet	No.	Rev.	
233630					
Drg. Ref.					
Made by MC	Date 06-Oct-2023		Checked	Date	

Node	Level	Defl	Rotation [rad]	Soil	Pressure [kN/m²]	Bending	Shear	
	[m]	[mm]	[Lau]		[VIN \ III _]	[kNm]	[kN]	
45	36.331	0.079879	37.643E-6	3	18.103	0.38071	1.4086	
46	36.265	0.076960	50.995E-6	3	17.441	0.29392	1.2465	
47	36.200	0.073275	61.085E-6	3	20.322	0.21754	1.0905	
48	36.133	0.068703	75.194E-6	3	19.054	0.14994	0.94174	
49	36.067	0.063358	84.388E-6	4	19.915	0.091974	0.77924	
	35.974	0.055224	90.526E-6	4	17.358	0.028304	0.59776	
51	35.882	0.046814	90.663E-6	4	14.714	-0.018491	0.42904	
52	35.789	0.038602	86.488E-6	4	12.133	-0.050982	0.28780	
53	35.697	0.030920	79.414E-6	4	9.7187	-0.071677	0.17285	
54	35.605	0.023980	70.593E-6	4	7.5374	-0.082924	0.082069	
	35.512	0.017900	60.933E-6	4	5.6264	-0.086843	0.012820	
	35.420	0.012724	51.127E-6	4	3.9995	-0.085293	-0.037818	
	35.327	0.0084409	41.682E-6	4	2.6531	-0.079855	-0.072815	
	35.235	0.0049995	32.949E-6	4	1.5714	-0.071837	-0.094042	
	35.165	0.0029032	26.930E-6	5	1.3419	-0.064732	-0.10734	
	35.077	840.58E-6	20.264E-6	5		-0.054786	-0.11531	
-		-681.97E-6	14.623E-6		-0.31523	-0.044501	-0.11568	
		-0.0017550	10.010E-6		-0.81121	-0.034491	-0.11005	
		-0.0024667	6.3741E-6	5		-0.025193	-0.10031	
		-0.0028993	3.6274E-6	5		-0.016893	-0.087921	
		-0.0031259	1.6581E-6	5		-0.0097675	-0.074012	
		-0.0032092	340.82E-9	5		-0.0039080	-0.059388	
-		-0.0032009		5		651.64E-6	-0.044590	
-		-0.0031405		5	-1.4516	0.0039149	-0.029951	
		-0.0030562		5		0.0059063	-0.015646	
70	34.200	-0.0029646	-1.0543E-6	5	-1.3703	0.0066600	-0.0017476	

- The letter "P" next to a result indicates that the effective earth pressure is greater than 0.99 times the passive limit, but within the convergence pressure limit.

EXTREME values so far:-

Defle	ctions	Rotat	ions	Momen	ts	Shear	s
Min	Max	Min	Max	Min	Max	Min	Max
[mm]	[mm]	[rad]	[rad]	[kNm]	[kNm]	[kN]	[kN]
-3 2237	0 082487	-0 0021254	90.663E-6	-5 7484	2 9403	-6.5000	2 7096

RESTRAINT FORCES

No. Node Lateral Moment force

[kN] [kNm] 1 1 0.0 5.7484

TITLE;	HE614830-VAE-SGY-P015_S2_ALLGENR-CA-CB-0011	Notes	
Pile Gro	up Efficiency in accordance with Perko, Section 5.4	ECONDARY PILES	
Symbol			Units
P_{ug}	Ultimate capacity of the group = $q_{ult}(m_1)(m_2)+2Ts(n-1)(m_1+m_2)$	2521.20	kN
q _{ult}	ultimate bearing pressure of soil or rock	675.00	kN/m²
	soil type	cohesive	
	q_{ult} for non cohesive soil = $q'(N_q-1)$	-17.69	kN/m²
	q _{ult} for cohesive soil = 9s _u	675.00	kN/m²
m ₁	width of pile group in plan view	1.8	m
m ₂	breadth of pile group in plan view	2	
Т	installation torque	12	kN/m³
S	spacing of helical bearing plates along the length of the shaft	<u> </u>	
n	number of helical bearing plates per pile	2	
η	group efficiency of a helical pile system = $P_{ug}/\Sigma_i P_u$	2.50	
q'	effective overburden stress at bearing depth	17.69	kN/m ²
d	Embedment depth of group, i.e. bearing level for group (worst case soi	2.16	m
γ	unit weight of soil	18	kN/m³
N_{q}	Bearing capacity factor		
ф	Angle of internal friction		o
Su	undrained shear strength	75	
i	number of piles in group	4	
Pu	Ultimate axial capacity of a helical pile	252.5	kN

Group capacity exceeds sum of individual capacities so no issues
Result: related to group effects

APPENDIX C: Drawings

	Causing minor damage to existing structure during piling operation Undertake investigations to determine position and level of existing structure prior to piling Use mechanical lift. Adequate lighting. Manual handling risk assessment. Create level access on sloping ground. Exclusion zone around work zone area. Provide with information and drawings, contractor to ensure adequate		
Activity	Residual risk	Control	
Piling near to existing structures			
Piling installation including work on sloping ground	Personal injury	assessment. Create level access on sloping ground. Exclusion zone	
Buried/overhead services	Damage to service and workers	Provide with information and drawings, contractor to ensure adequate steps are followed onsite to locate services	
Unexpected ground conditions	Not being able to get piles into ground, or longer piles required	Pre-auger, to request redesign, or to request site move.	
Piles installed out of position	Not being able to install grillage in correct position	Ensure piles are installed within allowable tolerance	
Lifting materials	Dropping materials	Certification for all lifting equipment and provide suitable supervision	

SAFETY, HEALTH AND ENVIRONMENTAL INFORMATION The significant residual risks detailed on this drawing are linked to the efferencing system within the Hazard Elimination and Risk Reduction S-Survey

SIGNIFICANT RESIDUAL RISKS

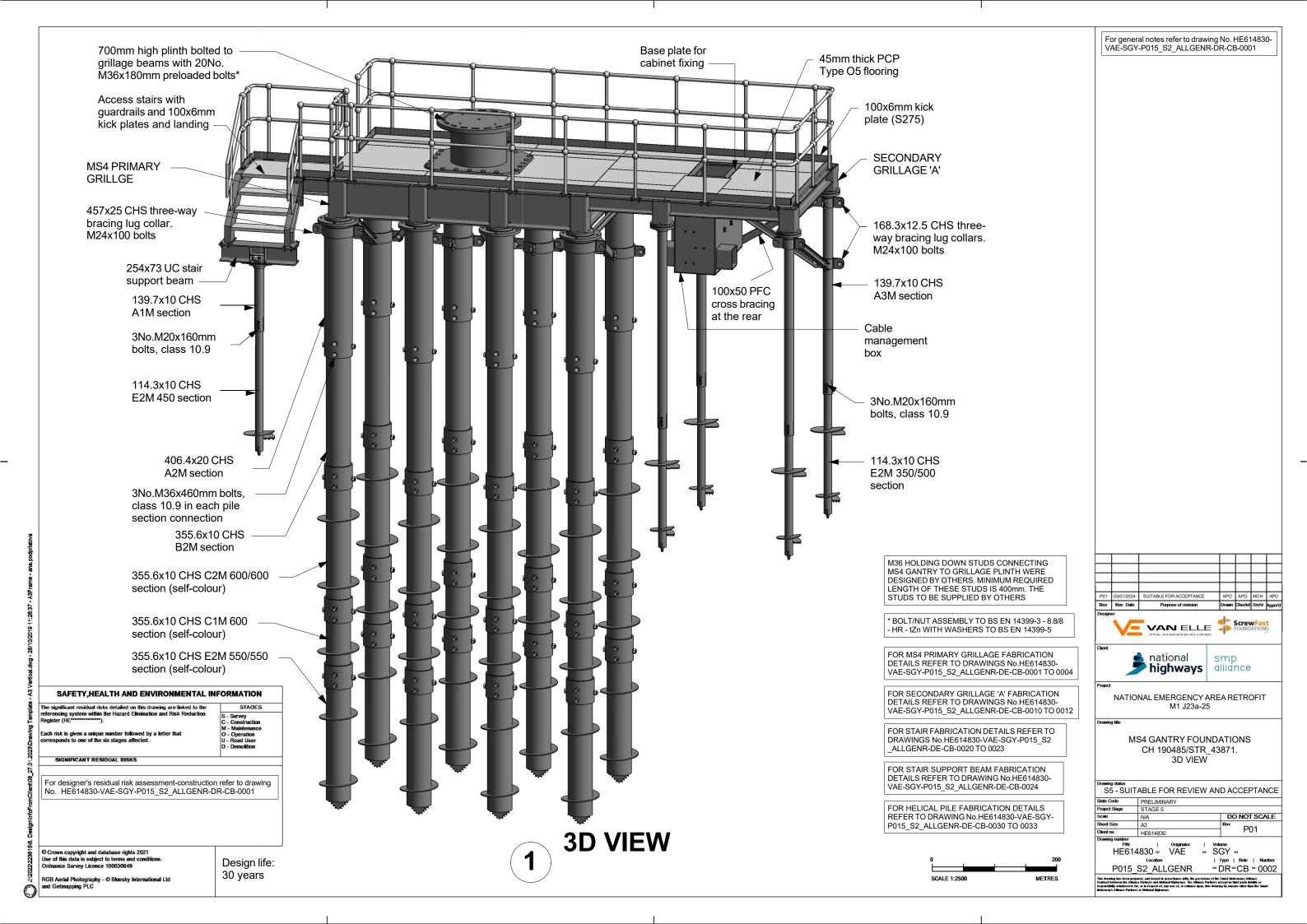
© Crown copyright and database rights 2021 Use of this data is subject to terms and conditions. Ordnance Survey Licence 100030649

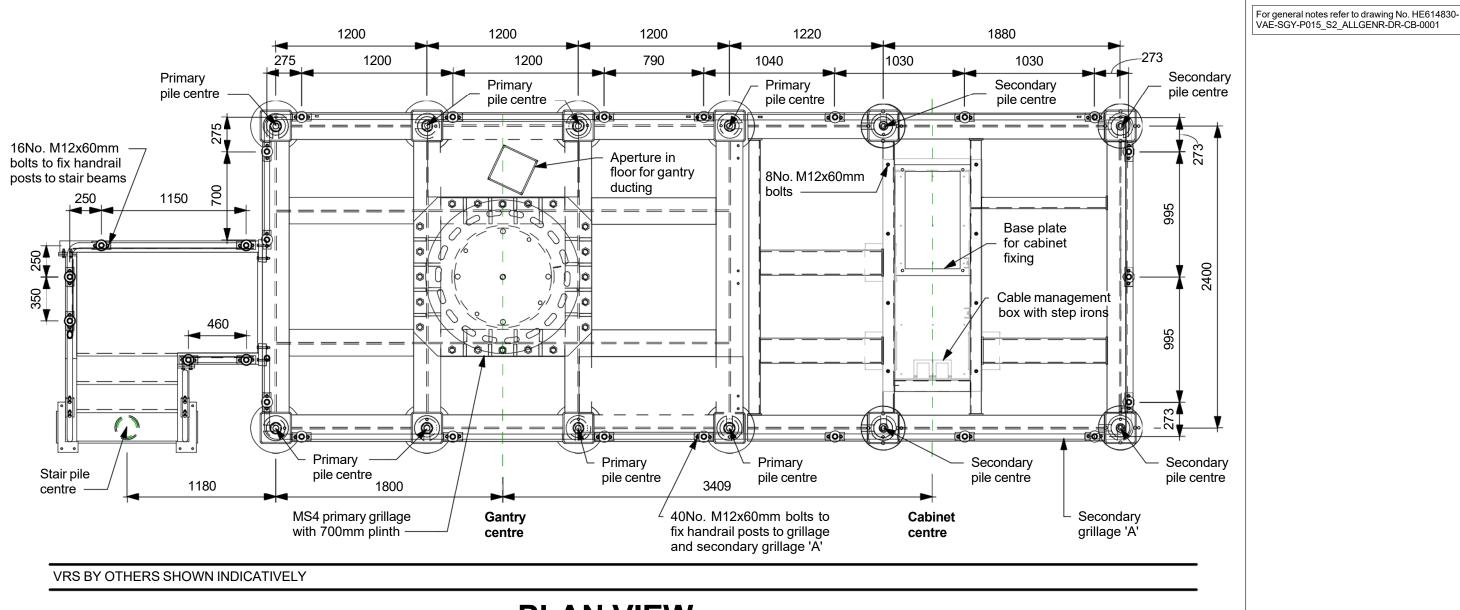
RGB Aerial Photography - © Bluesky International Ltd and Getmapping PLC

General Notes:

- Conforms to BS 8888. All geometrical tolerances must not exceed steel execution tolerances specified in BS EN 1090 for the execution class specified in General Note 5.
- 2. All dimensions are in millimetres unless otherwise stated.
- All levels are in metres related to site datum unless otherwise specified
- This drawing is to be read in conjunction with the relevant specification.
- Design & fabrication to latest edition of BS EN 1090-2 (execution class 3), BS EN 1990, BS EN 1993-1, BS EN 1993-5 unless otherwise specified.
- All constituent steel products to be CE marked and DoP's shall be provided for acceptance.
- All RHS, SHS and CHS to be minimum S355 J2H complying with BS EN 10210 unless otherwise stated.
- All open sections and plates to be S355 J2 complying with BS EN 10025 unless otherwise stated. Plates greater than 55mm thick are to be grade S355 NL unless otherwise stated
- All welding to be by qualified artisans certified to BS EN ISO 9606-1 in accordance with client requirements and approved by Screwfast Foundations.
- All welds to be BS EN 1011-1 and are specified as 'z leg length' on drawing. Continuous fillet welds to all seams unless otherwise specified
- Trim or notch all mating ends of sections and prepare all edges of sections or plates for acceptable fit before welding.
- 12. Do not grind off welds unless otherwise specified.
- All butt welds where specified to full penetration and capped over with additional cap weld where specified.
- 14. All structural bolts to be BS EN 15048 class 8.8 unless noted otherwise. Class 10.9 nuts for galvanised class 8.8 bolts. Class 8.8 nuts for other class 8.8 bolts. Bolts connecting pile sections to be zinc coated below 2m below ground level and galvanised within 2m below ground level. Bolts connecting plinth to grillage to be preloaded bolts to BS EN 14399-1. Protection system SHW Series 1900 Table 19/4C G2b upper section.
- 15. All structural bolts to be torqued as per the installation requirements on the quality checklist. Fit & tighten lock nuts as required after primary nuts have been torqued.
- 16. All holding down bolts, washers, nuts & lock nuts as specified to be provided by others unless otherwise agreed.
- 17. Min. 40Mpa non-shrink grout to be used where specified unless otherwise indicated.
- 18. Grout to be placed as soon as reasonably possible after placement
- All steelwork unless specifically indicated to be self colour, to be protected with a coating system.
- 20. All grillage sections and plates and the top 2 metres of the pile below ground level and all visible pile above ground level to be in accordance with protection system SHW Series 1900 19/4C - G2b ground section for piles and upper section for grillages.
- All galvanising to be in accordance with BS EN ISO 1461 min. cover 85 microns unless otherwise stated. All galvanising drainage holes to be fitted with plastic plugs during assembly.
- 22. It is the fabricators responsibility to perform all quality checks in accordance with Screwfast quality procedures and observe all normal good practice.
- All health and safety regulations during fabrication, handling, loading or offloading and while transporting components or complete assemblies should be adopted.
- 24. The fabricator must assemble the grillage prior to delivery to ensure full design compliance. Failure to comply could necessitate in on site remedial work which will be at the cost of the fabricator.
- 25. Grillages and other structures or substructures to be delivered in fully or partially assembled form as confirmed by the Screwfast project manager prior to delivery on site.
- 26. Where required, the supply and installation of earth bonding equipment is by others. Where foundation earthing or equipotential bond testing is required, this is to be by others.
- 27. This design is copyright to Screwfast Foundations and some patents may apply.

P01	20/12/2023	SUITABLE FOR ACCEPTANCE	APO	APO	APO	APO
Rev	Rev. Date	Purpose of revision	Drawn	Checkd	Rev'd	Apprv'd
Designe	er:					

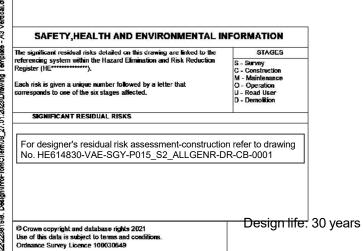

NATIONAL EMERGENCY AREA RETROFIT M1 J23a-25

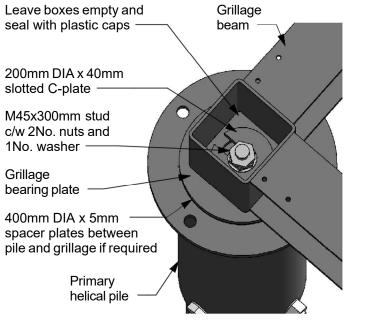

Drawing title

GENERAL NOTES.
DESIGNER'S RESIDUAL RISK
ASSESSMENT - CONSTRUCTION NOTES

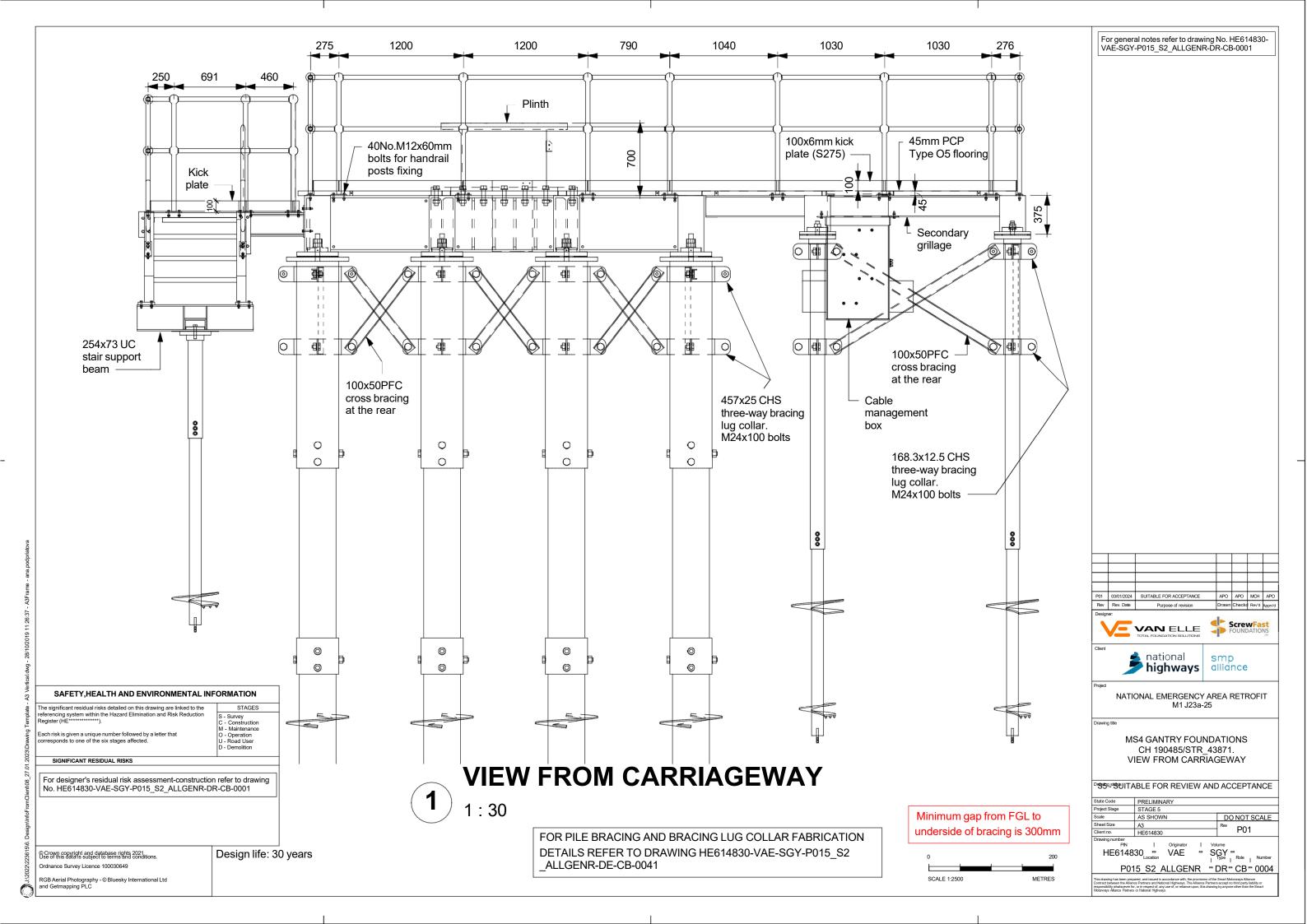
Drawing status
S5 - SUITABLE FOR REVIEW AND ACCEPTANCE

0 200 SCALE 1/2500 METERS

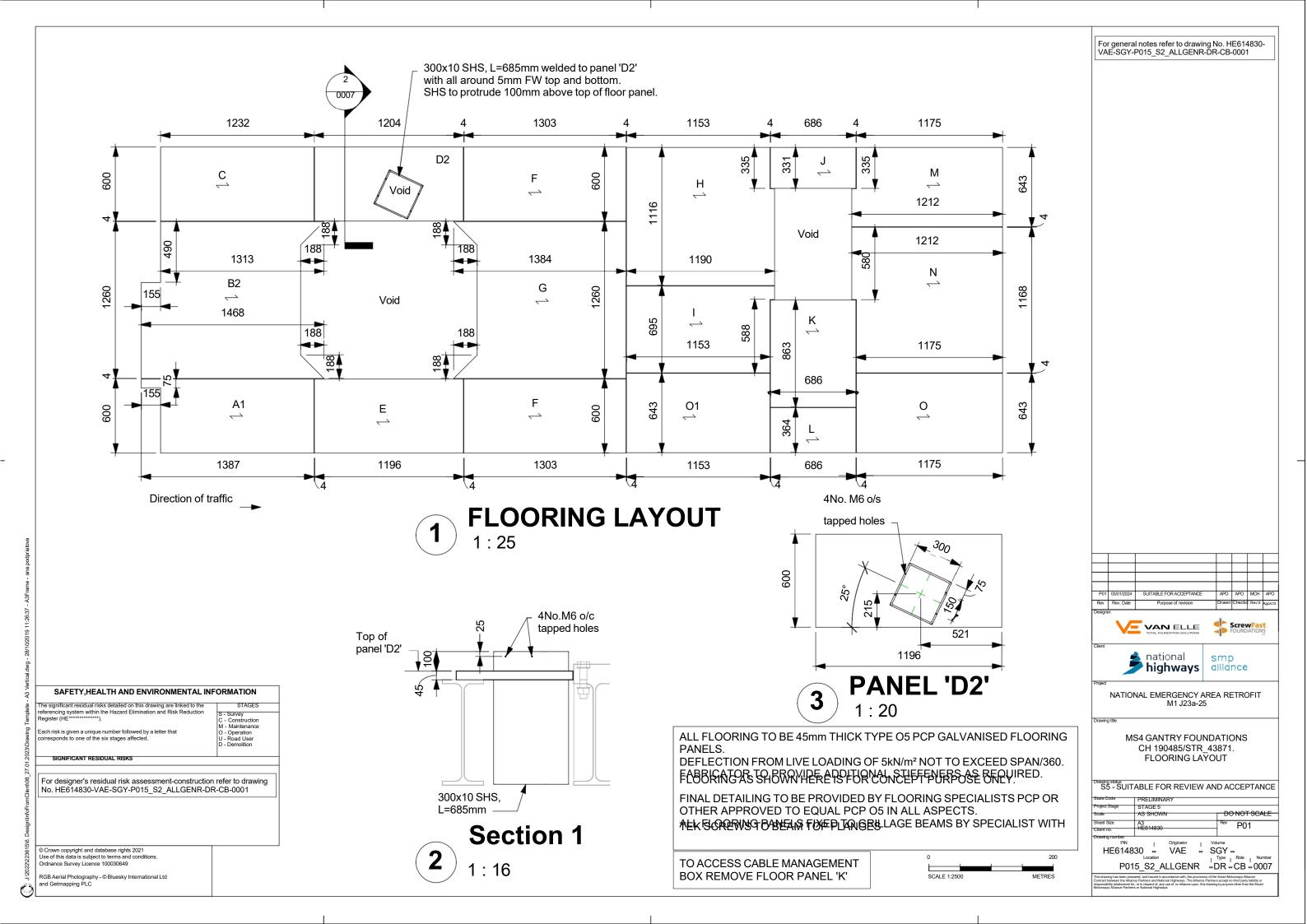


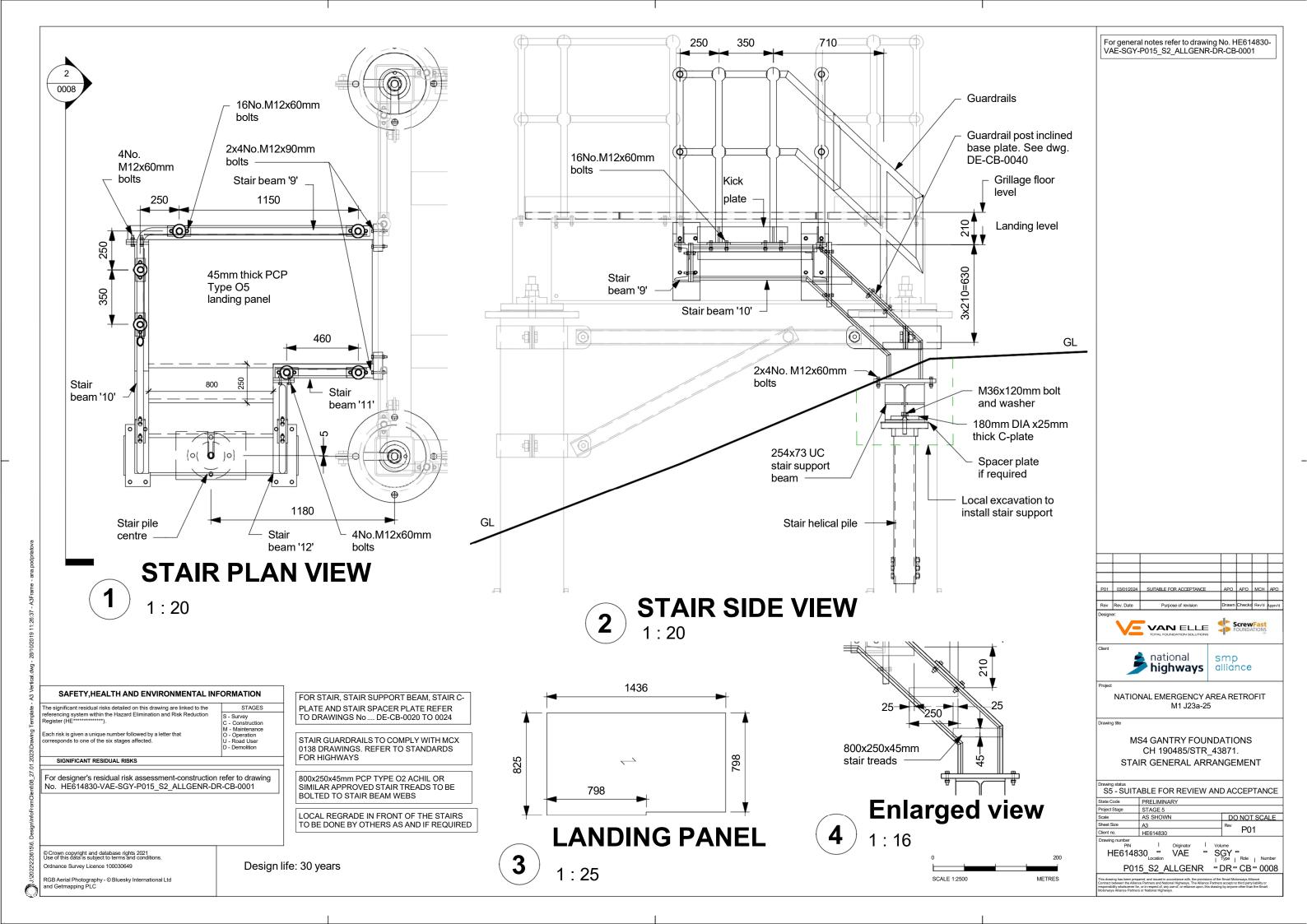


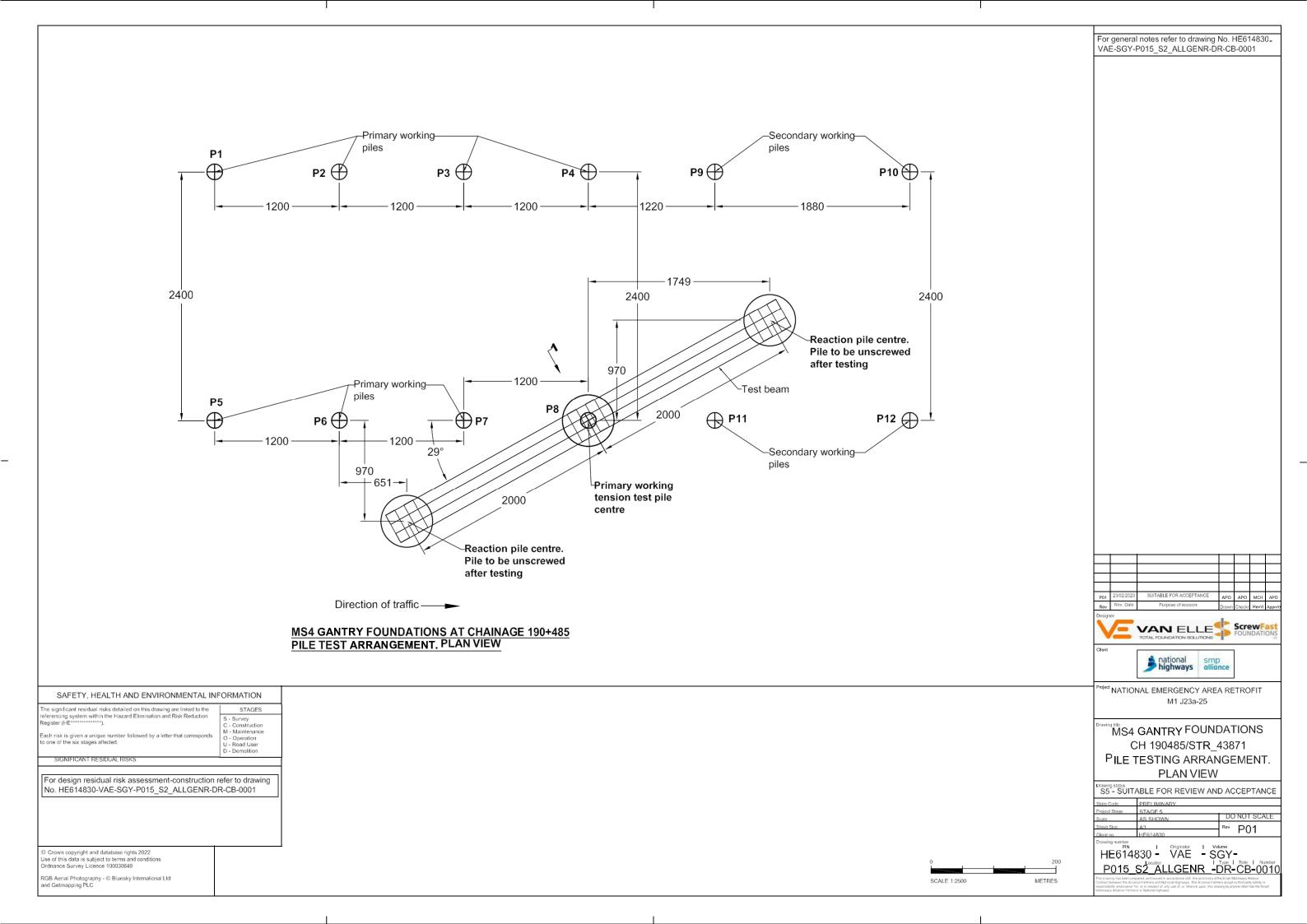
FOR HANDRAIL POST DETAILS REFER TO DRAWING No. HE614830-VAE-SGY-P015_S2_ALLGENR -DE-CB-0040

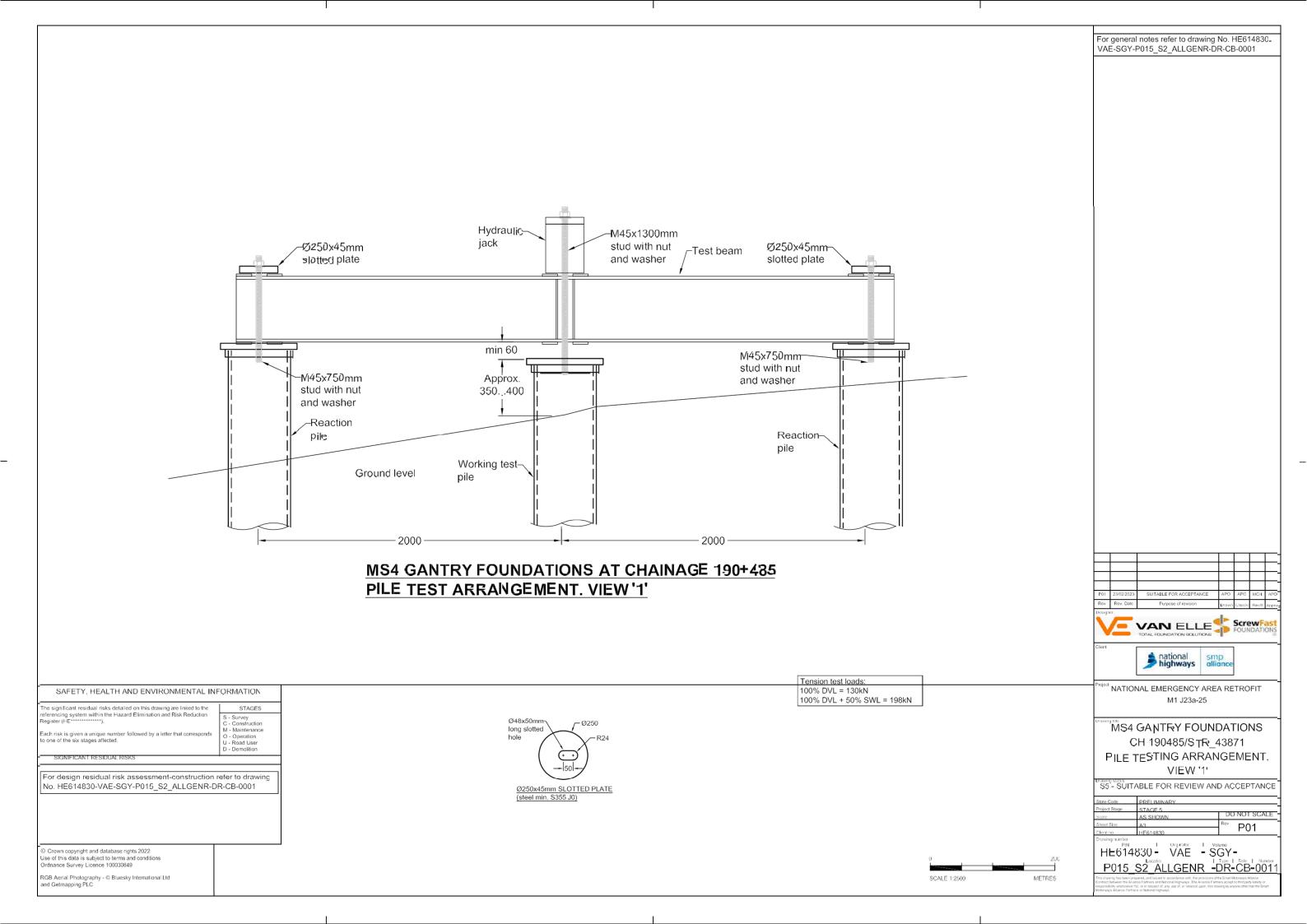


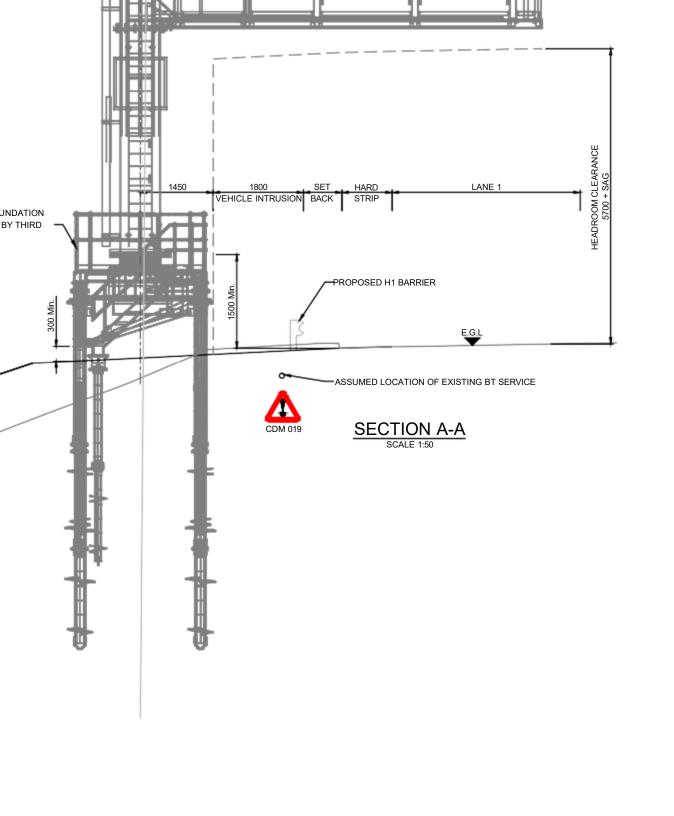


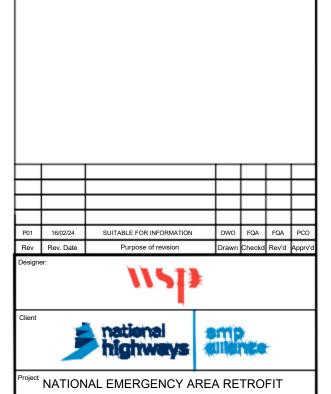

CONNECTION DETAIL

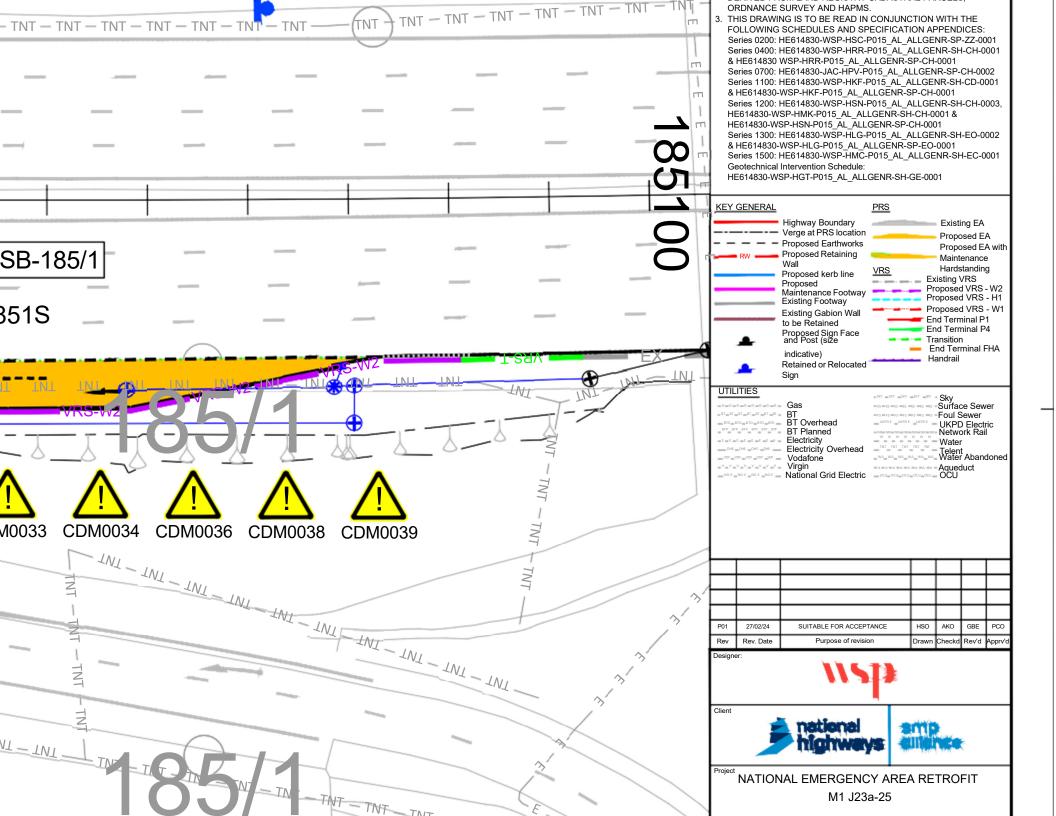

0 200 SCALE 1:2500 METRES

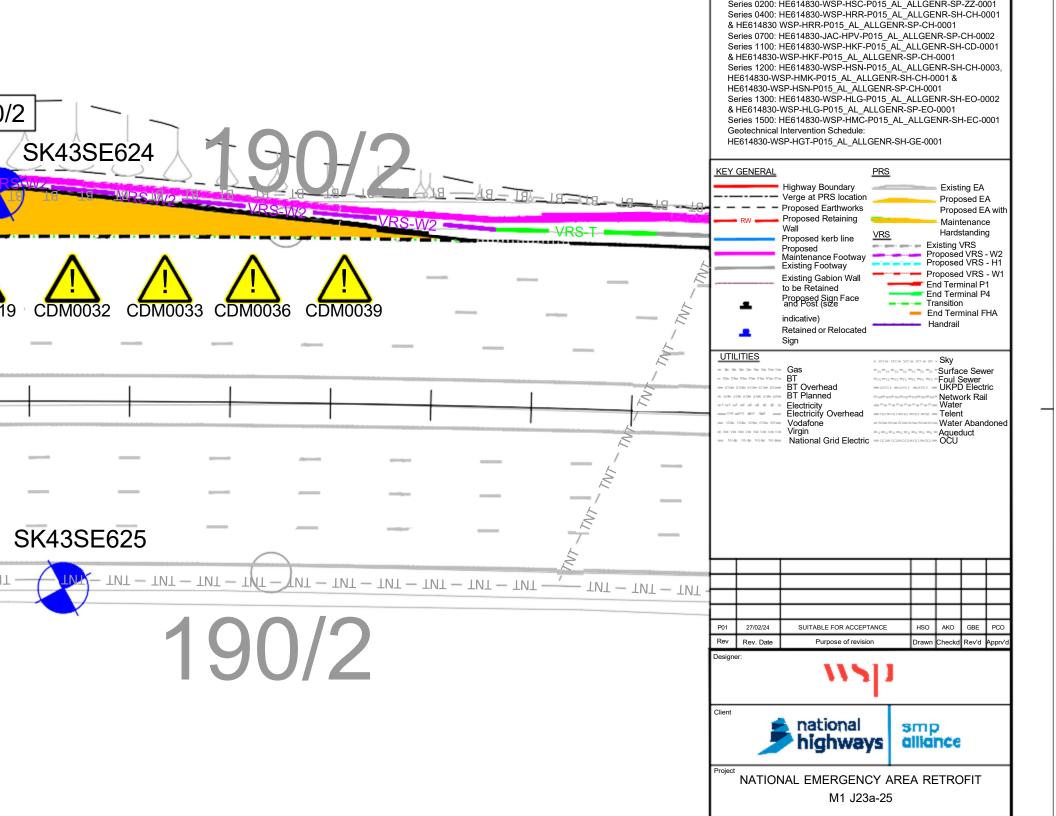


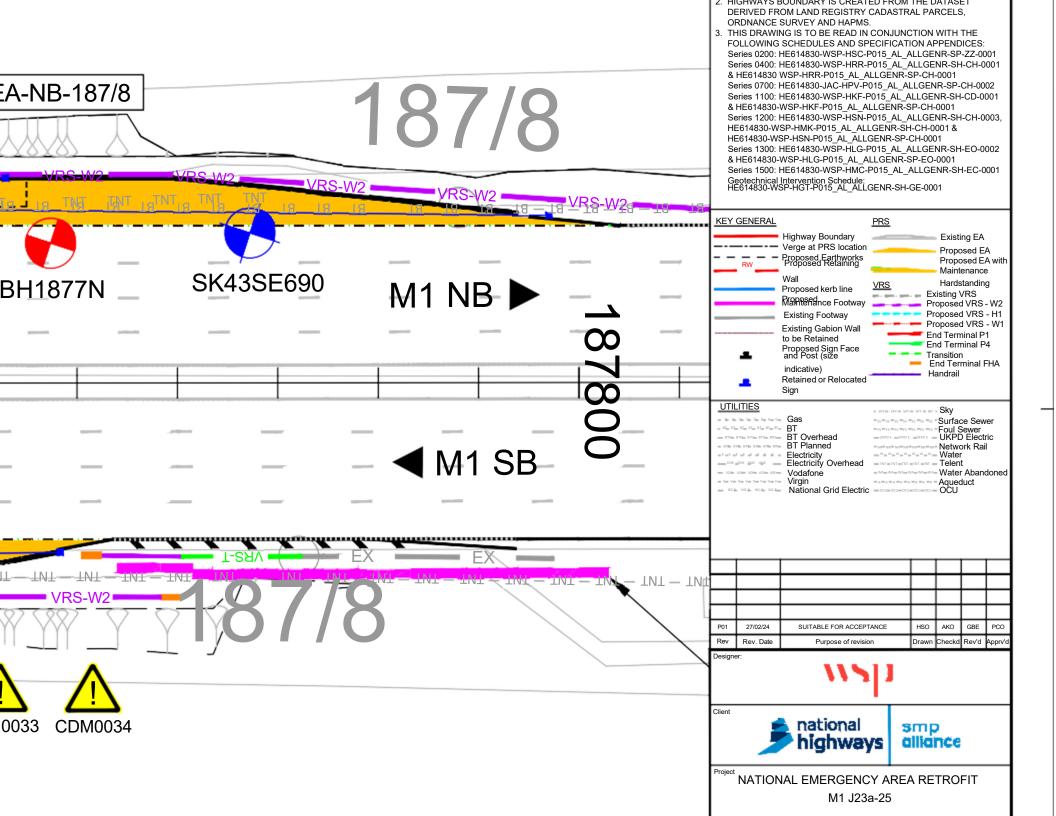


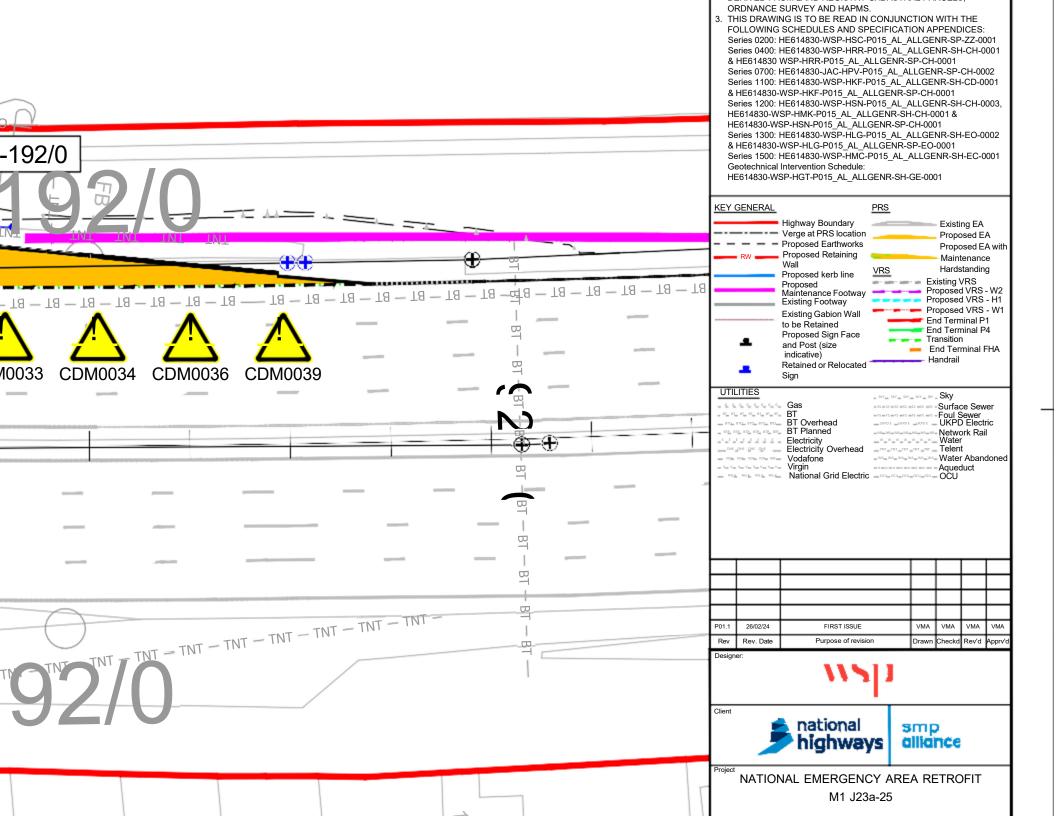


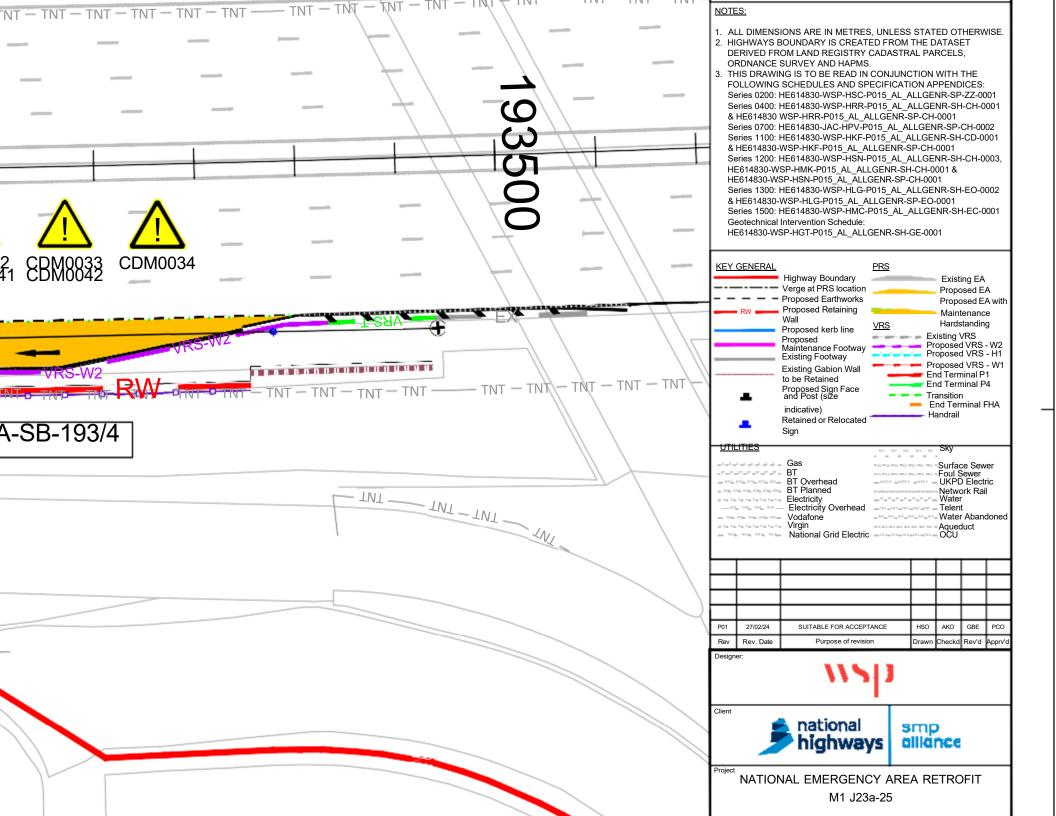









M1 J23a-25


Annex E General Arrangement Drawings of the Proposed Locations

Annex F GDMS Maps - Site location plan, Superficial geology, Bedrock geology, Geotechnical asset data base, Flood maps (All Extracted from GDMS)

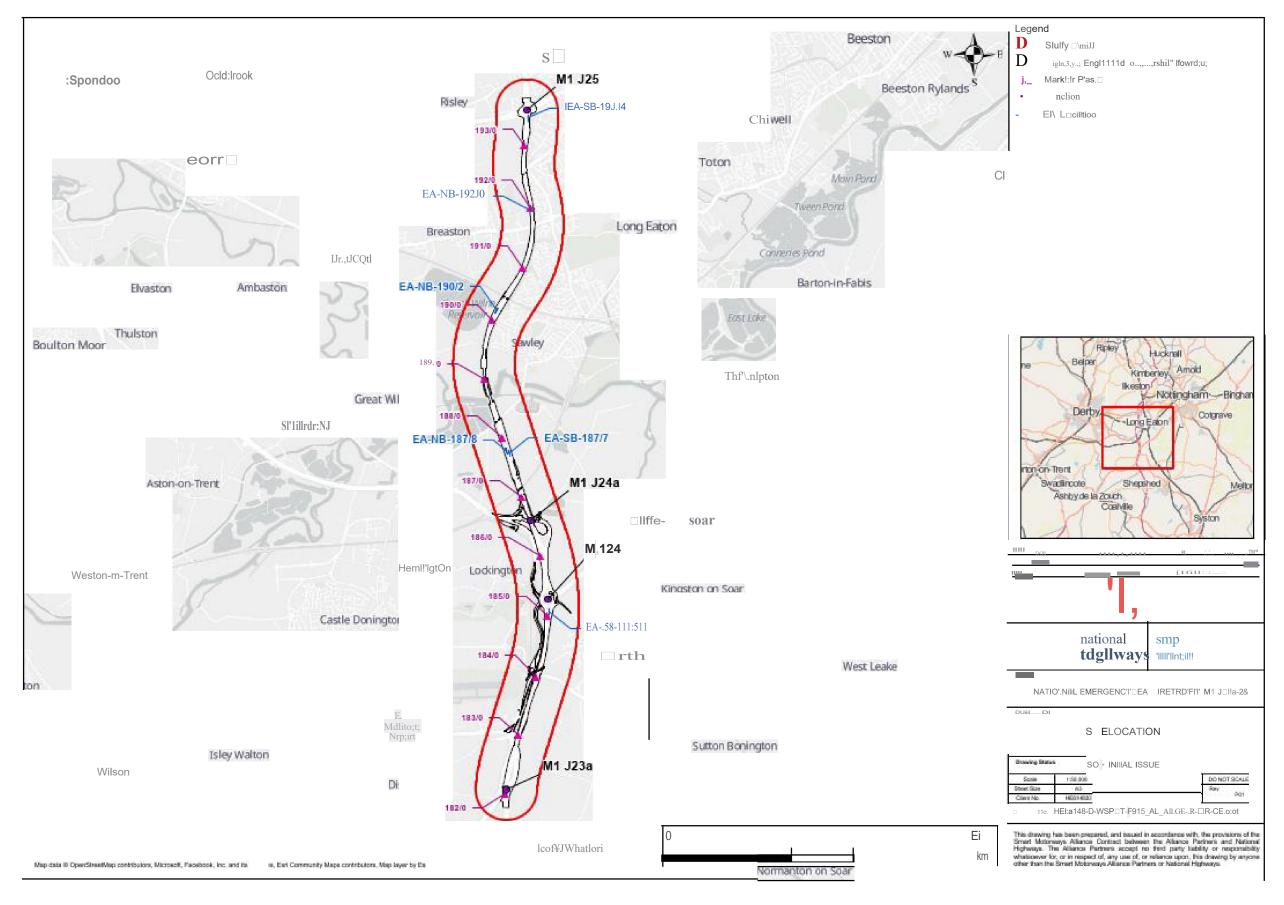


Figure 19-15: Site location and extent (Section 1.3)

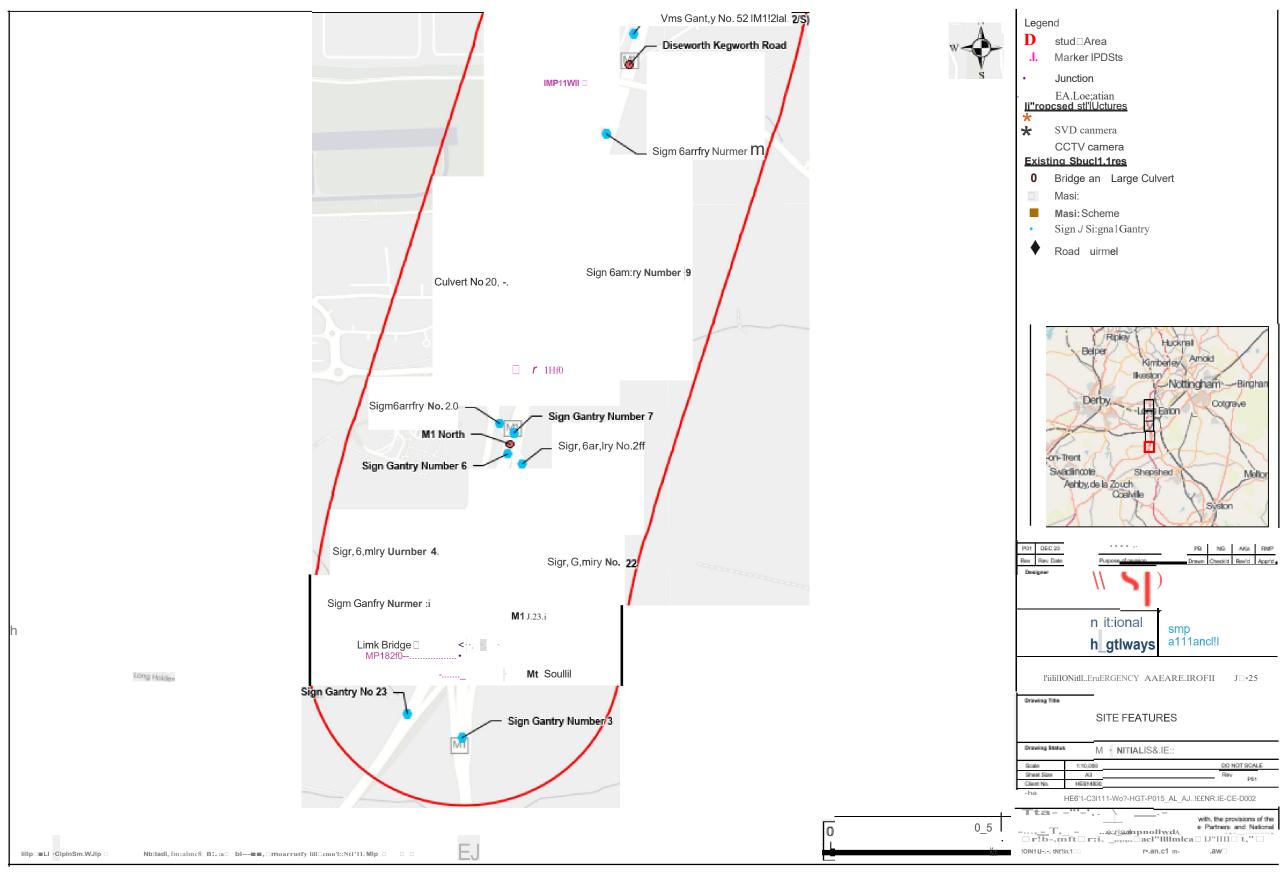


Figure 19-16:Site location and extent (Section 1.3)

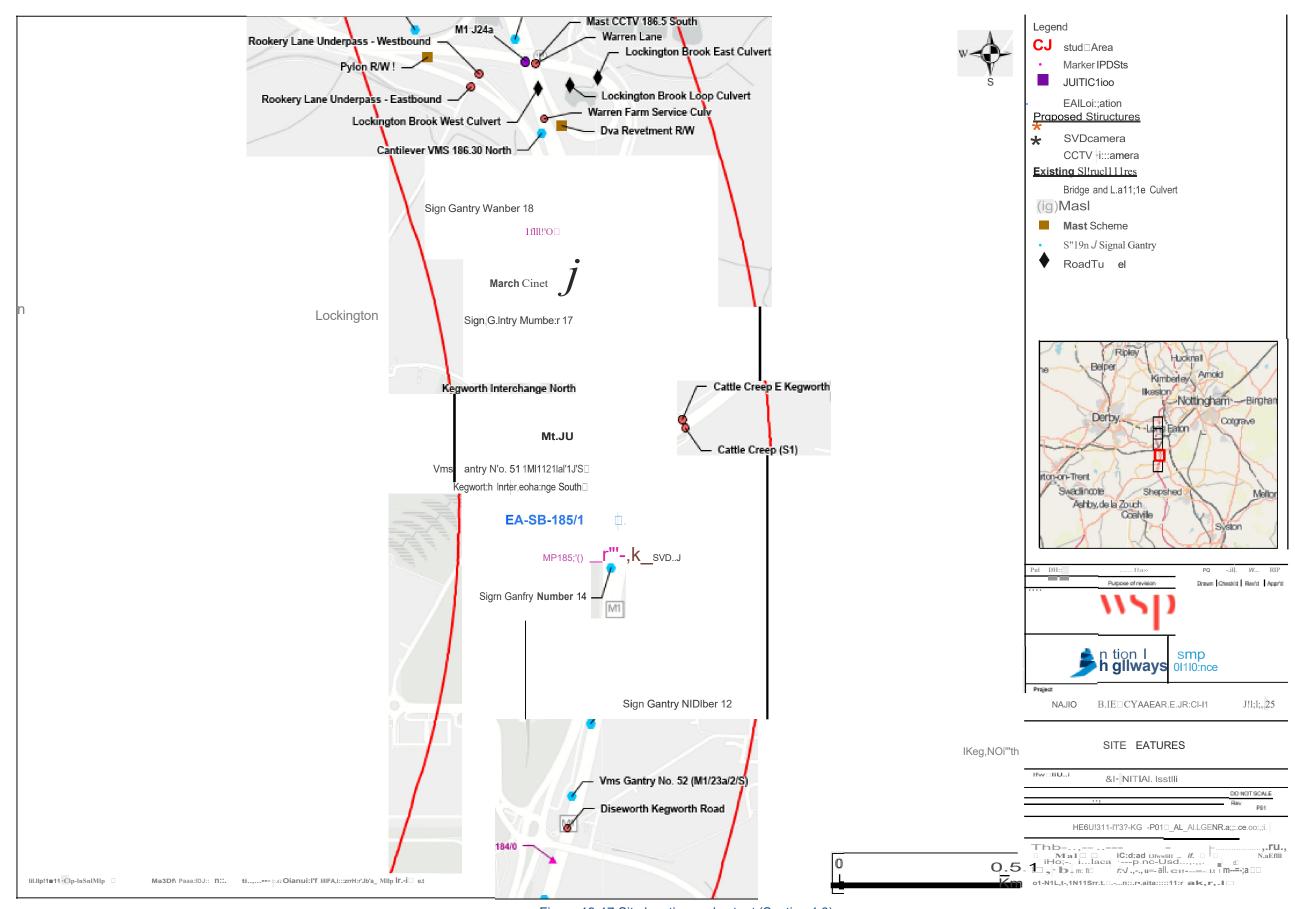


Figure 19-17:Site location and extent (Section 1.3)

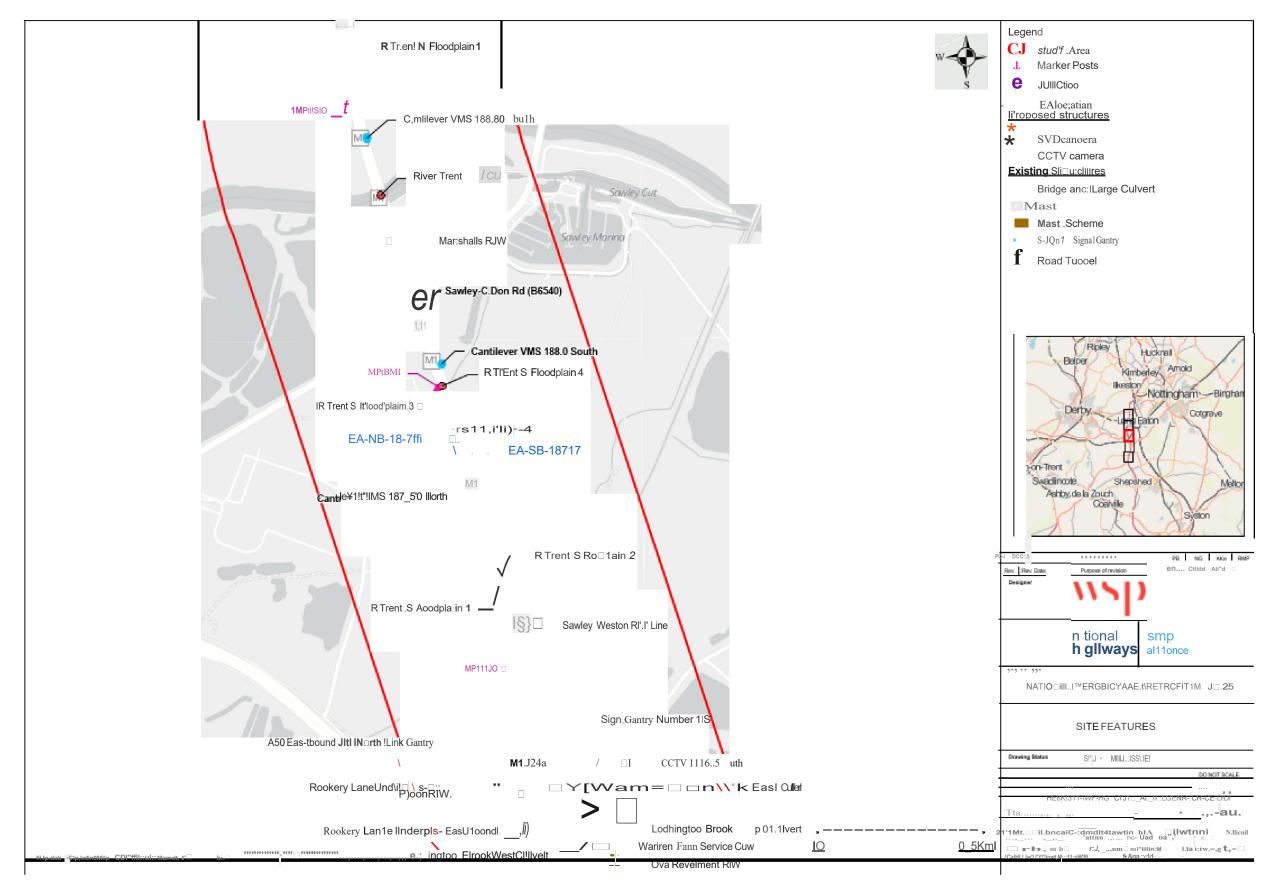


Figure 19-18:Site location and extent (Section 1.3)

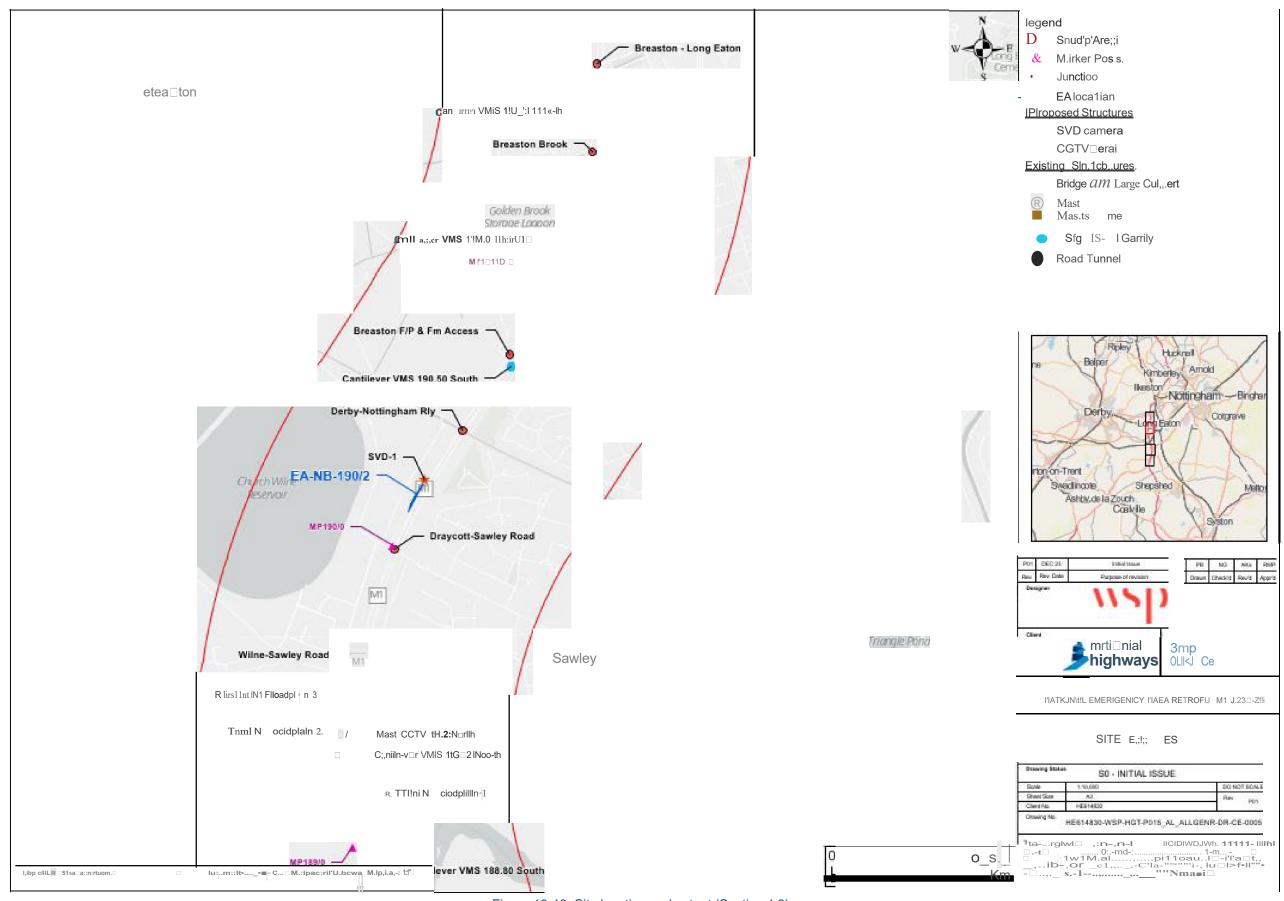


Figure 19-19: Site location and extent (Section 1.3)

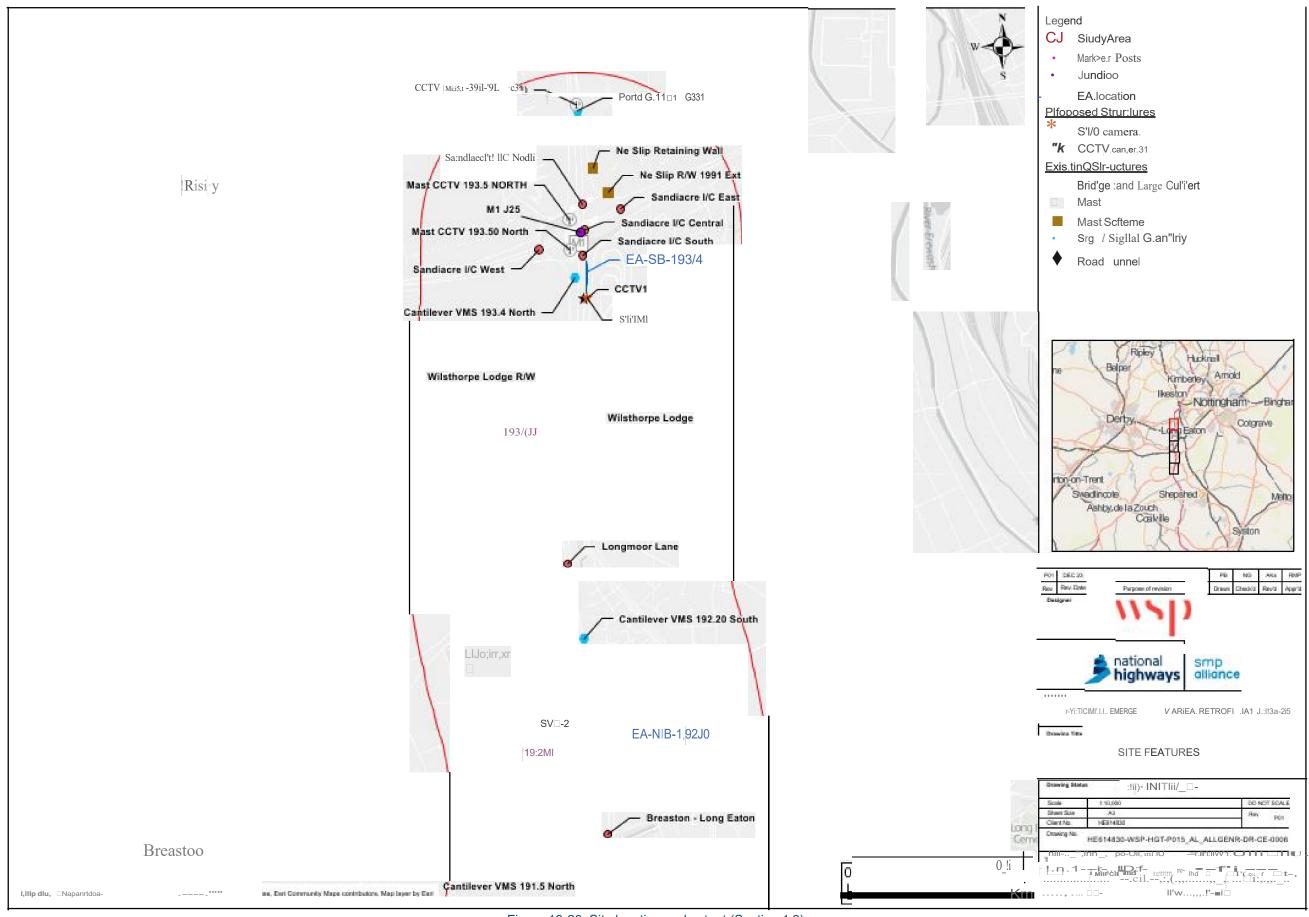


Figure 19-20 :Site location and extent (Section 1.3)

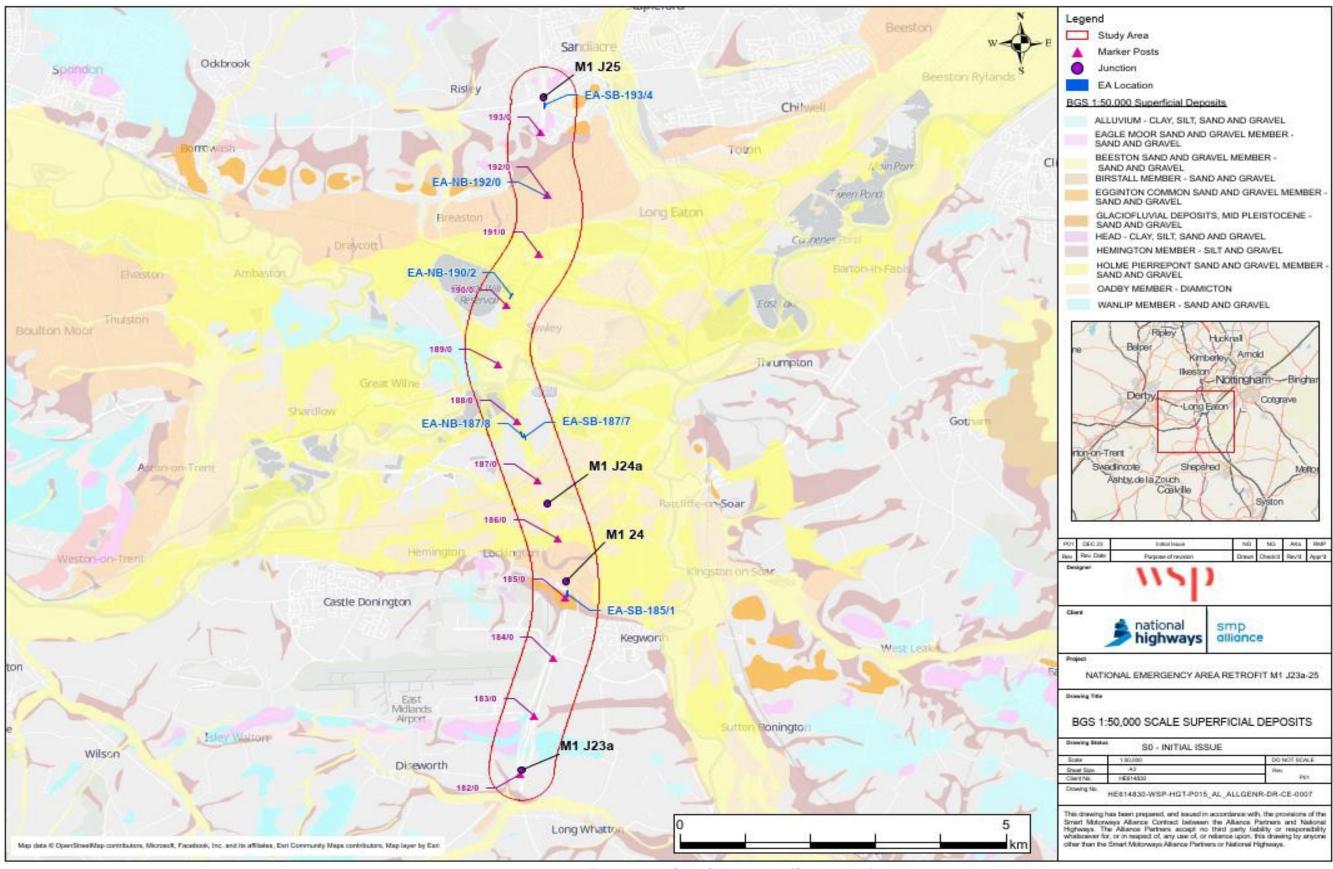
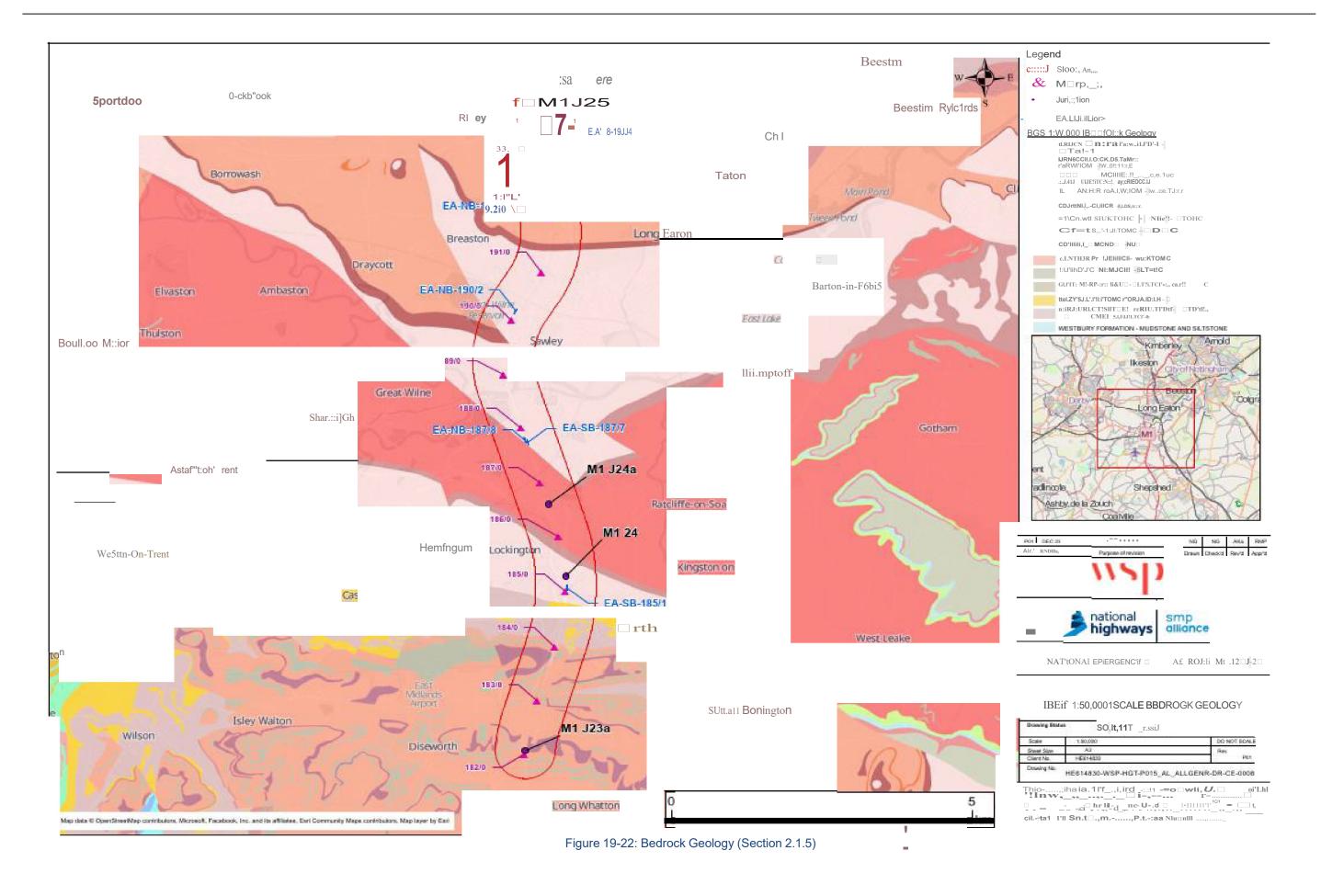
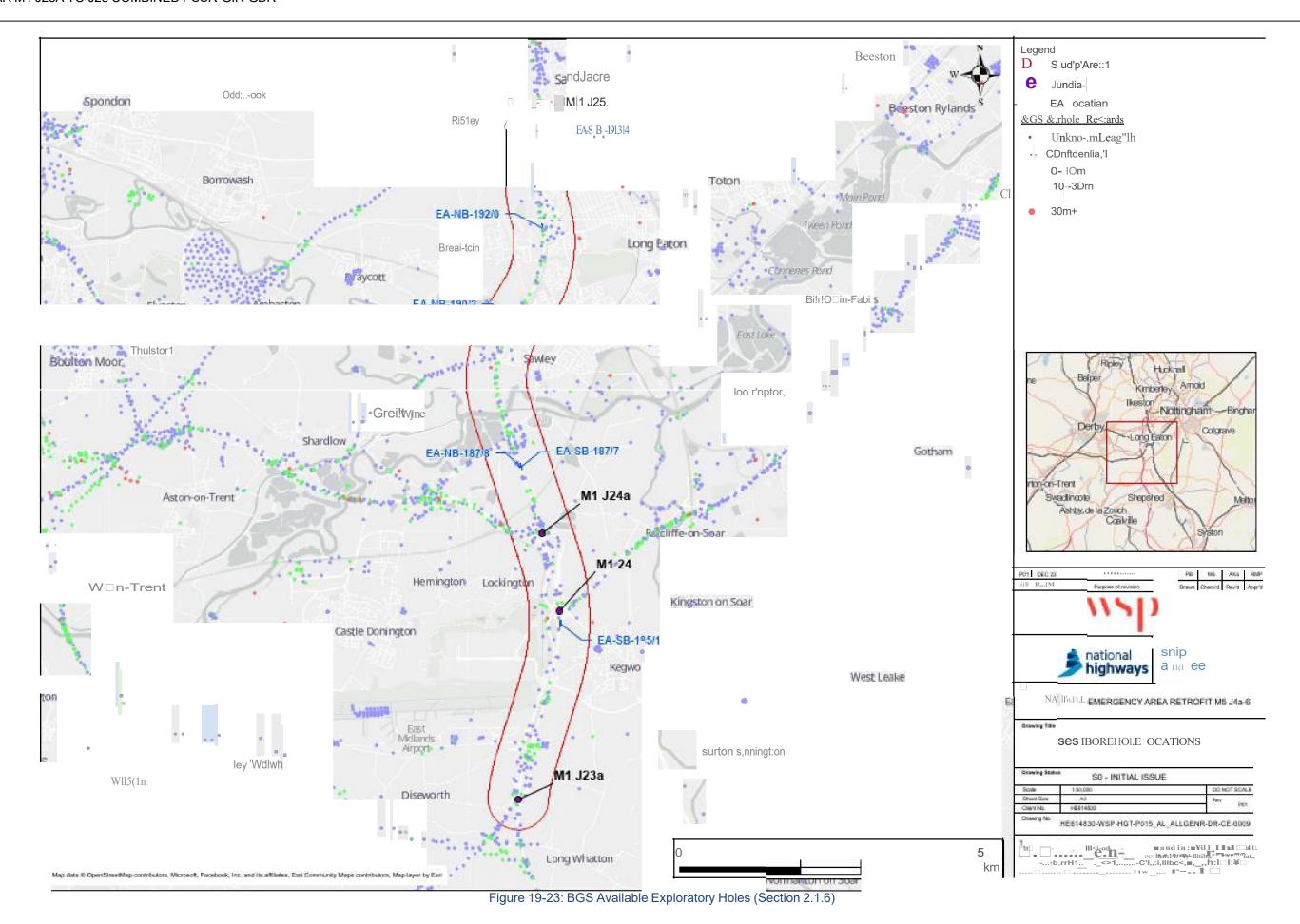




Figure 19-21: Superficial deposits (Section 2.1.4)

HE614830-WSP-HGT-P015_AL_ALLGENR-RP-GE-0003 P03 28/03/24

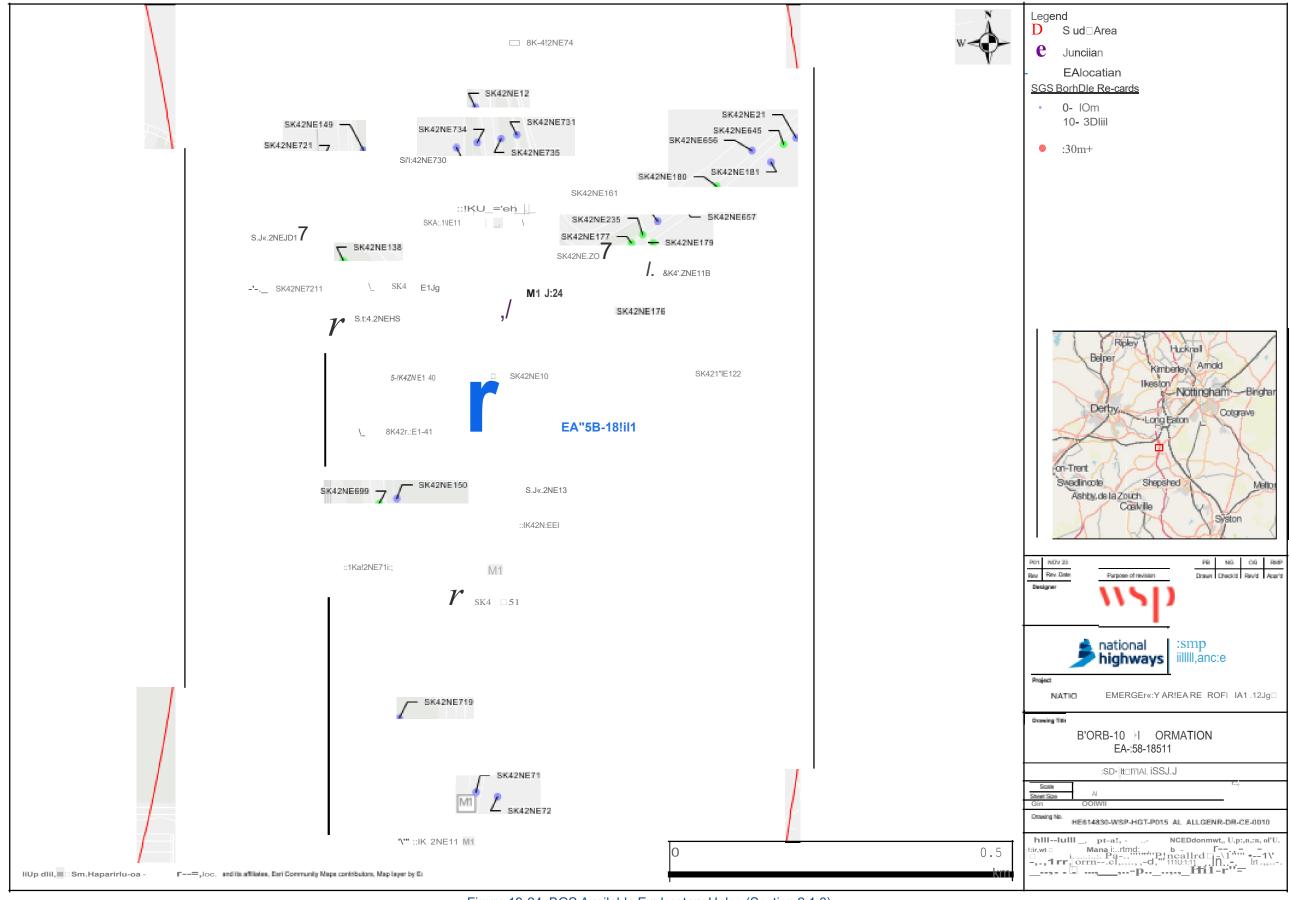


Figure 19-24: BGS Available Exploratory Holes (Section 2.1.6)

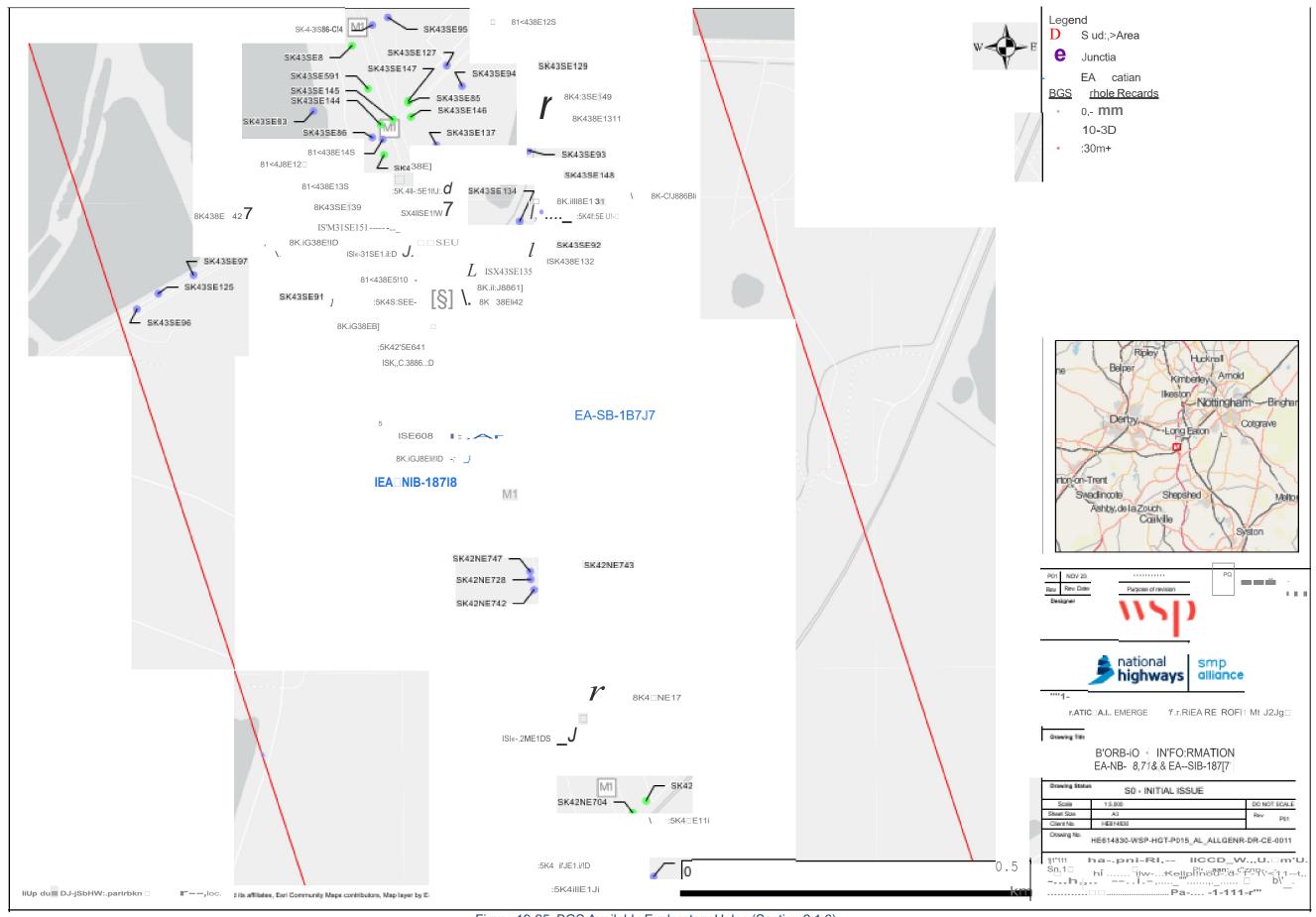


Figure 19-25: BGS Available Exploratory Holes (Section 2.1.6)

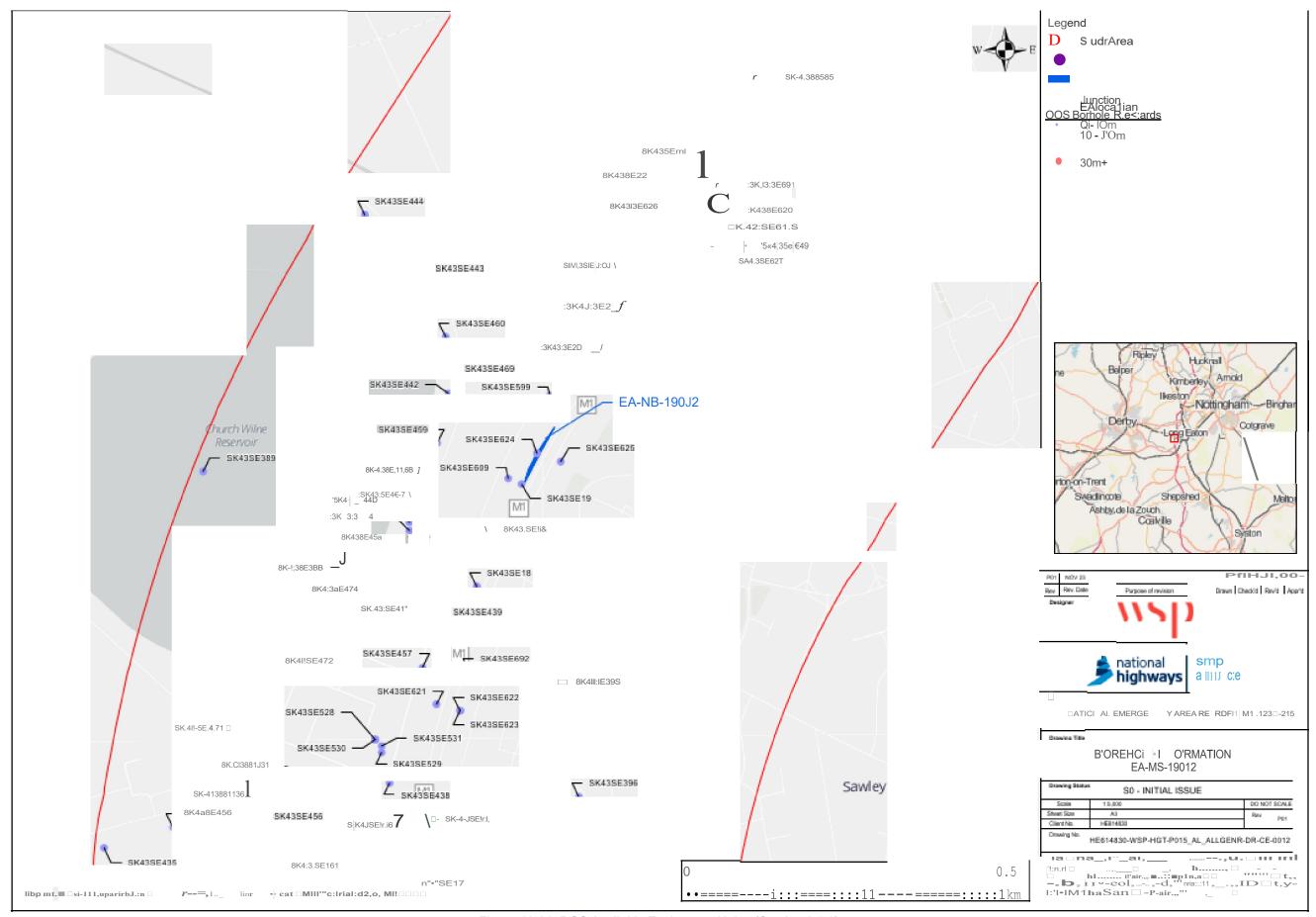


Figure 19-26: BGS Available Exploratory Holes (Section 2.1.6)

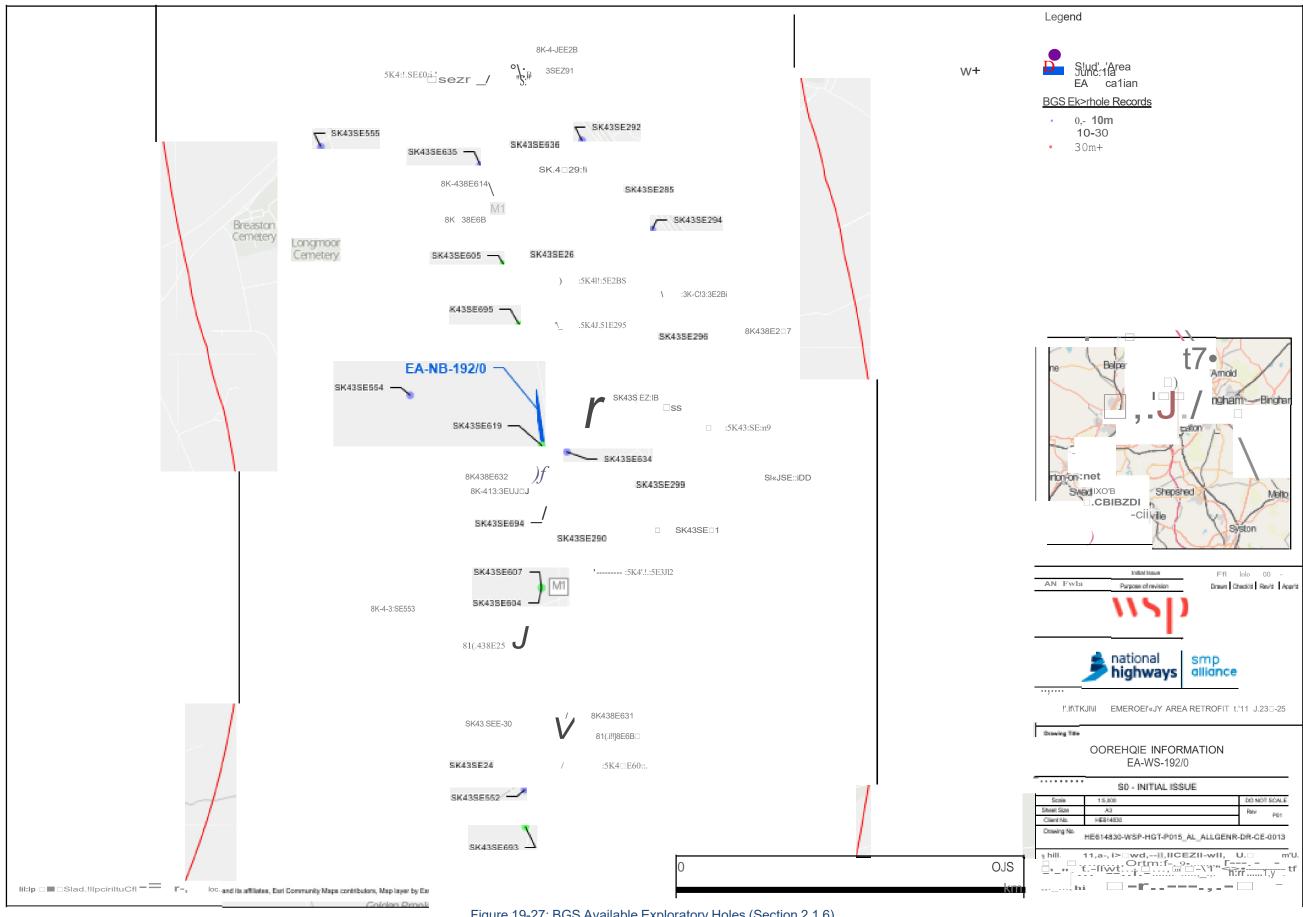


Figure 19-27: BGS Available Exploratory Holes (Section 2.1.6)

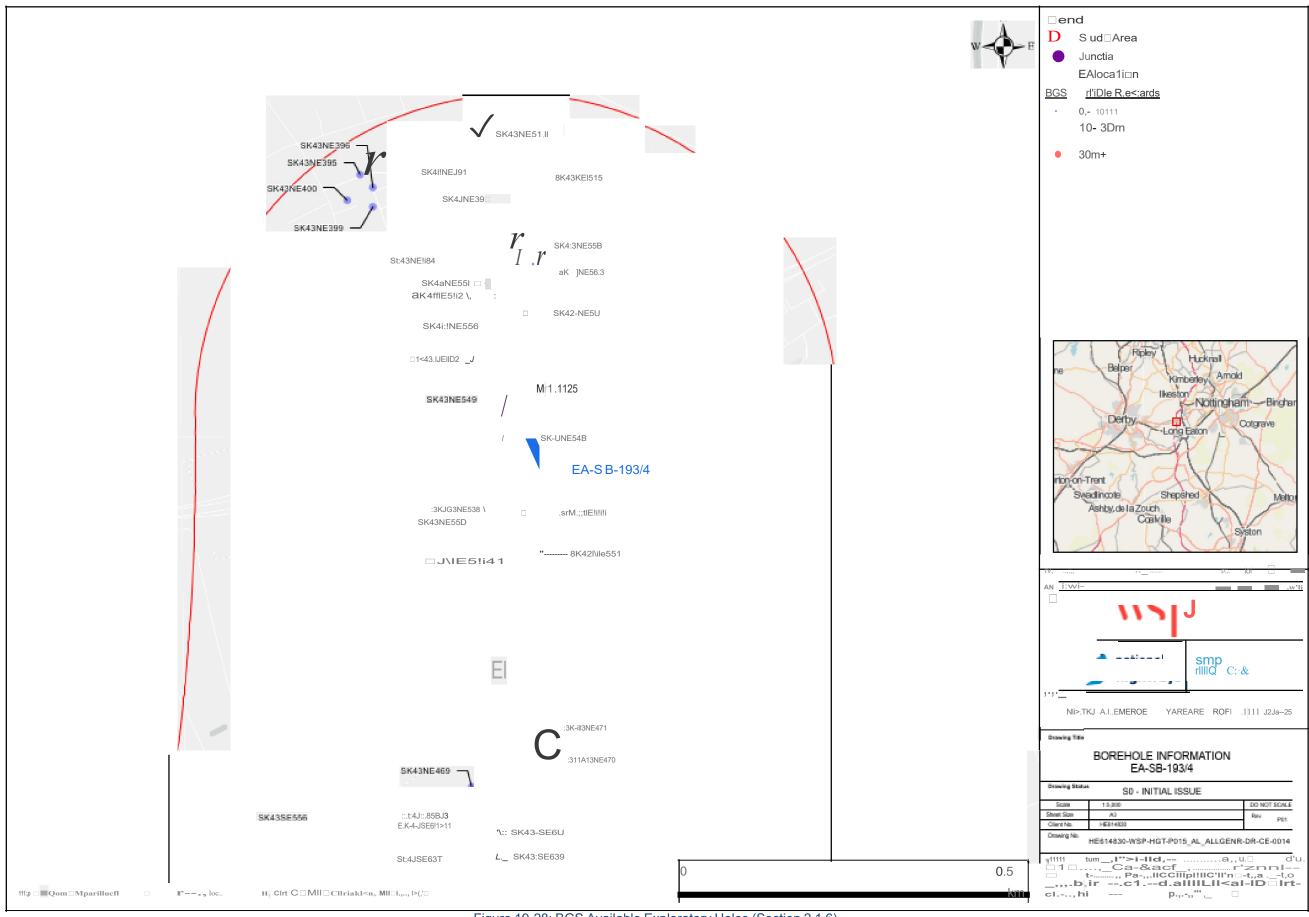


Figure 19-28: BGS Available Exploratory Holes (Section 2.1.6)

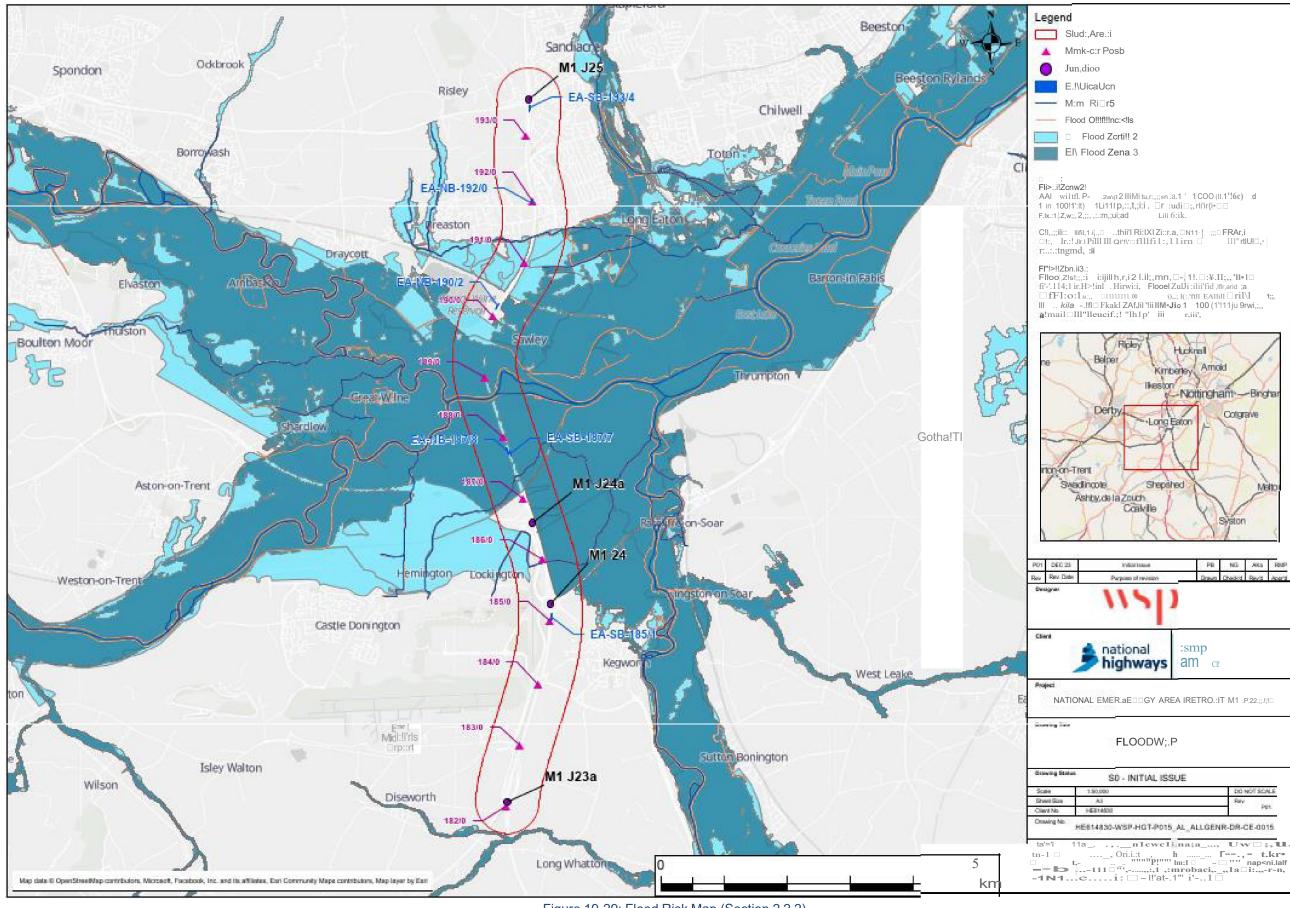


Figure 19-29: Flood Risk Map (Section 2.2.2)

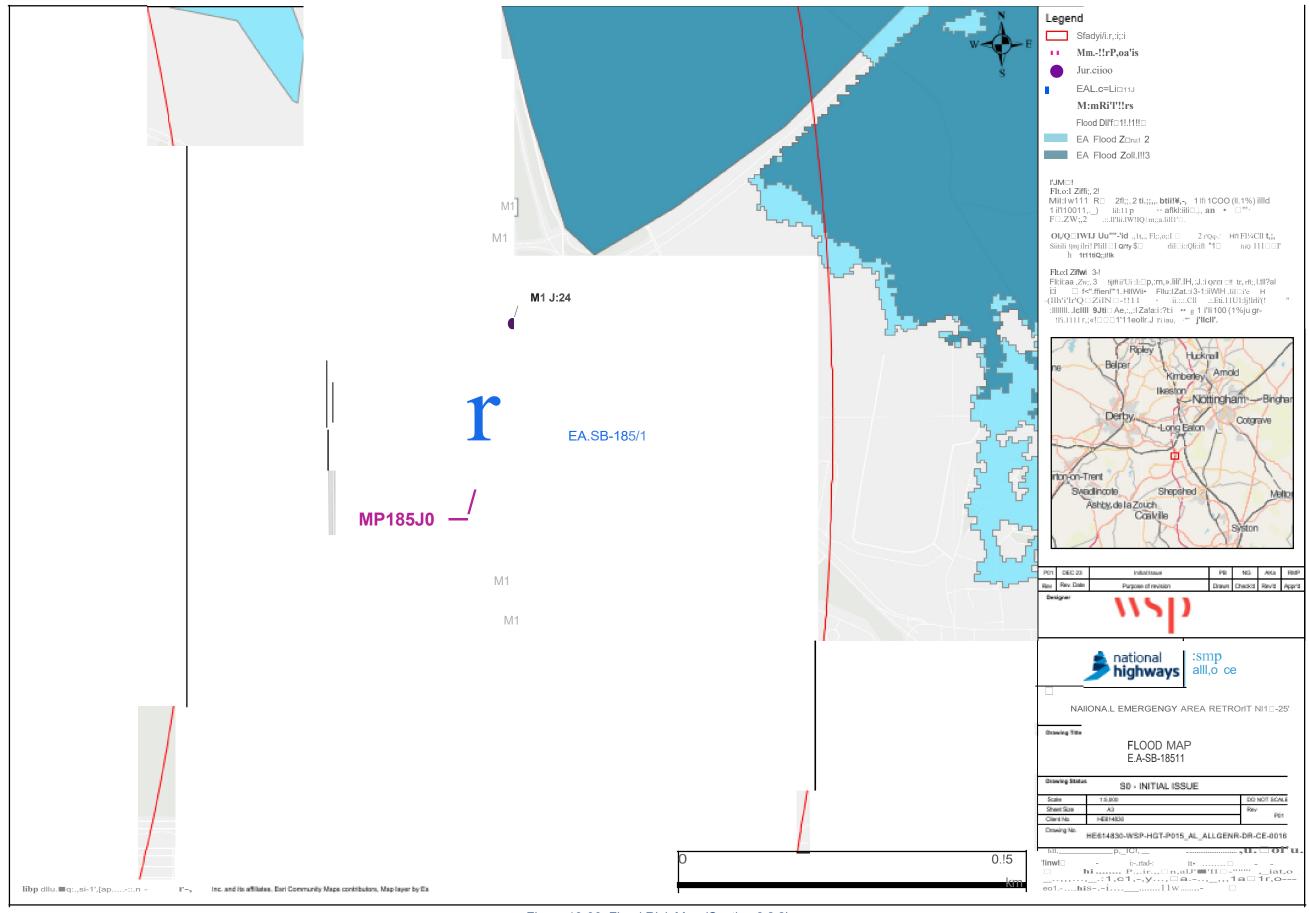


Figure 19-30: Flood Risk Map (Section 2.2.2)

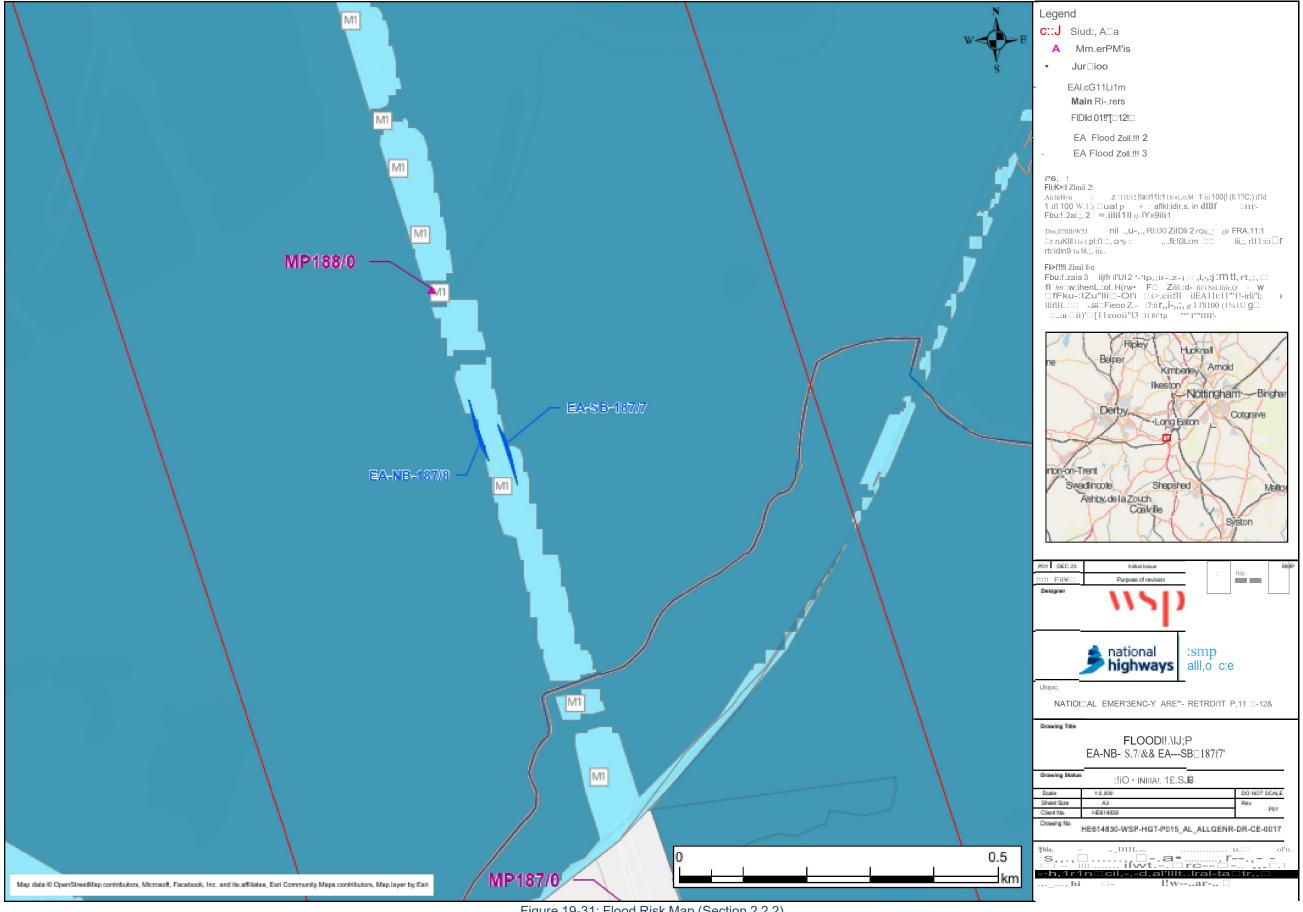


Figure 19-31: Flood Risk Map (Section 2.2.2)

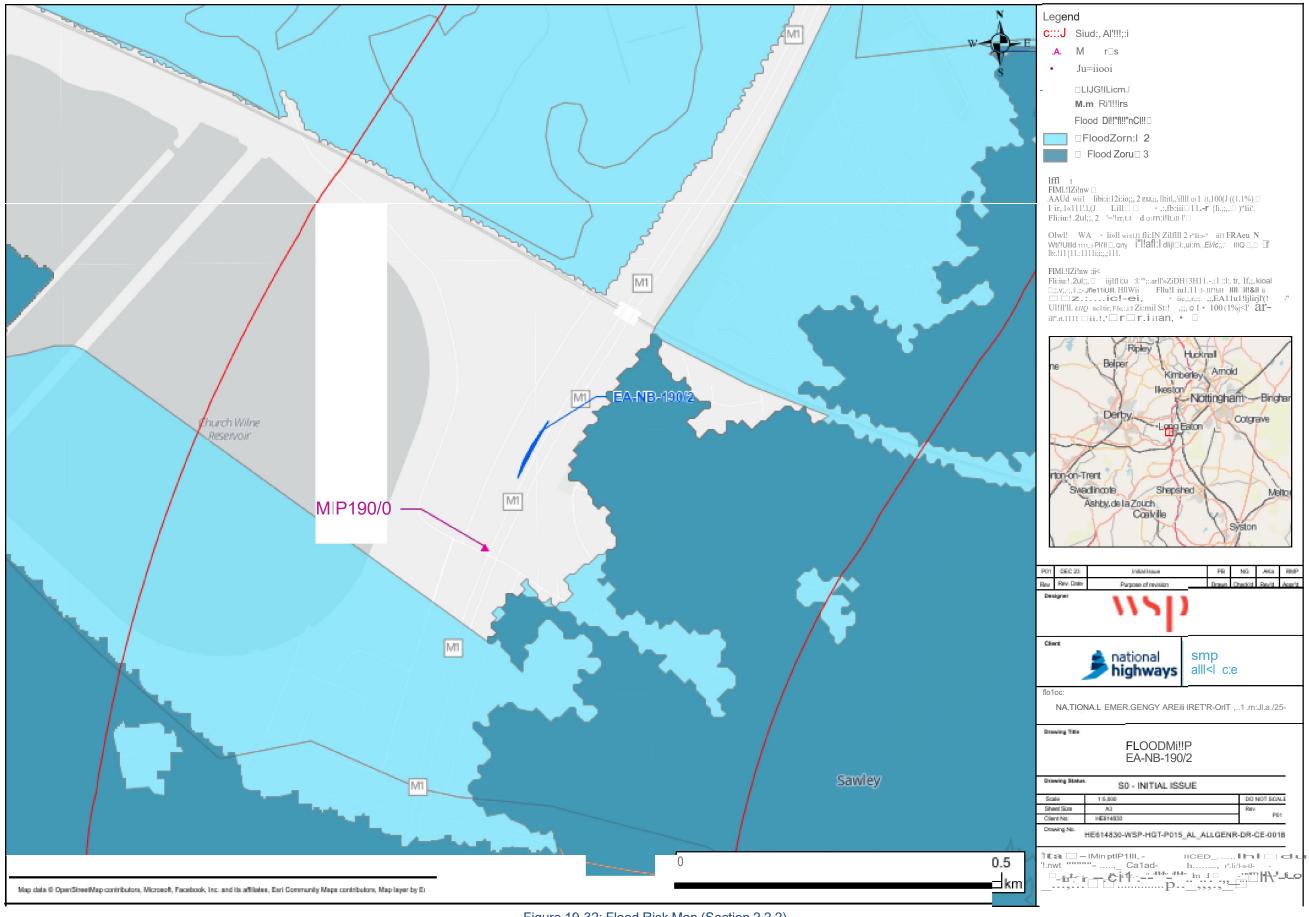


Figure 19-32: Flood Risk Map (Section 2.2.2)

Figure 19-33: Flood Risk Map (Section 2.2.2)

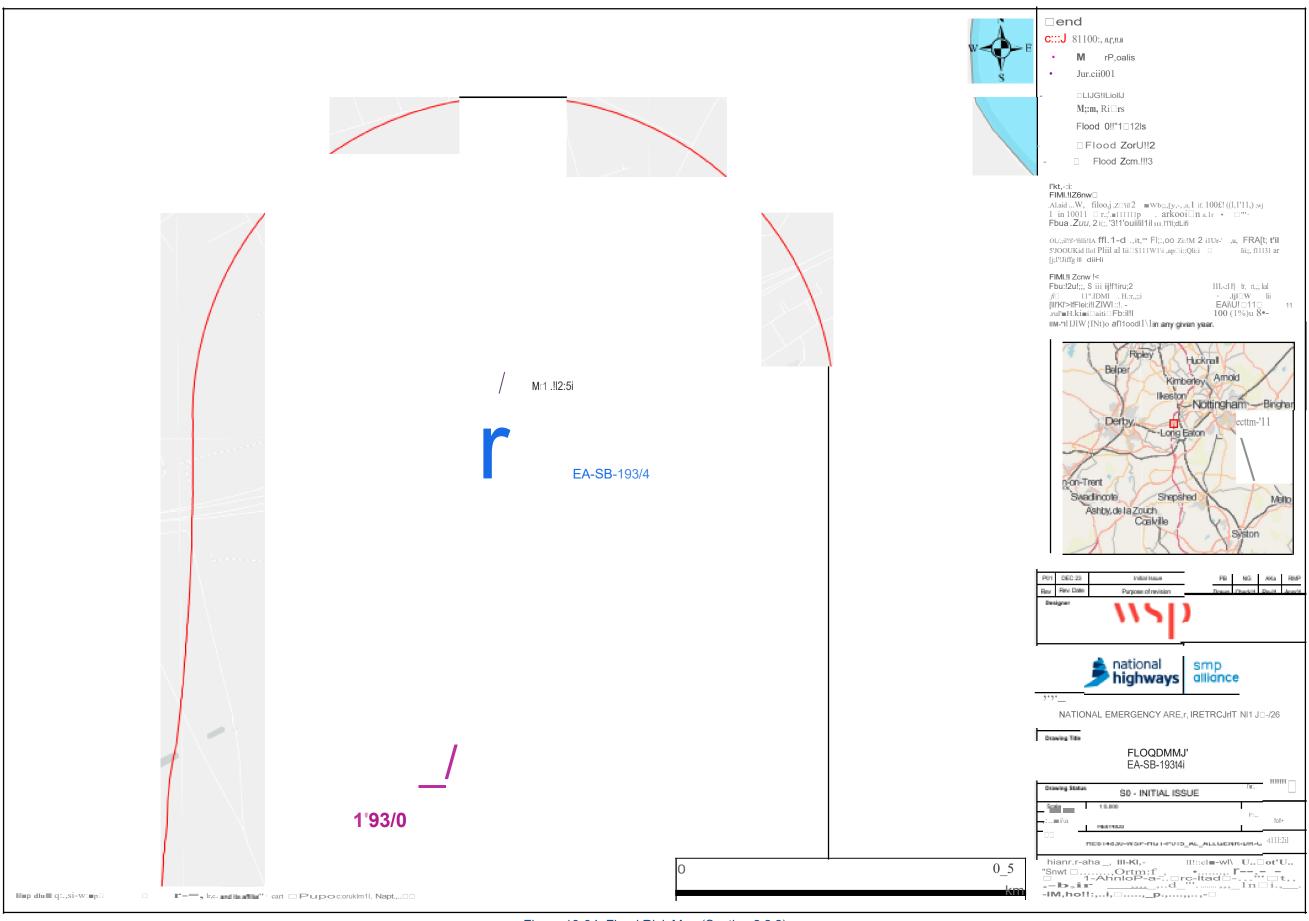


Figure 19-34: Flood Risk Map (Section 2.2.2)

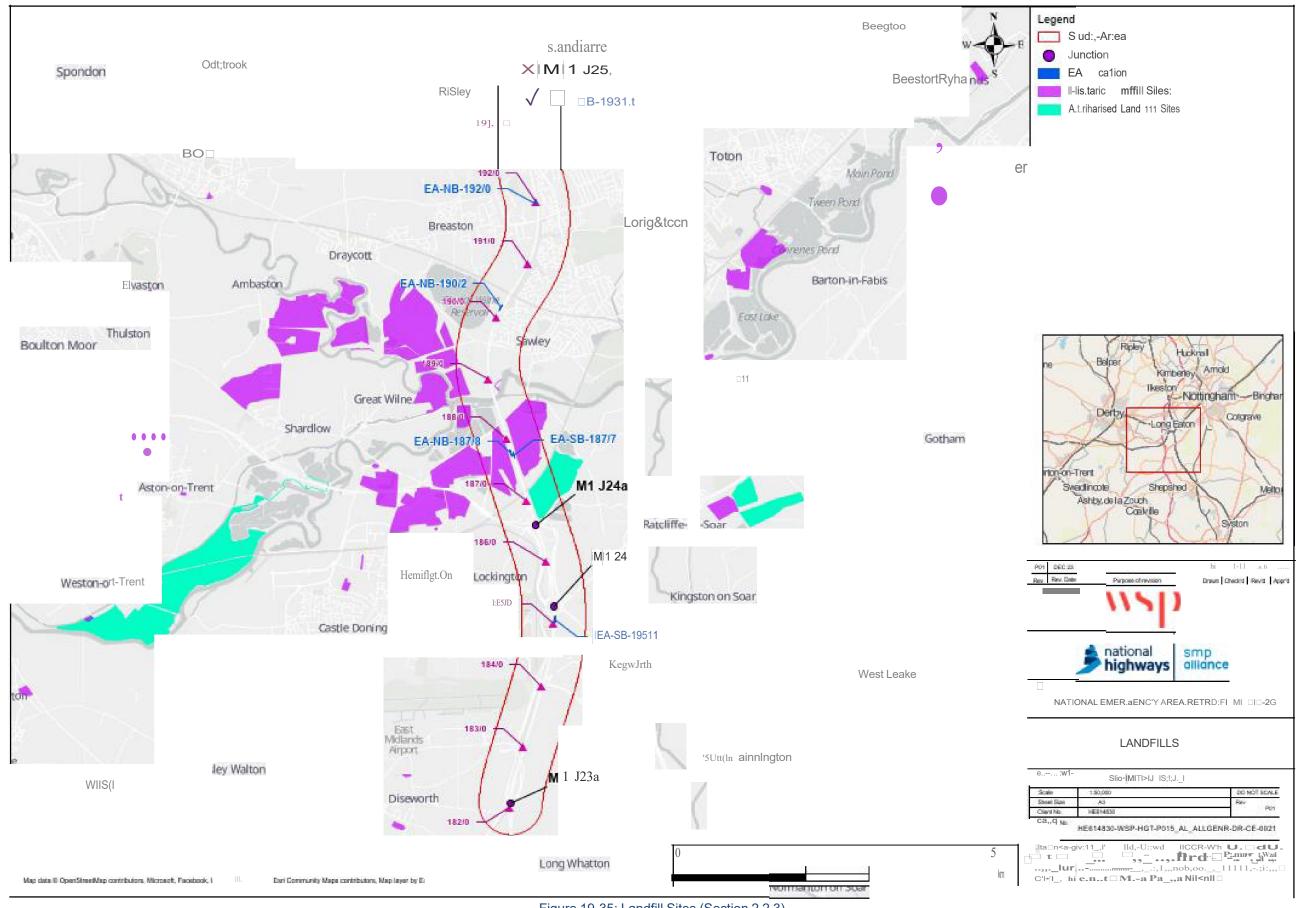


Figure 19-35: Landfill Sites (Section 2.2.3)

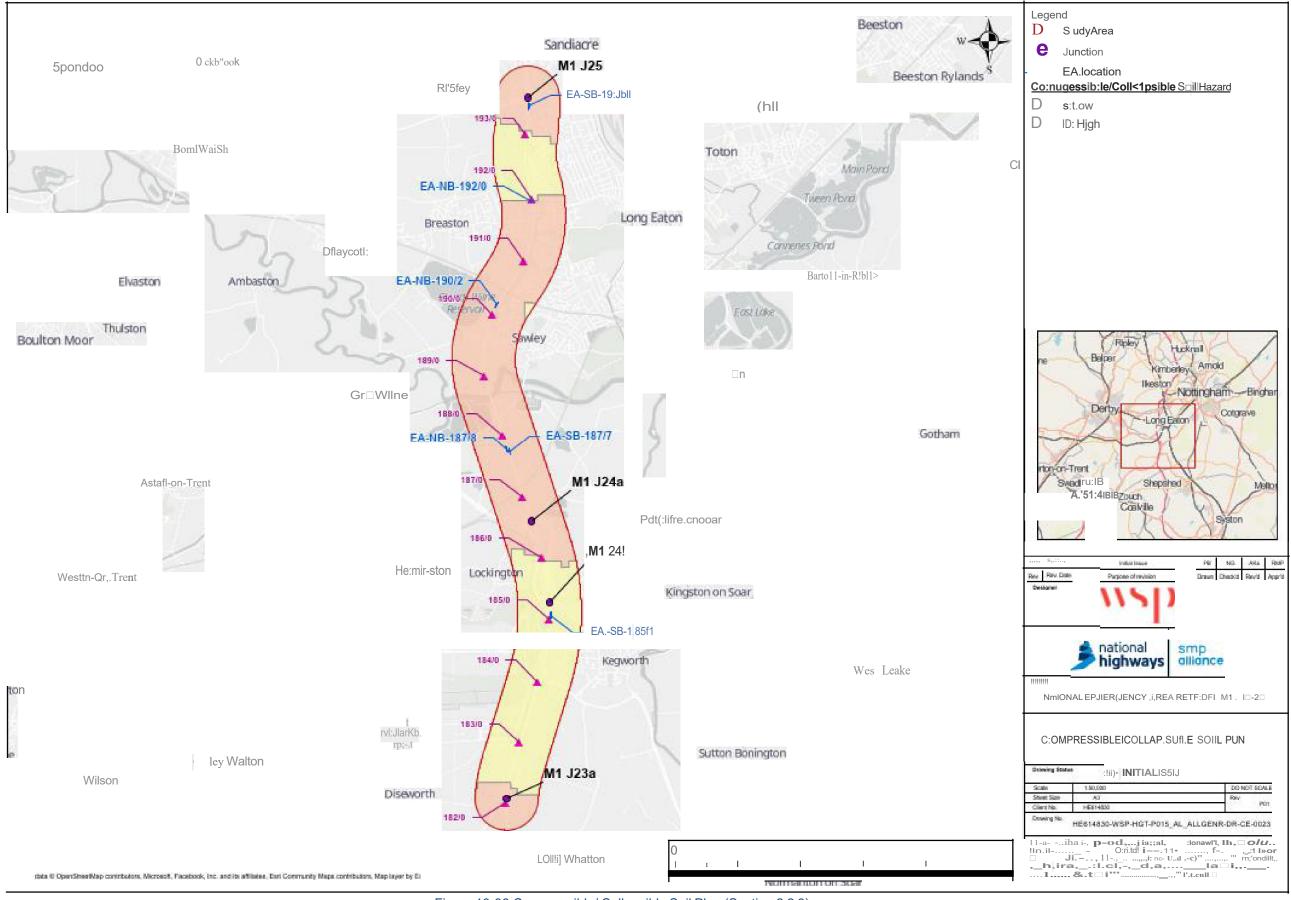


Figure 19-36:Compressible/ Collapsible Soil Plan (Section 2.2.3)

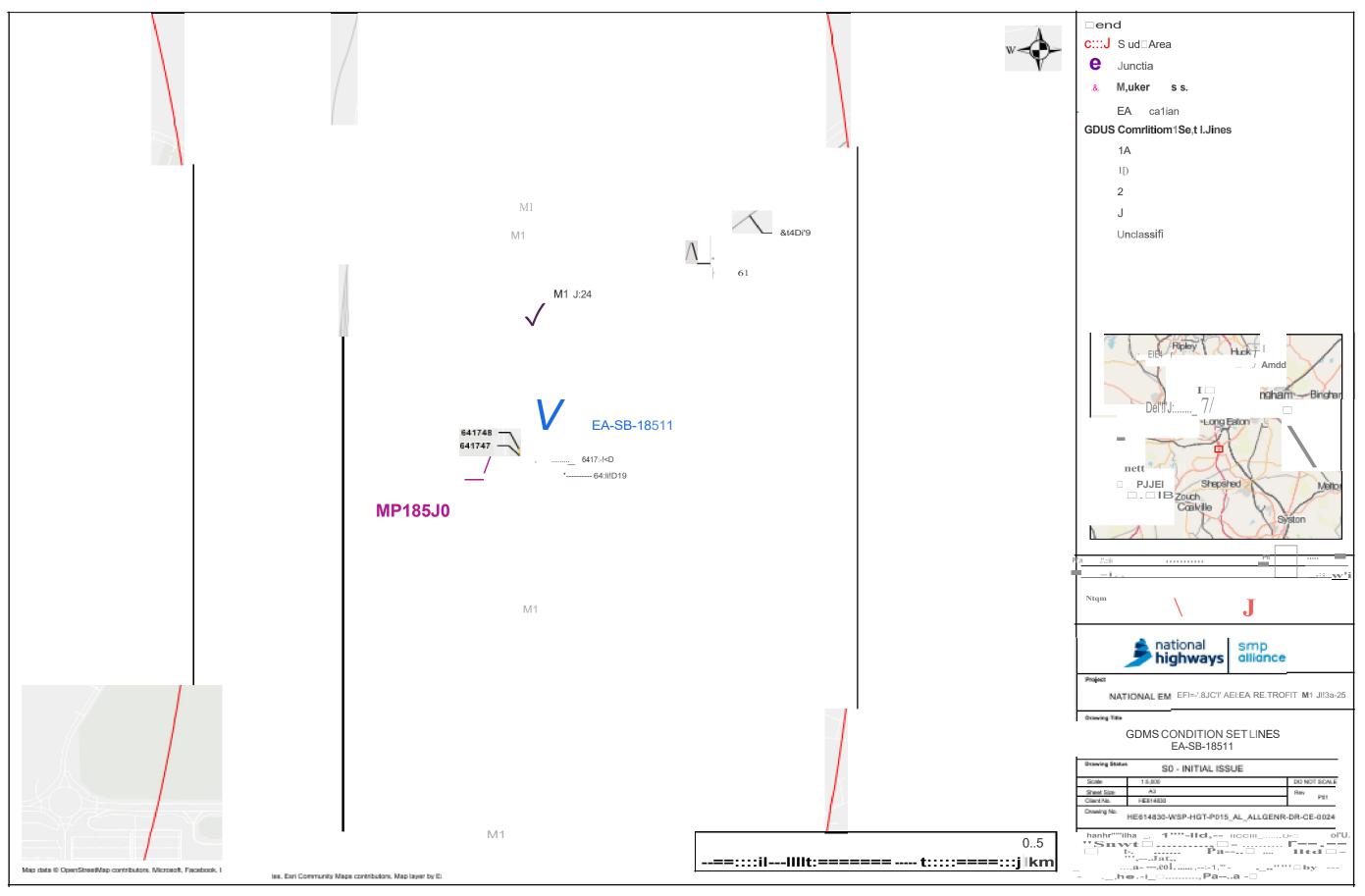
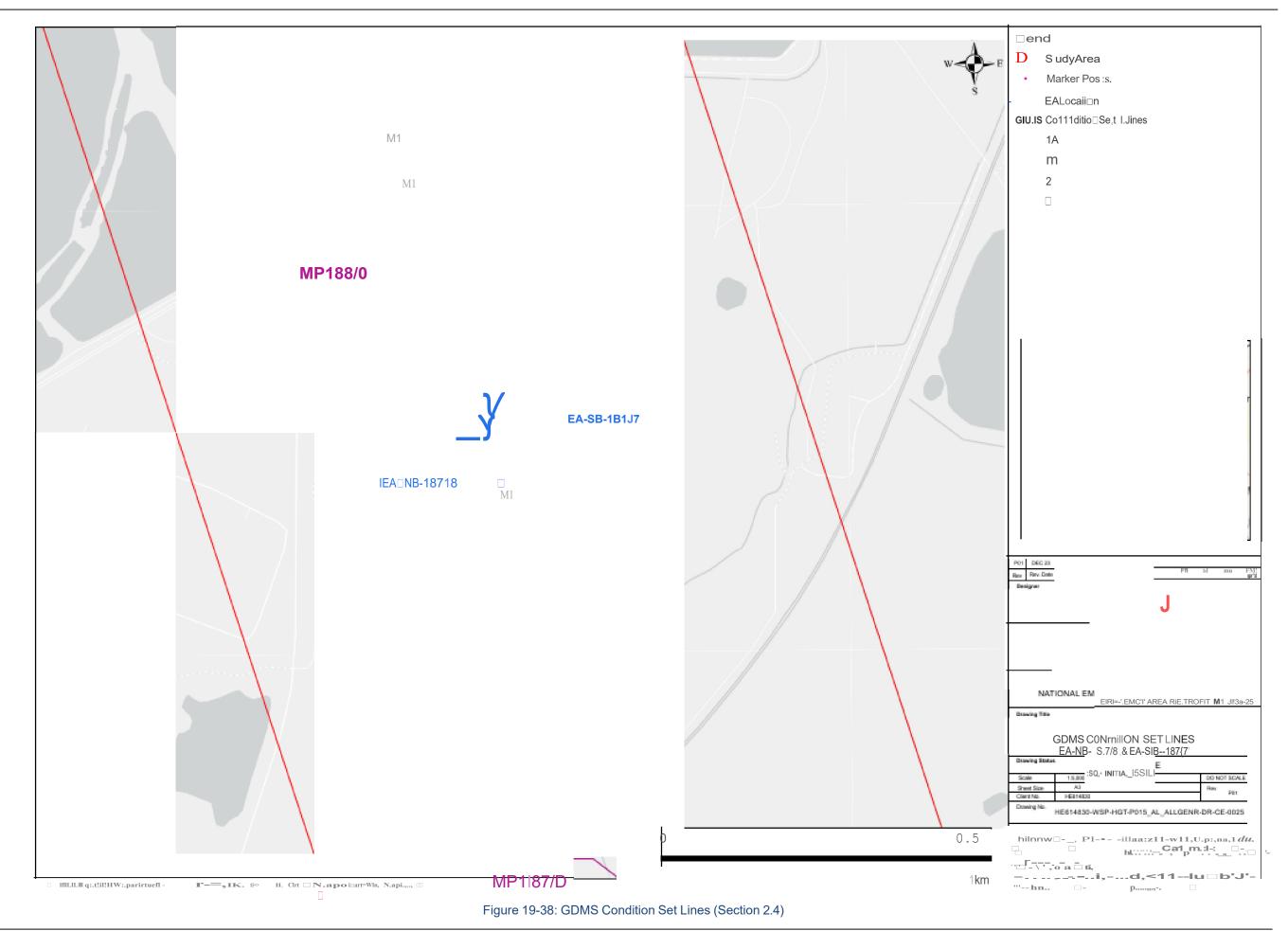



Figure 19-37: GDMS Condition Set Lines (Section 2.4)

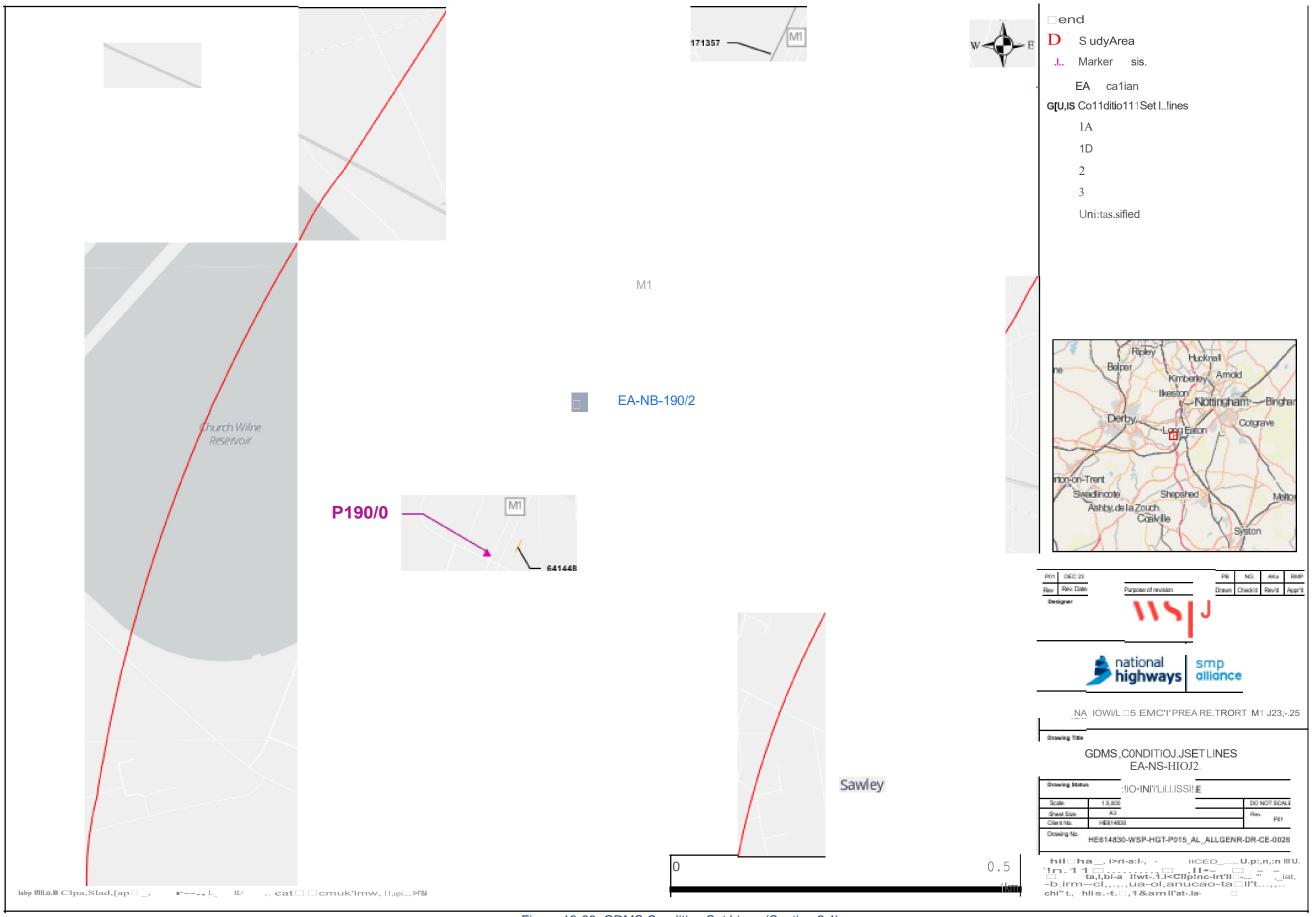
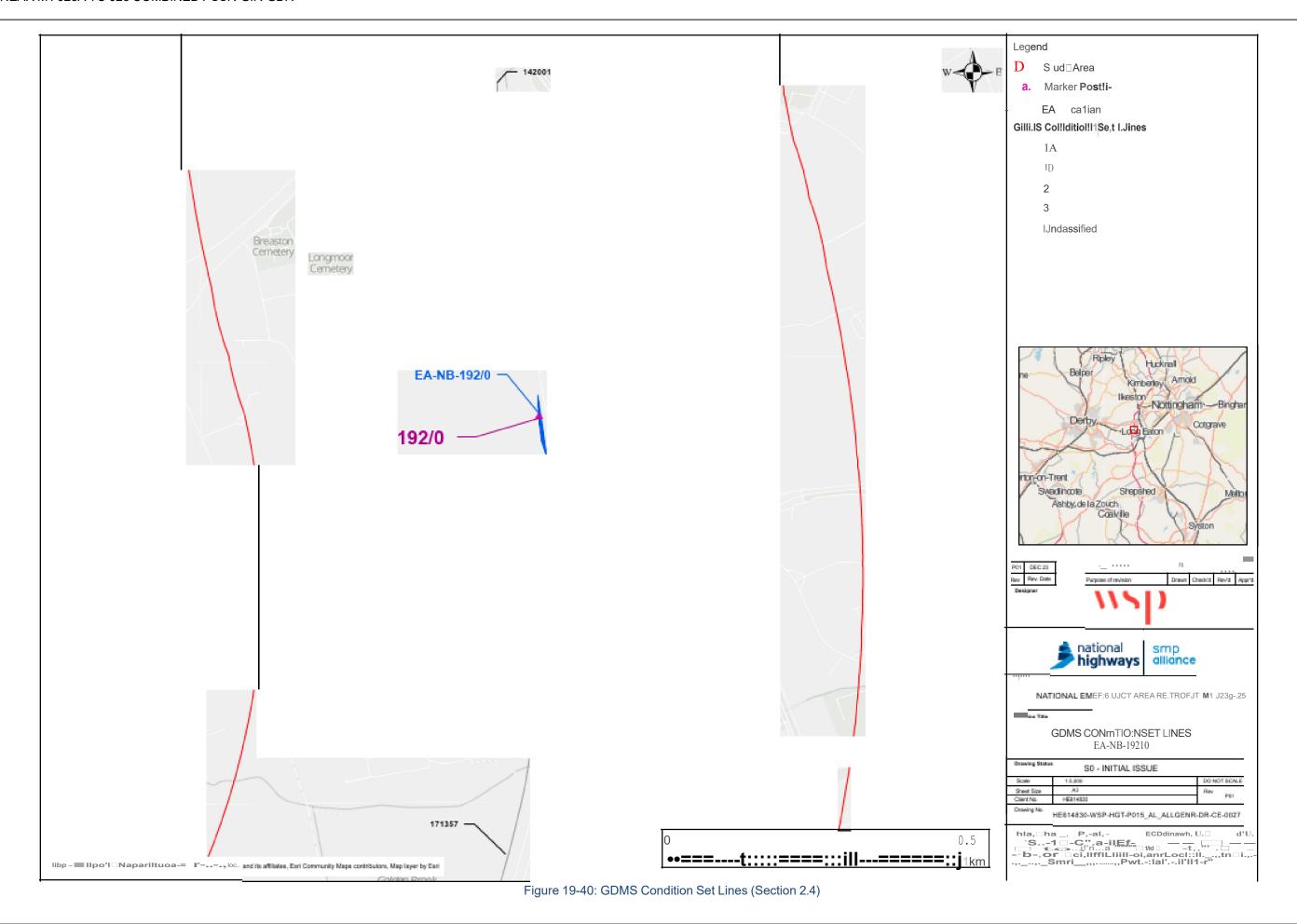



Figure 19-39: GDMS Condition Set Lines (Section 2.4)

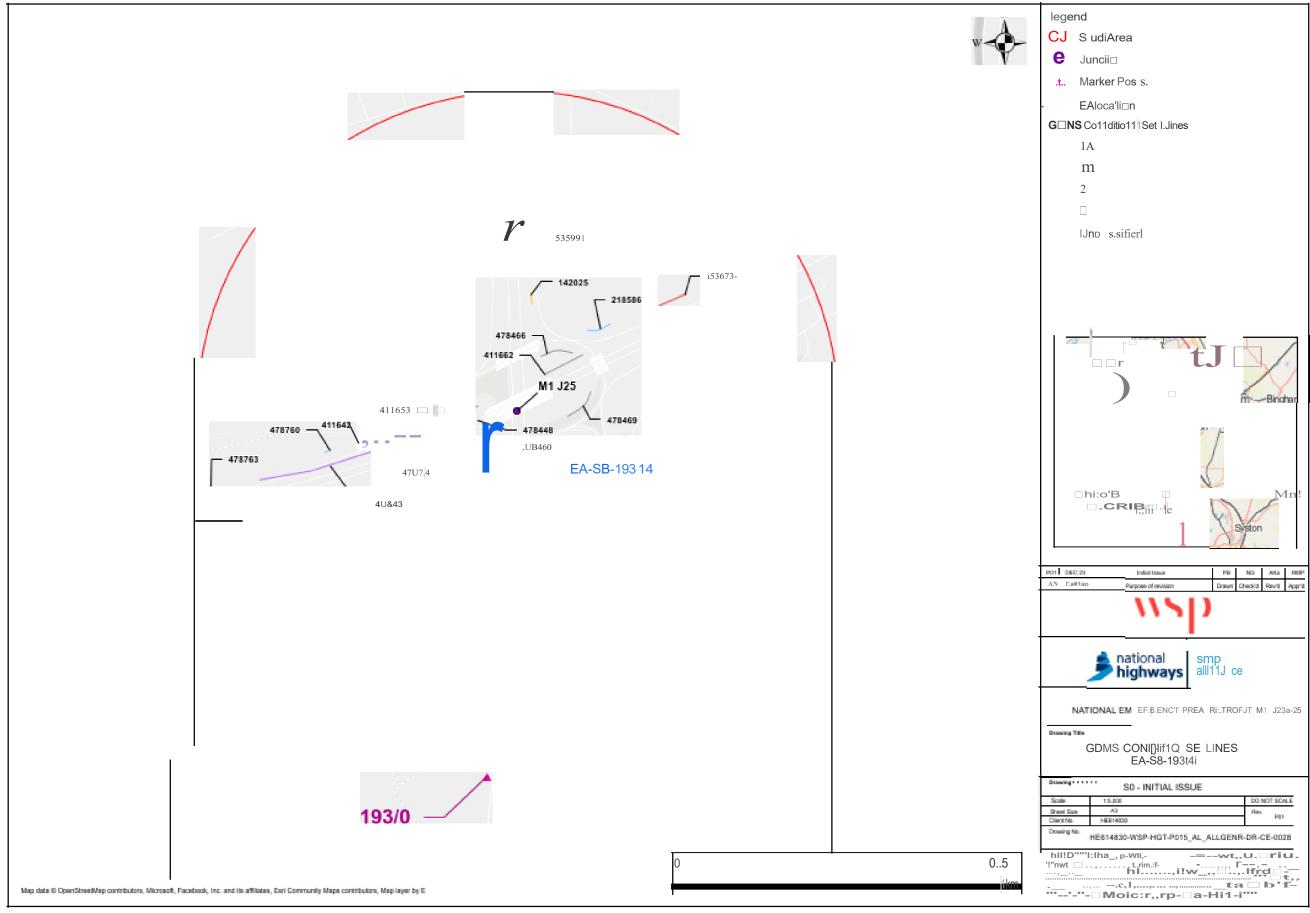


Figure 19-41: GDMS Condition Set Lines (Section 2.4)

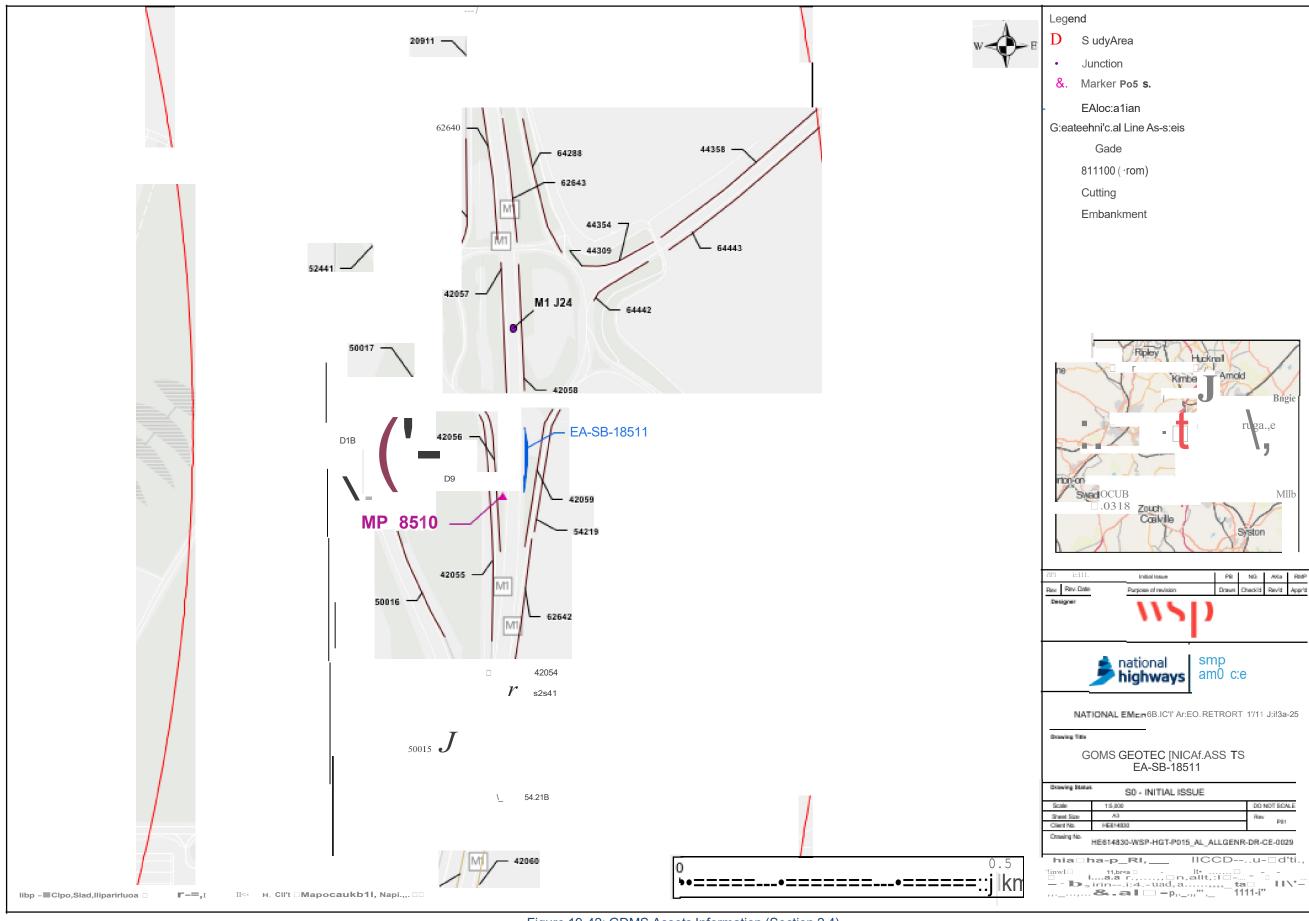


Figure 19-42: GDMS Assets Information (Section 2.4)

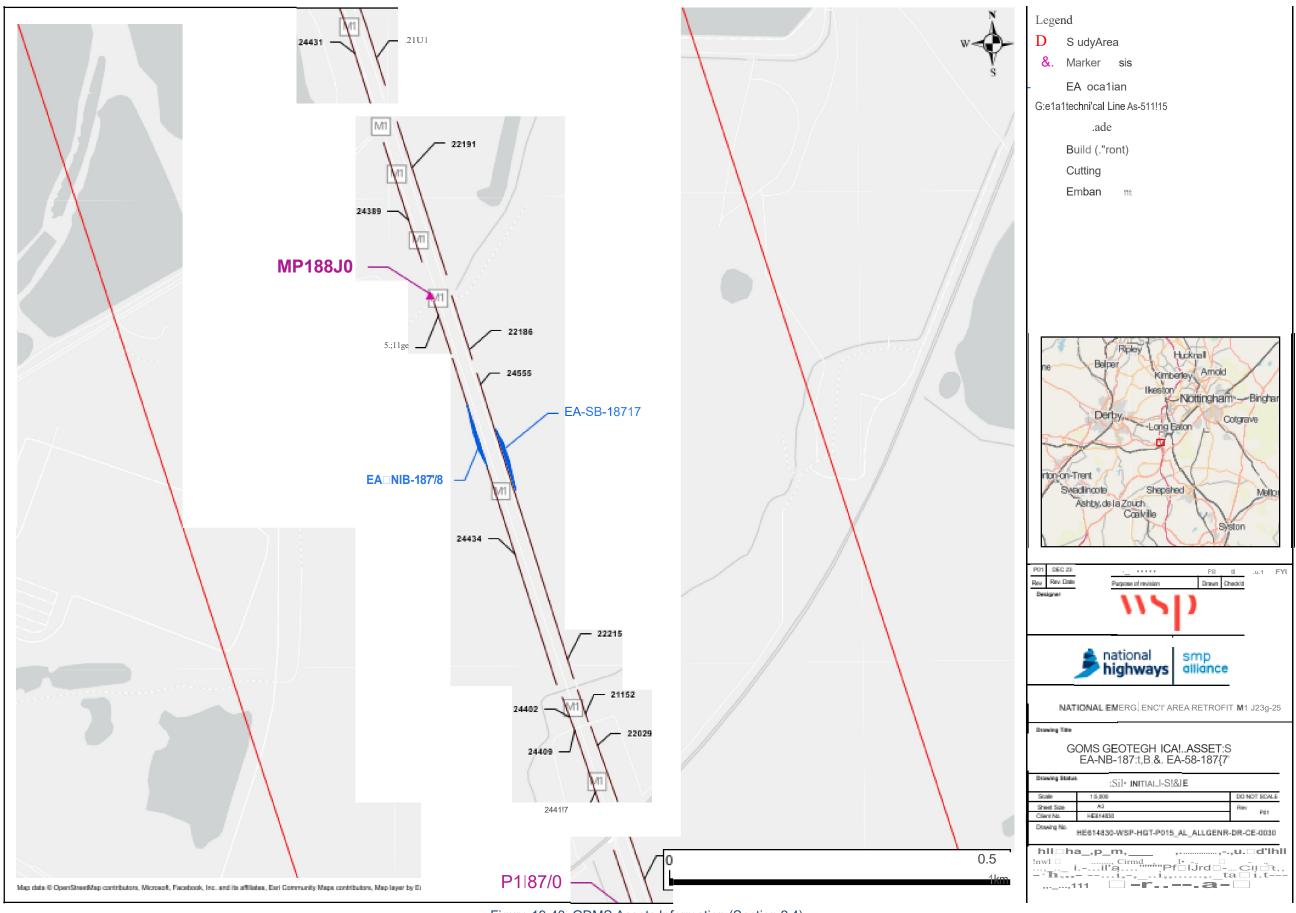


Figure 19-43: GDMS Assets Information (Section 2.4)

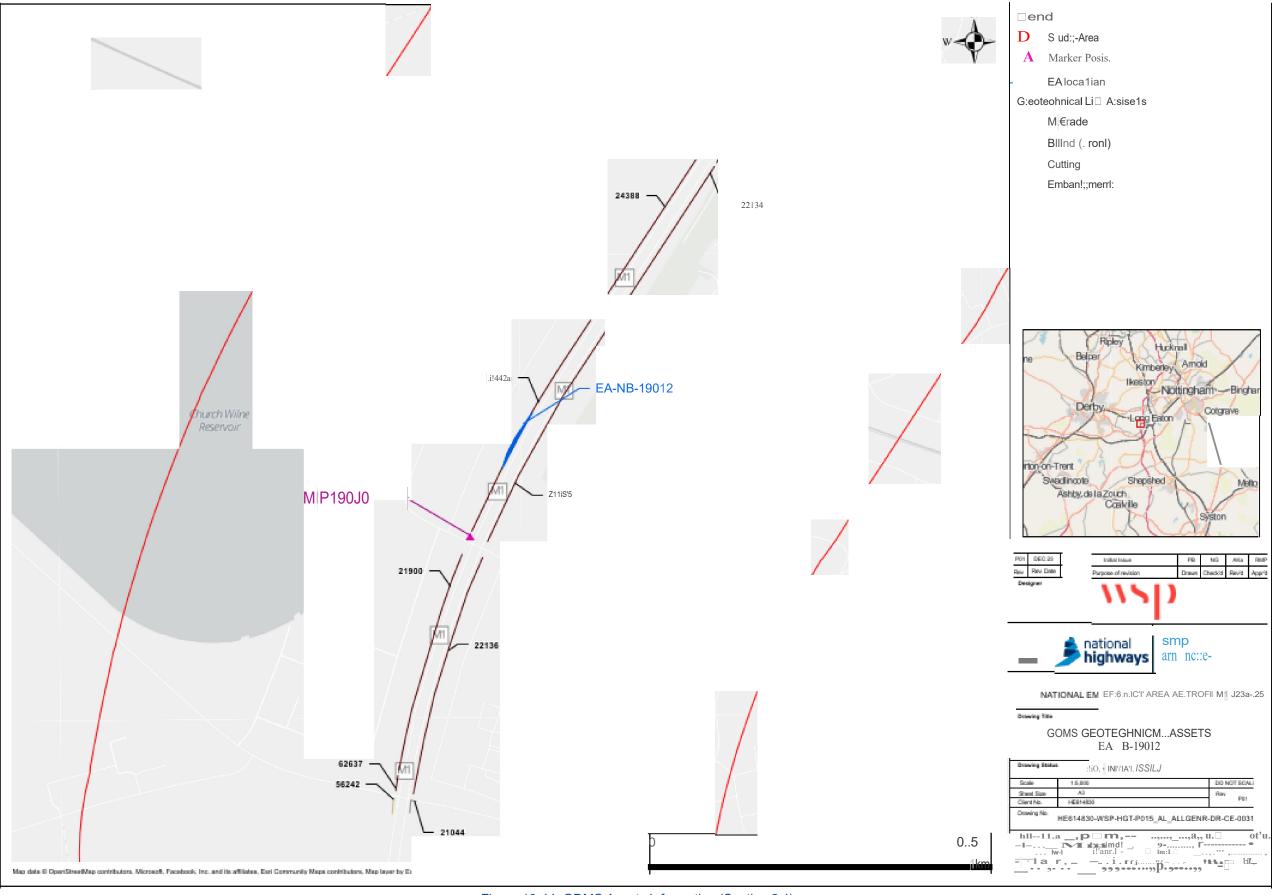


Figure 19-44: GDMS Assets Information (Section 2.4)

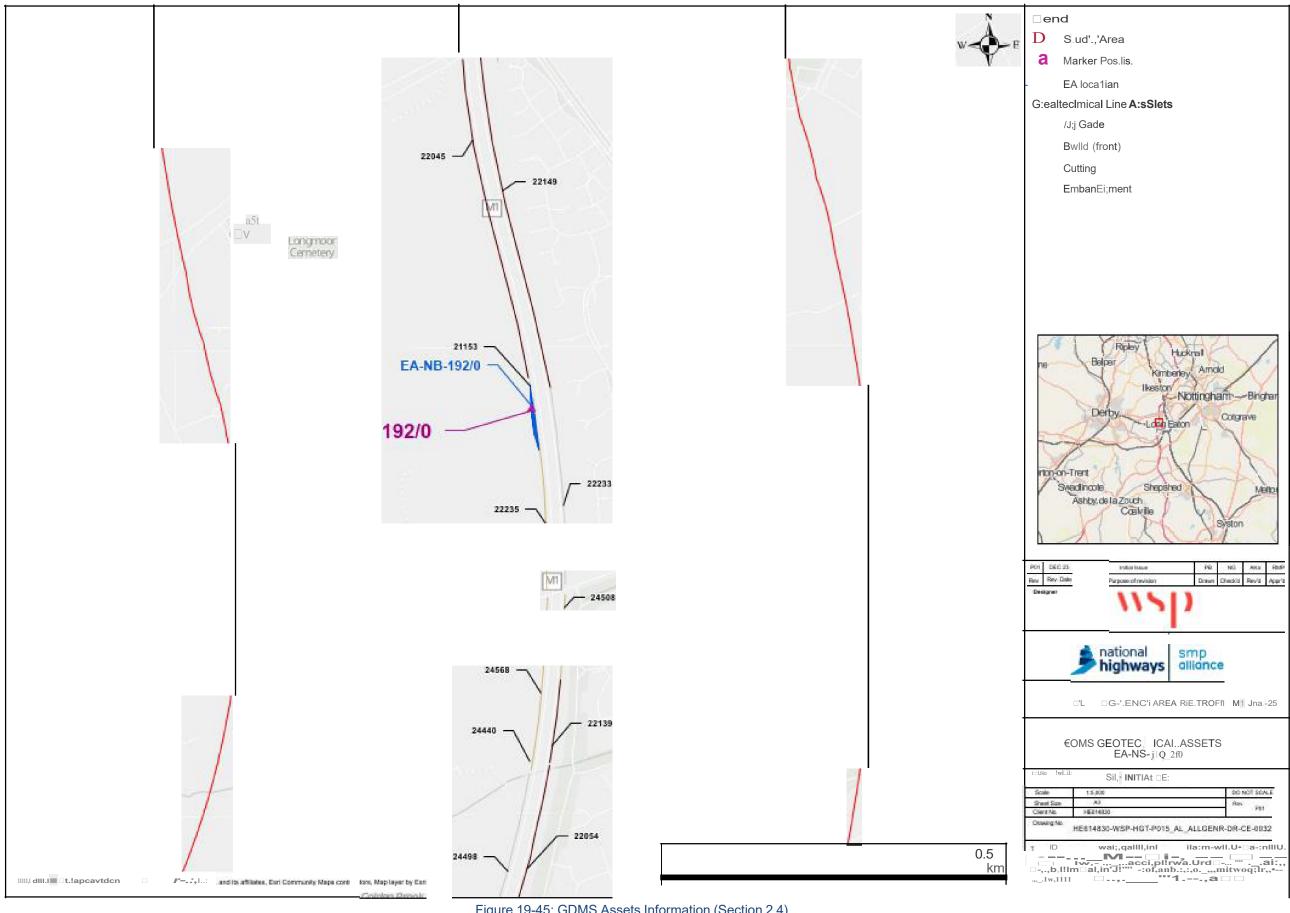


Figure 19-45: GDMS Assets Information (Section 2.4)

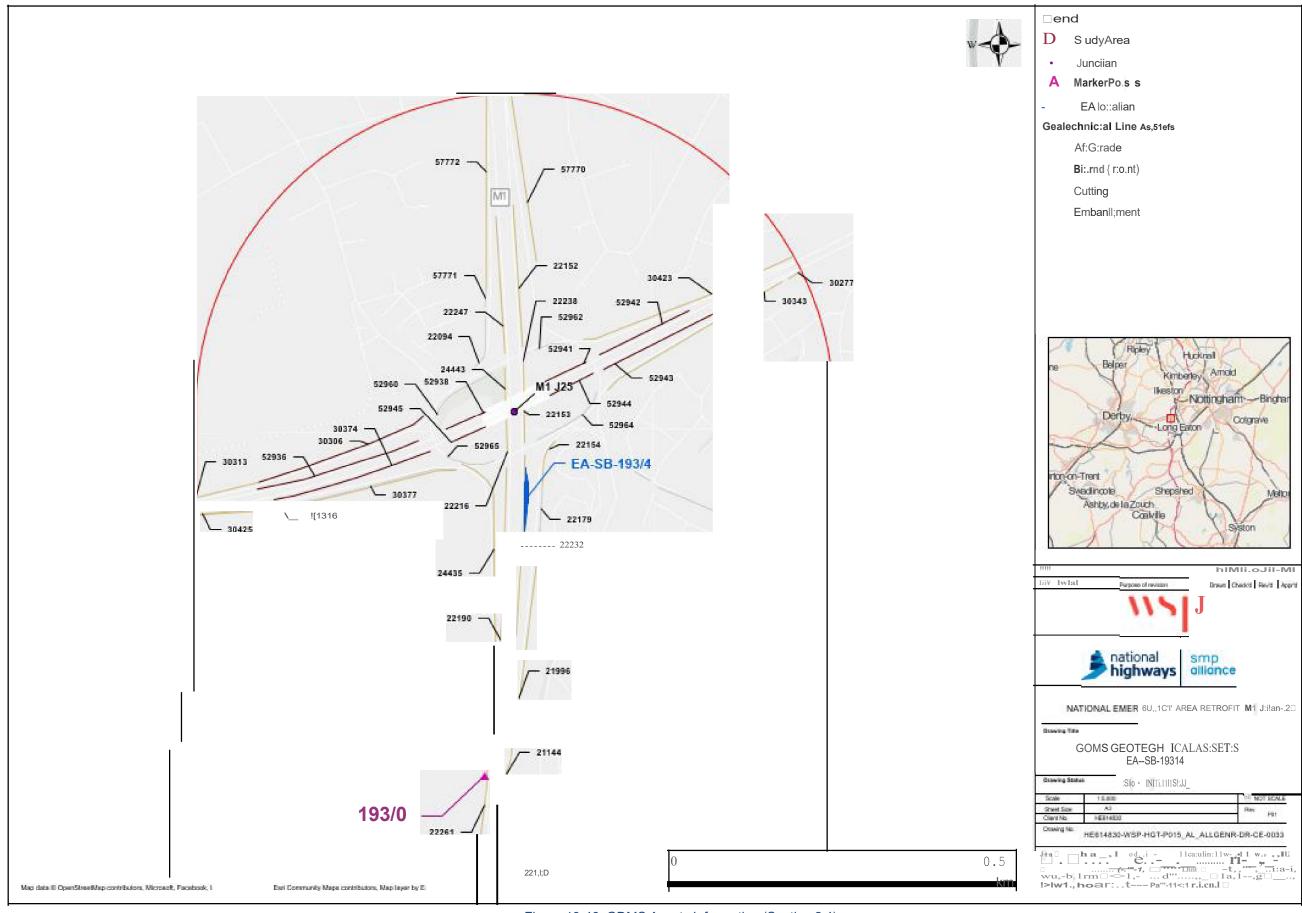


Figure 19-46: GDMS Assets Information (Section 2.4)

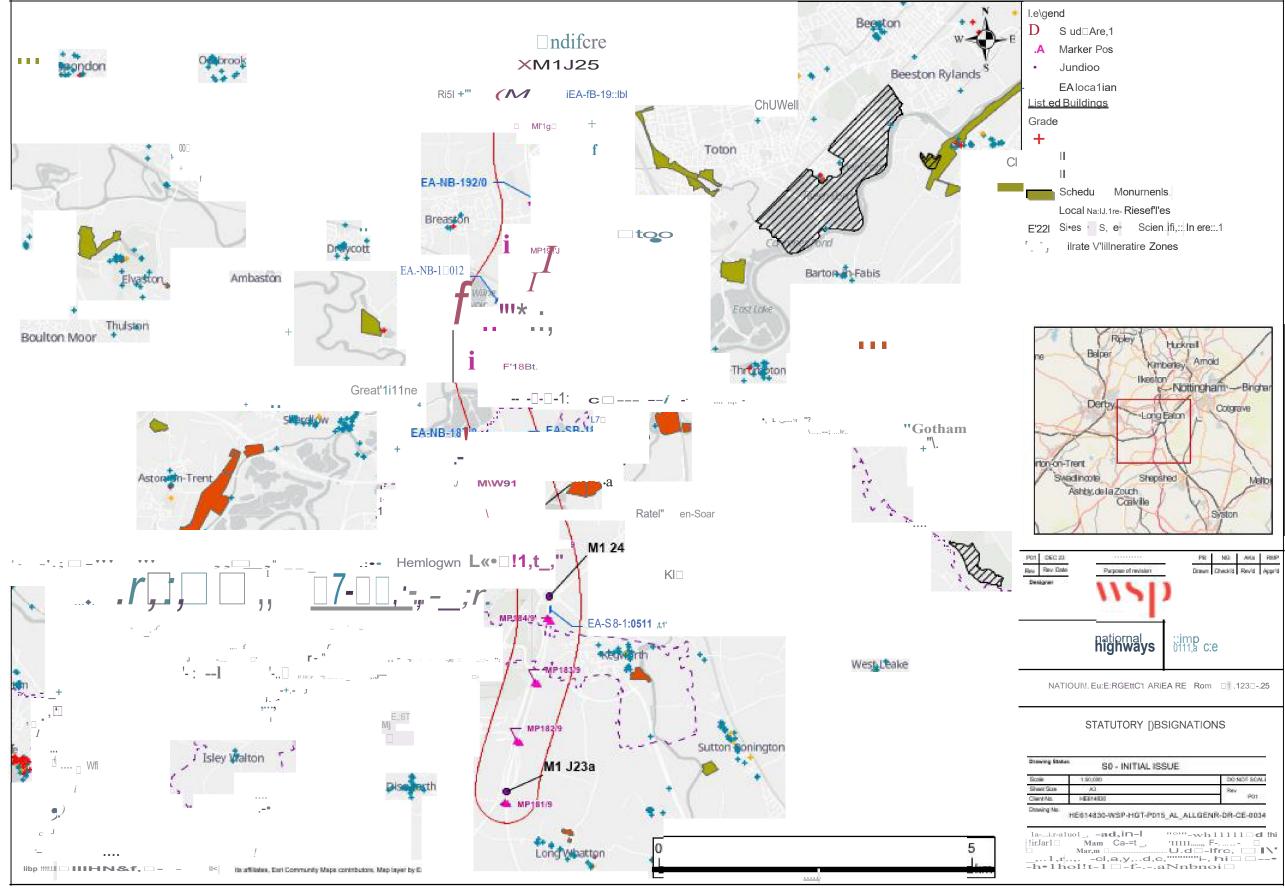
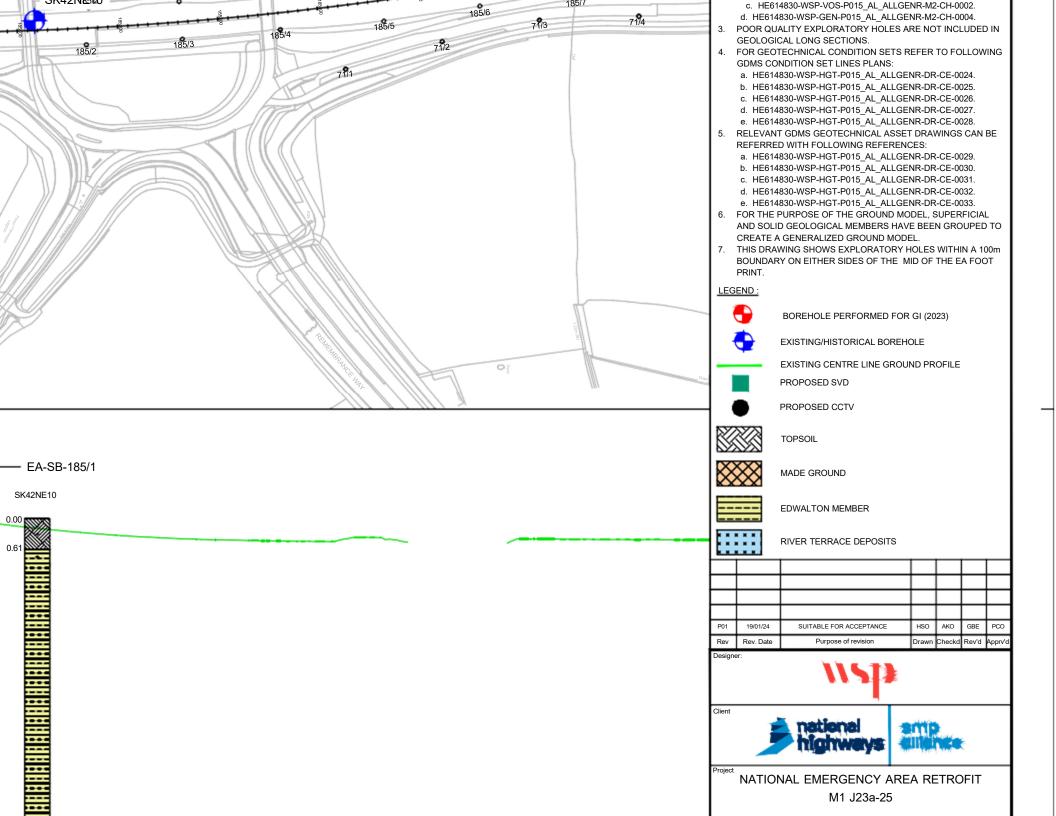
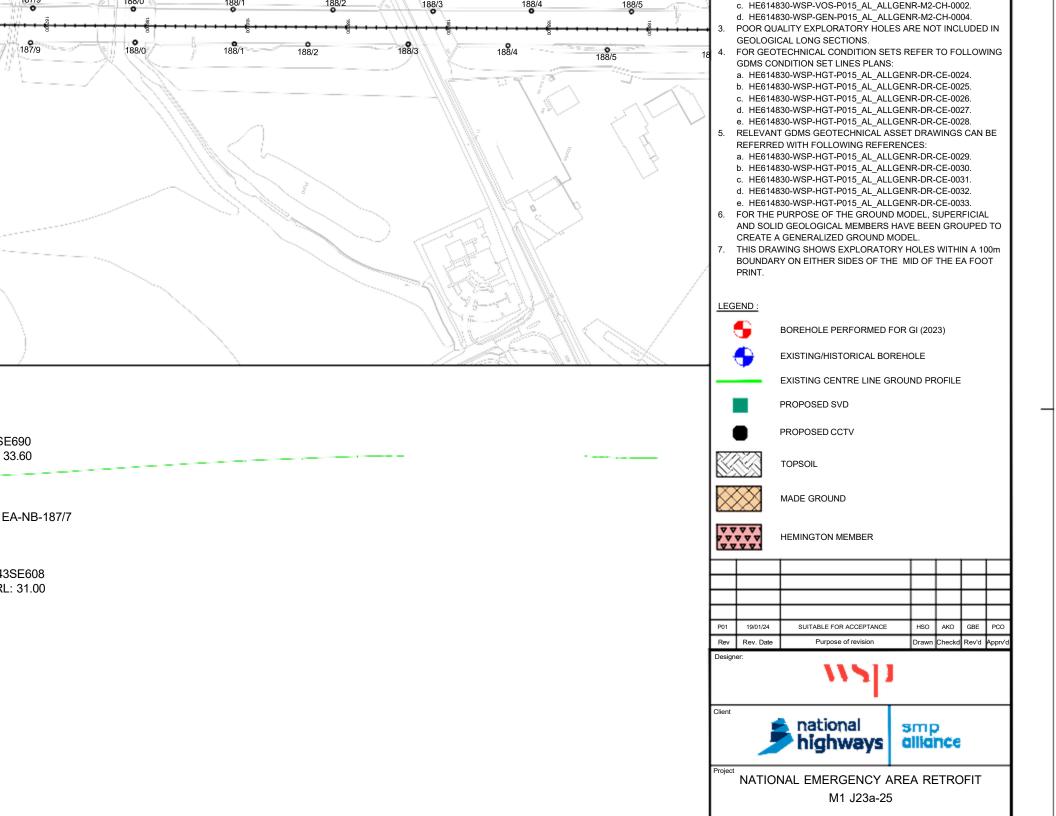
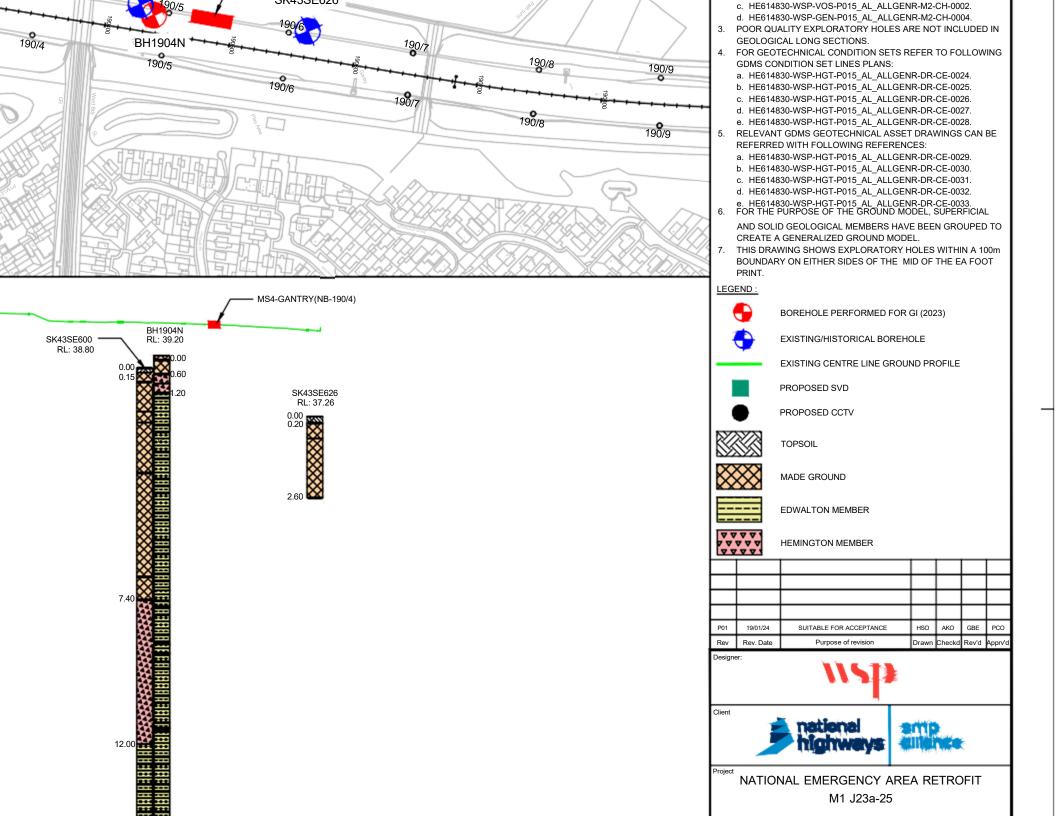





Figure 19-47:Statutory Designations (Section 2.5)

Annex G Geological Long Sections

SK43SE298 RL: 36.02

- c. HE614830-WSP-VOS-P015_AL_ALLGENR-M2-CH-0002.
- d. HE614830-WSP-GEN-P015_AL_ALLGENR-M2-CH-0004.
- 3. POOR QUALITY EXPLORATORY HOLES ARE NOT INCLUDED IN GEOLOGICAL LONG SECTIONS.
- 4. FOR GEOTECHNICAL CONDITION SETS REFER TO FOLLOWING GDMS CONDITION SET LINES PLANS:
 - a. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0024.
 - b. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0025.
 - c. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0026.
 - d. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0027.
 - e. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0028.
- 5. RELEVANT GDMS GEOTECHNICAL ASSET DRAWINGS CAN BE REFERRED WITH FOLLOWING REFERENCES:
 - a. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0029.
 - b. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0030.
 - c. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0031.
 - d. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0032.
 - e. HE614830-WSP-HGT-P015_AL_ALLGENR-DR-CE-0033.
- 6. FOR THE PURPOSE OF THE GROUND MODEL, SUPERFICIAL AND SOLID GEOLOGICAL MEMBERS HAVE BEEN GROUPED TO CREATE A GENERALIZED GROUND MODEL.
- THIS DRAWING SHOWS EXPLORATORY HOLES WITHIN A 100m BOUNDARY ON EITHER SIDES OF THE MID OF THE EA FOOT PRINT

LEGEND :

BOREHOLE PERFORMED FOR GI (2023)

EXISTING/HISTORICAL BOREHOLE

EXISTING CENTRE LINE GROUND PROFILE

PROPOSED SVD

PROPOSED CCTV

TOPSOIL

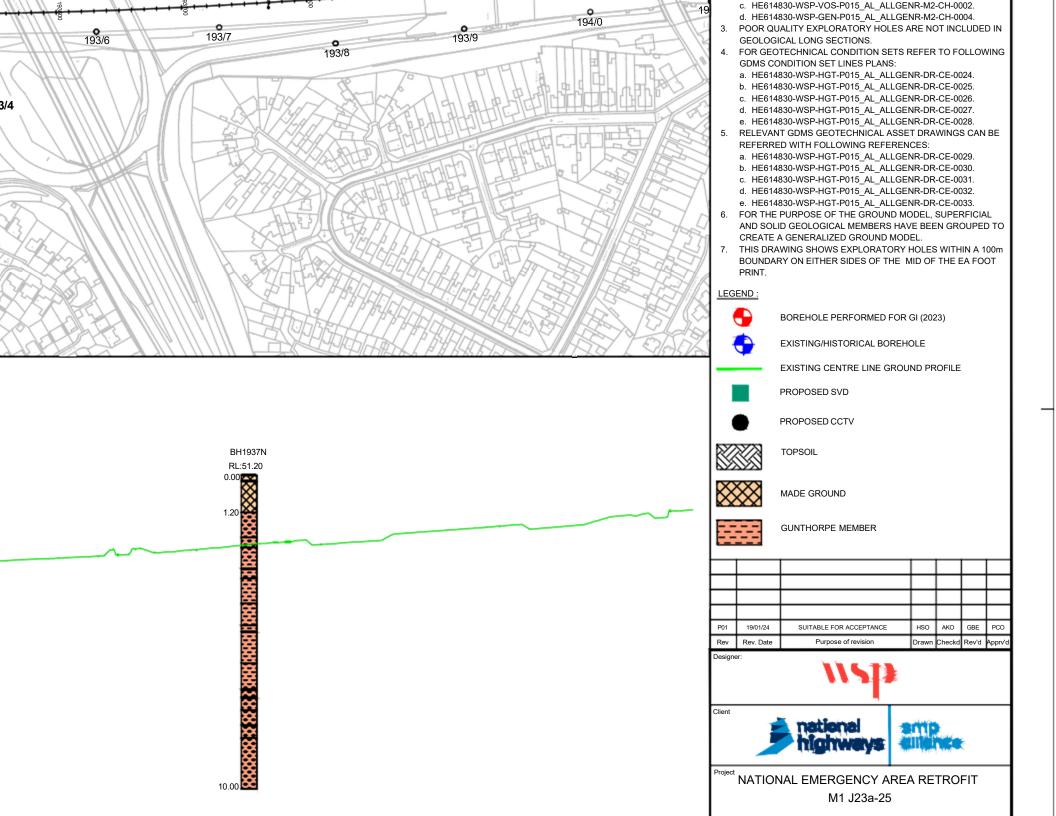
MADE GROUND

GUNTHORPE MEMBER

RIVER TERRACE DEPOSITS

P01	19/01/24	SUITABLE FOR ACCEPTANCE	HSO	AKO	GBE	PCO
Rev	Rev. Date	Purpose of revision	Drawn	Checkd	Rev'd	Apprv'd

Designer:


Client

Project

NATIONAL EMERGENCY AREA RETROFIT M1 J23a-25

Annex H Earthwork and Highway Structure Drawings

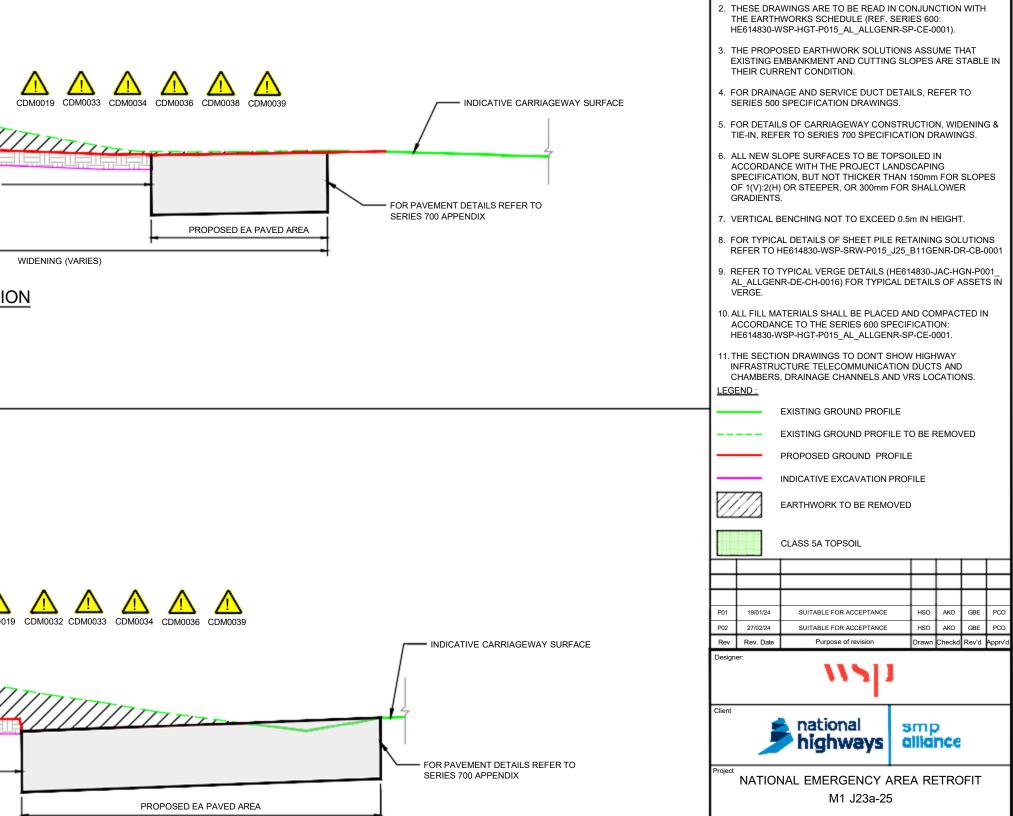
187680.00	EMBANKMENT	1.213	1:2
187670.00	EMBANKMENT	1.146	1:2
187660.00	EMBANKMENT	0.318	1:2
187650.00	EMBANKMENT	0.940	1:2

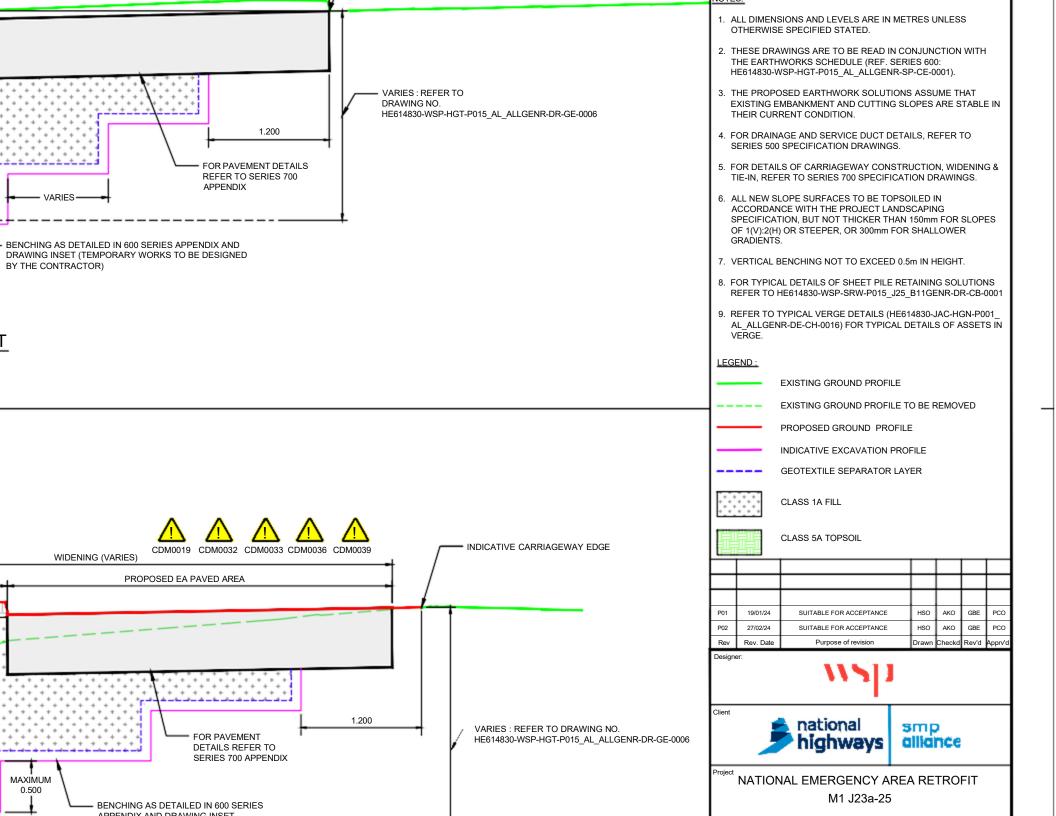
	190120.00	EMBANKMENT	1.248	1:2
٠	190130.00	EMBANKMENT	1.265	1:2
٠	190140.00	EMBANKMENT	1.138	1:2
٠	190150.00	EMBANKMENT	1.036	1:2
٠	190160.00	EMBANKMENT	0.955	1:2
	190170.00	EMBANKMENT	0.331	1:2
٠	190180.00	EMBANKMENT	0.343	1:2
٠	190190.00	EMBANKMENT	1.194	1:2
٠	190200.00	AT GRADE	-	1:2
٠	190210.00	EMBANKMENT	0.139	1:2

3. FOR TYPICAL DETAILS OF SHEET PILE RETAINING SOLUTIONS REFER TO HE614830-WSP-HGT-P015_J25_B11GENR-DR-GE-0101.

P01	27/02/24	SUITABLE FOR ACCEPTANCE	HSO	AKO	GBE	PCO
Rev	Rev. Date	Purpose of revision	Drawn	Checkd	Rev'd	Apprv'd

Designer:


Client



smp alliance

Proje

NATIONAL EMERGENCY AREA RETROFIT M1 J23a-25

GRADE 8.8 THREADED RODS, EQUALLY SPACED ON 570 PERIMETER CONTROL DIAMETER (PCD).

LARGE SERIES WASHERS COMPLYING WITH ISO 7093 SHALL BE USED EITHER SIDE OF FOUNDATION FLANGE PLATE. TAPERED WASHERS SHALL BE USED IF REQUIRED

THREADED RODS, NUTS, WASHERS AND LOCKUNTS SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURERS SPECIFICATION.LOCK NUTS FITTED TO LOWER AND UPPER NUTS. ALL HOLDING DOWN THREADED RODS TO HAVE AT LEAST 2 FULL THREADS PROTRUDING BEYOND THE OUTER FACE OF THE LOCK NUT FOLLOWING TIGHTENING

STIFFENER PLATE

125

END 100mm ABOVE TOP OF

KING PLATE

ATION BUTT WELD P FLANGE AND CHS. CIRCUMFERENCE OF CHS

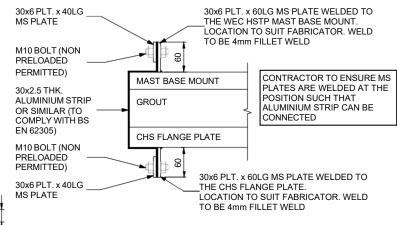
FILLET WELDS WEEN GUSSET AND TOP PLATE ONLY. PLATE AND PILE ARE INECTED WITH FULL-BUTT WELD. SPINE ES ARE TO BE SEALED H MASTIC AFTER DING AND PRIOR TO L COAT OF PAINT.

m THK STIFFENER TES (4NO).

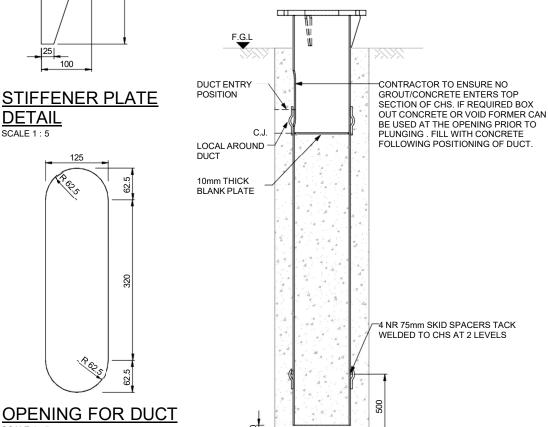
CONTRACTOR TO ENSURE NO GROUT/CONCRETE ENTERS TOP SECTION OF

HOLE TO BE SEALED TO PREVENT INGRESS OF WATER/SOIL INTO VOID

TO ALLOW Ø118 OD JPVC CABLE DUCT **NITH CONNECTOR** AT BOTH ENDS OF



ANK PLATE SHALL BE POSITIONED 50mm FROM THE BOTTOM G FOR DUCT.


TO ENSURE GROUT INGRESS (IF IALL NOT DAMAGE THE DUCT.

DETAIL PLAN OF BLANK PLATE

DIRECTION OF TRAFFIC -

DETAIL 1 - LIGHTNING PROTECTION

FOLLOWING INSTALLATION TO ENSURE THAT NO DEFORMATION OCCURRED DURING THE INSTALLATION

- 9. FOR LOCATION PLAN PLEASE REFER TO HIGHWAYS GENERAL ARRANGEMENT M1 J23A - 25 SHEET 10 OF 11 (HE614830-JAC-HGN-P015 AL ALLGENR-DR-CF-0010)
- 10. FOR COORDINATES REFER TO SERIES 1500 SCHEDULE.
- 11. FOR PSB REFER TO SERIES 400 SCHEDULE.
- 12. POSITIONAL AND VERTICAL TOLERANCES OF THE AUGERED HOLE SHALL BE IN ACCORDANCE TO 1600 AND ITS APPENDIX
- 13. CCTV MAST, BRACKET ARM, HOLDING DOWN THREADED RODS (INCLUDING NUTS) SHALL BE GALVANISED AND PAINTED IN ACCORDANCE WITH APPENDIX 19/1.

OVERALL EXTERNAL SURFACES PROTECTION SYSTEMS, TYPE G2A OR G2B. FOR GROUND SECTION SHALL COMPLY WITH TABLE 19/4C OF THE 1900 SERIES. THE "GROUND SECTION" OF THE PLUNGED PILE SHALL EXTEND FROM TOP PLATE TO 1m BELOW GROUND LEVEL.

14. * - PROJECT INSTRUCTION TO RETAIN REFERENCES ON DRAWINGS TO ALL CCTVS (INCLUDING AT NSSH) AND TO STATE 'IN ABEYANCE'.

ABBREVIATIONS:

CHS - CIRCULAR HOLLOW SECTION

- GONSTRUCTION LOINT

MS - MILD STEEL

F.G.L - FINISHED GROUND LEVEL

I.D - INTERNAL DIAMETER - OUTER DIAMETER O.D

HD - HOLDING DOWN

HSTP - HIGHWAYS SQUARE TROLLEY POLE

PCD - PITCH CIRCULAR

PLT. - PLATE LG - LONG THK - THICK

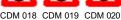
- 15. LOCATION OF CHAMBER AND ROUTING OF DUCTS SHOWN ARE TYPICAL AND DETAILS TO BE CONFIRMED WITH RELEVANT TECHNOLOGY DRAWINGS.
- 16. SETTING OUT POINTS AND FGL TO BE AS SHOWN IN TECHNOLOGY SCHEDULE, REFER TO HMC SERIES, FGLS SHOWN HERE ARE OBTAINED FROM TECHNOLOGY MODEL, IF THERE IS ANY DISCREPANCIES, TECHNOLOGY SCHEDULE SHALL TAKE PRECEDENCE.
- 17. VRS DETAILS ARE INDICATIVE. FOR DETAILS AND LAYOUT REFER TO THE RELEVANT HIGHWAYS DRAWINGS AND SERIES 400 SPECIFICATION APPENDICIES.
- 18. FOR MAST SPECIFICATIONS, REFER TO SERIES 1300.

101	03/01/24	SOTTABLE FOR AGGET TANGE OWG MINIO F GAT TO				1 00
Rev	Rev. Date	Purpose of revision	Drawn	Checkd	Rev'd	Apprv'd
Designe	er:	nsh				

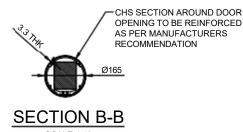
Client

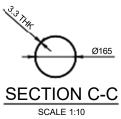
DOL 00/04/24 CHITARIE EOR ACCEPTANCE

smp alliance


NATIONAL EMERGENCY AREA RETROFIT M25 J23-27

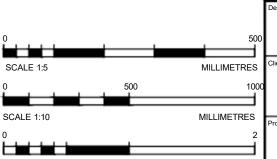
Drawing title:



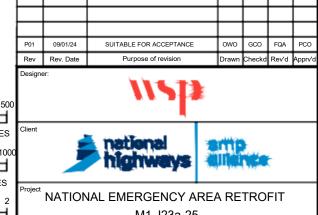


ACCORDANCE WITH BS4449:2005.

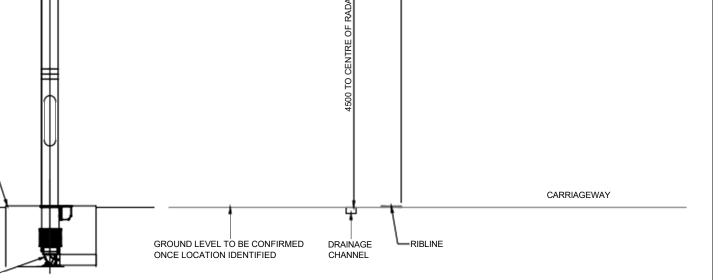
29. REFER TO SCHEME SPECIFICATION APPENDIX 17/1 FOR CONCRETE REQUIREMENTS.


SITE

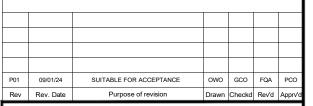
- 30. THE CONTRACTOR IS TO UNDERTAKE A THOROUGH VISUAL INSPECTION OF ALL AREAS COVERED IN THE SCOPE OF WORKS TO DETERMINE THE INTEGRITY, STABILITY AND SUITABILITY OF EXISTING ASSETS PRIOR TO PRICING THE ANY DISCREPANCIES OR CONCERNS TO BE IMMEDIATELY HIGHLIGHTED TO THE PROJECT MANAGER.
- 31. ALL DRAWINGS TO BE PRINTED IN COLOUR.
- 32. LIFTING EYES ARE TO BE REMOVED AFTER BASE INSTALLATION, LIFTING EYE SOCKETS ARE TO BE FILLED WITH R4 MORTAR TO BS EN 1504-3.LIFTING SOCKET TO BE SSLW16216 PRODUCT OR SIMILAR. MIN 50MM RECESSED LIFTING EYES TO BE USED IN ACCORDANCE WITH THE MANUFACTURERS RECOMMENDATIONS.


HEALTH AND SAFETY

- 33. SAFETY IS A PRIORITY. IF YOU HAVE ANY CONCERN ABOUT SAFETY IN THE CONSTRUCTION OR ULTIMATE USE OF THE WORKS DESCRIBED. PLEASE RAISE IT IMMEDIATELY WITH THE PROJECT MANAGER.
- 34. INSPECTION AND MAINTENANCE ACCESS TO BE PROVIDED DURING LANE CLOSURES USING HYDRAULIC ACCESS EQUIPMENT.
- 35. INSPECTION AND MAINTENANCE ACCESS TO BE PROVIDED DURING LANE CLOSURES USING HYDRAULIC ACCESS EQUIPMENT.
- 36. CANTILEVER POLE TO BE FABRICATED AND WELDED OFF SITE AND FOUNDATION TO BE PRECAST OFF SITE TO MINIMISE ON SITE WORKING.
- 37. CONTRACTOR TO UNDERTAKE UTILITY SURVEY PRIOR TO ANY EXCAVATIONS, AND USE EXCAVATION METHODS TO MINIMISE THE RISK OF UTILITIES STRIKE.


- CANTILEVER POLE TO BE DESIGNED IN ACCORDANCE WITH CD 354 AND THE RELEVANT EUROCODES.
- 10. THE SUPERSTRUCTURE IS TO BE DESIGN AS STRUCTURAL ALUMINIUM GRADE EN-AW 6060 T66 THAT WILL COMPLY WITH EN 755-1. ALUMINIUM POLE TO HAVE BRUSHED FINISH.
- 11. CHS SECTION SURROUNDING THE DOOR IS TO BE REINFORCED AS PER THE MANUFACTURERS RECOMMENDATIONS WITH BRUSHED FINISH.
- 12. M10 A4-80 STAINLESS STEEL DOUBLE LOCK NUT BOLTS WITH ISOLATING WASHERS ARE TO BE USED ON THE LEVELLING PLATE.
- 13. ALL BOLT HOLES TO BE NORMAL CLEARANCE UNLESS OTHERWISE STATED, ISOLATING WASHERS (NYLON OR SIMILAR) TO BE USED.
- 14. ALL ALUMINIUM WELDING TO BE IN ACCORDANCE WITH BS EN1011-4.
- 15. WELDERS AND WELDING PROCEDURES ARE IN ACCORDANCE WITH BS EN 287-2 AND BS EN 288-4 RESPECTIVELY.
- 16. ALUMINIUM POLE LOCK HINGE TO BE PERMANENTLY LOCKED IN PLACE.
- 17. ALL 52.54MM X 25MM SLOTTED CABLE ON SECTION C-C (THE UPPER PLATE) SHALL HAVE ROUNDED EDGES.

MILLIMETRES



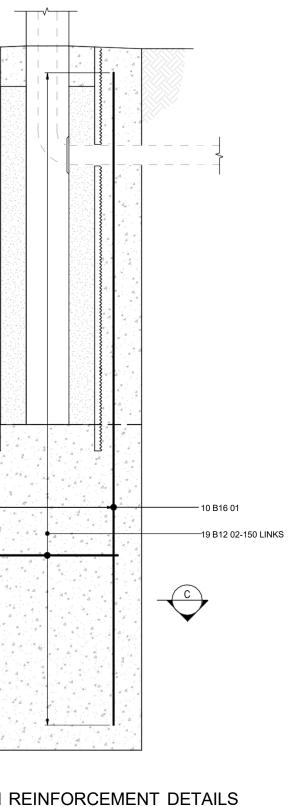
M1 J23a-25

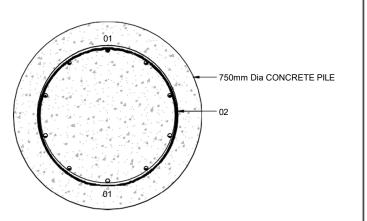
TYPICAL CARRIAGEWAY ARRANGEMENT (WITHOUT VEHICLE RESTRAINT SYSTEM)- ELEVATION

SCALE 1:25

Designer:

Client




smp alliance

Project N

NATIONAL EMERGENCY AREA RETROFIT M1 J23a-25

SECTION C-C

9. COLUMN SHALL BE GALVANISED AND PAINTED IN ACCORDANCE WITH APPENDIX 19/1.

OVERALL EXTERNAL SURFACE PROTECTION SYSTEMS G2A OR G2B AND GROUND SECTION REQUIREMENTS SHALL COMPLY WITH TABLE 19/4C OF THE 1900 SERIES.

10. THE ORIENTATION OF THE OPENING AT FOUNDATION POST TO SUIT THE DUCT LAYOUT AND/OR DUCT LAYOUT MAY NEED TO ALTERED TO SUIT THE COULMN OPENING DOOR AND OPENING AT THE FOUNDATION POST.

11. ABBREVIATIONS

CHS - CIRCULAR HOLLOW SECTION

CJ - CONSTRUCTION JOINT

F.G.L - FINISHED GROUND LEVEL

B.G.L - BELOW GROUND LEVEL I.D. - INTERNAL DIAMETER

PSB - POINT OF SETBACK

MIDAS - MOTORWAY INCIDENT DETECTION AND AUTOMATIC SIGNALLING

REINFORCEMENT NOTES:

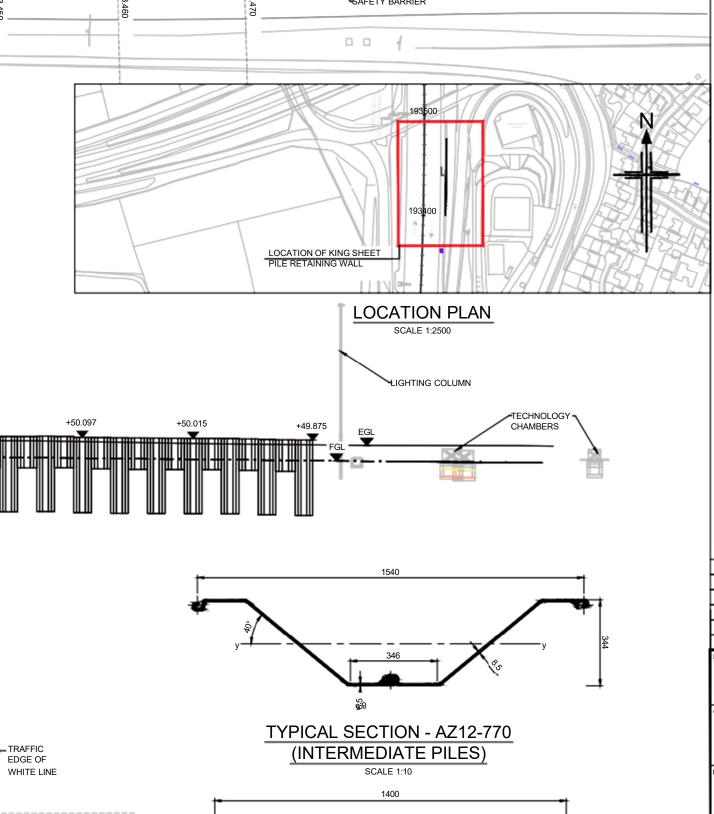
- 1. ALL DIMENSIONS SHOWN IN MILLIMETRES UNLESS STATED OTHERWISE.
- 2. NOMINAL COVER SHALL BE 95mm UNLESS NOTED OTHERWISE. BAR BENDING SCHEDULE HAS BEEN PREPARED UPON NOMINAL COVER.
- 3. REINFORCEMENT IS DETAILED AND SCHEDULED TO BS8666:2020.
- 4. REINFORCEMENT CALLED UP THUS: -

- 5. REINFORCEMENT GRADE SHALL BE GRADE B500B OR B500C RIBBED BARS IN ACCORDANCE WITH BS4449:2005.
- 6. ALL REINFORCEMENT SHALL COMPLY WITH ALL RELEVANT BRITISH STANDARD SPECIFICATIONS, AND BE PROVIDED BY FIRMS CERTIFIED UNDER THE U.K. SPECIFICATIONS FOR REINFORCING STEELS (CARES) SCHEME.

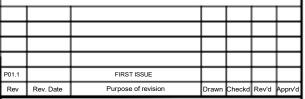
P01	23/02/24	FIRST ISSUE		GCO	FQA	PCO
Rev	Rev. Date	Purpose of revision	Drawn	Checkd	Rev'd	Apprv'd

Designer:

Client:


3.73 kNm

NATIONAL EMERGENCY AREA RETROFIT M1 J23a-25


PLANTED FOUNDATION PERFORMANCE SPECIFICATION PLANTED FOUNDATION REQUIREMENT

MAXIMUM ALLOWED NOMINAL BENDING MOMENT

MAXIMUM ALLOWED COLUMN HEIGHT, H 8m **DESIGN LOADING**

- PROJECT MANAGER SHALL BE INFORMED IMMEDIATELY AFTER THE CONTRACTOR IS AWARE THAT A TOE LEVEL CANNOT BE REACHED.
- CONSTRUCTION TRAFFIC TO BE LIMITED TO LESS THAN 10KPa LOADING AT THE BACK OF THE WALL.
- 10. THE SEQUENCE FOR CONSTRUCTION FOR ALL MAJOR ELEMENTS OF THIS STRUCTURE SHALL BE AS BELOW, UNLESS AGREED OTHERWISE BY DESIGNER:-
- a). ANY TREES THAT ARE CONSIDERED AT RISK OF THE DYING OFF AS A CONSEQUENCE OF THE WALL INSTALLATION SHALL BE REMOVED AS PART OF THE WORKS. THIS SHALL INVOLVE CUTTING THE TREES DOWN AND CORING OUT THE ROOTS.
- b). TOPSOIL THICKNESS SHOULD BE AS 3000 SERIES AND 600 SERIES.
- c). TREES THAT OBSTRUCT PILE INSTALLATION TO BE REMOVED PRIOR TO PILING.
- d). COMPLETE SHEET PILING.
- e). BACKFILL WITH 6N MATERIAL AND COMPACT IN ACCORDANCE WITH SHW.
- f). INSTALL PEDESTRIAN GUARD RAIL AND ANY OTHER FURNITURE.
- 11. THIS DRAWING TO BE READ IN CONJUNCTION WITH OTHER RELEVANT DRAWINGS AND SPECIFICATIONS APPENDICES 400, 500, 600, 700,1500, 1600, 1700 AND 1800.
- 12. MIN. 1.0M HIGH STEEL GUARD RAILS SHALL BE GALVANISED, DESIGN LOADING CLASS: CLASS 1 (500N/M FOR LONGITUDINAL MEMBERS), WITH CLASS: B FULL HEIGHT VERTICAL INFILL, IN ACCORDANCE WITH BS7818:1995.
- 13. FOR REQUIREMENT OR INCLUSION AND DETAILS OF WEEP HOLE WITHIN SHEET PILE RETAINING WALLS, PLEASE REFER TO GEOTECHNICS SERIES 1600 DRAWINGS.

Designer

Client

SILIB

Project NATIONAL EMERGENCY AREA RETROFIT M1 J23a-25

Annex I Contaminated Land Risk Assessment Methodology

The contamination assessment in this report is based on the Environment Agency's (EA) Land Contamination Risk Management (LRCM) (EA, 2020), which has been developed to provide the technical framework for applying a risk management process when dealing with land affected by contamination. An important thread throughout the overall process of risk assessment is the need to formulate and develop a Conceptual Site Model (CSM) for the site, which supports the identification and assessment of contaminant linkages. Development of the CSM forms the main part of preliminary risk assessment. If an unacceptable risk is determined and warrants further investigation (potentially including ground investigation) to establish what, if any contamination is present and, if possible, its extent, the model will be subsequently refined or revised as more information and understanding is obtained through the risk assessment process.

A risk assessment has been undertaken for the site to identify the main potential land contamination constraints to development based upon review of the site history, ground conditions from historical ground investigation data (BGS) and environmental setting. The method for risk evaluation has been based on guidance by CIRIA 'C552: Contaminated Land Risk Assessment - A Guide to Good Practice' (CIRIA, 2001), which is a qualitative method of interpreting the risks based on the magnitudes of both the potential consequence (severity) and the probability (likelihood) of the risk occurring.

The risk tables used to classify the consequence and likelihood of a risk, alongside descriptions of risk levels identified are presented in below. The risk matrix (see Table 33) has been used to estimate a risk score for each potential constraint to development (hazard) for potential land contamination constraints identified based on the definition outlined in Table 31 and Table 32

Table 31 Definitions of Hazard Levels

Level of Hazard	Description
Severe	Acute risk to human health likely to result in "significant harm" as defined by EPA 1990 Part 2A. Short term risk to sensitive water resource. Catastrophic damage to buildings/property. A short-term risk to a particular ecosystem or organism forming part of that system.
Medium	Chronic damage to Human Health. Pollution of sensitive water resource. Significant change to an ecosystem or organism forming part of ecosystem.
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services. Damage to sensitive buildings/structures/ services or the environment.
Minor	Harm, which may not be significant and may result in financial loss, or expenditure to resolve. No permanent health effects to human health (preventable by PPE).
	Easily repairable effects of damage to buildings, structures and services.

The levels of likelihood of occurrence are defined in Table 32 below.

Table 32 Definitions of Likelihood Levels

Level of Likelihood	Description
High	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution.
Likely	There is a pollutant linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.

Level of Likelihood	Description
Low	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period that such an event would take place and is even less likely in the shorter term.
Unlikely	There is a pollution linkage, but circumstances are such that it is improbable that an event would occur even in the very long term.

The calculation of final risk scores is illustrated in Table 33 and the levels of risk defined in Table 34.

Table 33 Risk Matrix

1 :1	Likalihaad		Consequence				
LIF	celihood	Severe	Medium	Mild	Minor		
Likelihood	High	Very high	High	Moderate	Moderate/low		
Likely		High	Moderate	Moderate/low	Low		
Low		Moderate	Moderate/low	Low	Very Low		
	Unlikely		Low	Very Low	Very Low		

Table 34 Definitions of Risk Levels

Level of Risk	Description
Very high	There is a high likelihood of the event occurring and having severe consequences. If the risk is realised it is likely to result in a substantial liability.
High	Likely that an event with medium or even severe consequences could arise. If the risk is realised it may result in a substantial liability.
Moderate	It is possible that an event could occur, and it is either unlikely and consequences may be severe or if it were to occur it is likely that consequences would be relatively mild. Investigation would normally be required to clarify the risk and determine the potential liability.
Low	It is possible that an event could occur, but it is likely that the consequences would be at worst mild.
Very Low	It is unlikely that an event could occur, and if it happened the consequences are likely to be at worst mild.

Annex J Ground Investigation Factual Report

Factual Ground Investigation Report

M1 J23A-J25 NEAR

Client: BMJV

Project Number: G230600

Date of Issue: 04/09/2023

Project Title	M1 J23A-J25 NEAR Project Ref			G230600		
Prepared By	Jade Baxter B	Jade Baxter BSc (Hons) FGS, Deliverables Engineer				
Checked By	Jono Wright I	Jono Wright MEng, Senior Engineering Manager				
Approved By	David Buckley CEng, Divisional Director					
Issue No	Status Reason		Date	Prep.	Check	Approval
001	DRAFT Awaiting Client Comment		07/08/2023	JB	1M	DB
002	FINAL	Final Report	04/09/2023	JB	JW	DB

1 | Page

Contents

1	Intro	oduction	3
	1.1	Appointment	3
	1.2	Site Location and Description	3
	1.3	Purpose of Investigation	3
	1.4	Scope of the Investigation	3
	1.4.3 1.4.3 1.4.4	4.1.1 Standard Penetration Tests (SPTs) 4.1.2 In-situ Hand Shear Vane and Pocket Penetrometer Testing	4 4 4 5
		4.4.3 Geotechnical	
2	Limi	tations of Study	7
3	Resu	ults of the Ground Investigation	8
	3.1	Published Ground Conditions	8
	3.2	Encountered Ground Conditions	8
	3.2.3 3.2.3 3.2.3	Cohesive Superficial Deposits	9 9 9
	3.3	In-situ Tests	
	3.3.: 3.4	1 In-situ Standard Penetration Tests (SPT)	
	3.5	Groundwater	
	3.6	Groundwater and ground gas monitoring	11
4	Refe	erences	12
ΑF	PENDI	CES	i
		(A: Drawings	
Αŗ	pendix	c B: Exploratory Hole Records	iii
Αŗ	pendix	C: Laboratory results	iii
Αŗ	pendix	CD: Core & Dynamic Sample Photographs	iv

1 Introduction

1.1 Appointment

Strata Geotechnics were appointed to undertake a ground investigation at the M1 J23A-J25 site in Derbyshire and Leicestershire by BM Joint Venture (BMJV) comprising Bam Nuttall Ltd and Morgan Sindall Construction and Infrastructure Ltd. The specification for the works was provided in the document HE614830-WSP-HGT-P015_AL_ALLGENR-RP-GE-0001, revision P02. Instruction to proceed with the work was received on 24/04/2023 order number S/PRS001/016.

This report presents a site-wide factual account of the site works undertaken.

1.2 Site Location and Description

The site is located on the M1 motorway between junctions 23A and 25, within north Leicestershire and south-east Derbyshire. The site is located between central grid references E447169, N336085 and E447522, N327089.

The site follows the motorway and is broadly rectangular in shape, it is approximately 9.2km in length. At the time of the investigation the site was occupied by the M1 motorway.

A site location plan is included in Appendix A.

1.3 Purpose of Investigation

The purpose of this investigation was to determine the subsurface ground and groundwater conditions at the site of the proposed infrastructure development. It is understood that the development will include new gantries. This information was obtained from a combination of intrusive investigation techniques and laboratory testing.

1.4 Scope of the Investigation

The Ground Investigation was carried out between 2nd May 2023 and 4th July 2023. The works comprised:

Rev 002 3 | Page

- 3 no. dynamic sampling boreholes with rotary core follow-on (denoted as BH1904N, BH1920N and BH1937N) to a maximum depth of 20.00m BGL.
- 7 no. dynamic sampling boreholes to a maximum depth of 10.00m BGL.

The works were undertaken as detailed by specification provided in document HE614830-WSP-HGT-P015_AL_ALLGENR-RP-GE-0001, revision P02.

The original specification detailed 12 no. dynamic sample borehole positions, all with rotary core follow-on once bedrock had been reached. During fieldwork, two of these positions (denoted as BH1850N and BH1825S) were descoped by the designer.

1.4.1 In-situ testing

1.4.1.1 Standard Penetration Tests (SPTs)

In-situ Standard Penetration Tests (SPTs) were conducted within the boreholes to ascertain 'N' values of the various lithologies encountered. This test acts as a proxy to ascertain the relative density of granular material. Relative density is determined in accordance with BS5930 table 10 for granular materials only. For fine grained or cohesive deposits consistency has been derived by hand field tests carried out by the logging engineer rather than from SPT results. SPT 'N' values detailed in this report have not been corrected for overburden pressure or hammer energy efficiency.

1.4.1.2 In-situ Hand Shear Vane and Pocket Penetrometer Testing

In-situ hand shear vane and pocket penetrometer tests were not requested by the client.

1.4.2 Service Clearance

Before any intrusive works, all the locations were scanned utilising a CAT (Cable Avoidance Tool) and associated generator by the main contractor.

1.4.3 Sampling Provision

During the investigation Disturbed (D) and Bulk (B), samples were recovered at specified depths and at every strata change for descriptive purposes and for geotechnical testing. Undisturbed thin-wall 100mm diameter (UT100) samples were also taken from cohesive strata for geotechnical laboratory testing. Liner (L) samples were taken from superficial strata and Core (C) samples were taken from bedrock for both descriptive and geotechnical testing purposes.

Rev 002 4 | Page

When suitable runs of core were present Core Sub-Samples (CSS) were taken to prepare for geotechnical testing. Environmental sampling (ES) was also requested by the client and taken at predetermined intervals and 1m into natural ground. The exploratory hole logs are presented in Appendix B.

1.4.4 Laboratory testing

Laboratory testing was requested by the client comprising of the following:

1.4.4.1 Geo-Environmental

The client has requested the following environmental testing.

- 11 no. Jacobs General Inorganics Suite
- 11 no. Jacobs Metals Suite
- 8 no. Jacobs TPH Suite
- 5 no. Jacobs Asbestos Suite

1.4.4.2 Geo-chemical

The has requested the following geo-chemical testing.

- 19 no. BRE Suite D Brownfield Pyrite present
- 1 no. Loss On Ignition (LOI)

1.4.4.3 Geotechnical

The client has requested the following geotechnical testing.

- 31 no. Moisture Content (MC)
- 51 no. Atterberg Limits (LL/PL) 4 Point
- 53 no. Particle Size Distribution (PSD) by wet sieve
- 4 no. PSD Sedimentation via Pipette
- 40 no. Density
- 1 no. Consolidated Undrained Triaxial (50, 100, 200kPa)
- 9 no. Small Shear Box
- 1 no. Large Shear Box
- 7 no. Point Load Index (10 determinations)
- 1 no. Unconfined Compressive Strength (UCS)

All the above tests have been carried out in accordance with the relevant standards at UKAS and MCERTS accredited laboratories. Standards adhered to include: BS1377:1990-2022, BS EN 17892 (where appropriate) and BRE SD1 for sulphate suites.

Rev 002 5 | P a g e

Samples collected during this investigation will be retained on the premises of Strata Geotechnics until week commencing 16th October 2023. Should any additional laboratory tests be required, please contact Strata Geotechnics prior to the above disposal date.

6 | Page

2 Limitations of Study

Strata Geotechnics are a wholly owned subsidiary of Van Elle Limited (VEL).

This report is for the sole use and benefit of BMJV in accordance with their brief and should not be relied upon or used by other parties without explicit prior written agreement from VEL. VEL disclaim any responsibility to the client and others in respect of any matters outside the above scope.

The investigation has been carried out to our understanding of current legislation and best practice; designed to produce information adequate for the appraisal of potential site conditions in relation to the proposed future use of the site. This investigation generally adhered to the guidelines outlined in BS5930:2015+A1:2020, Code of Practice for Site Investigations. In regard to testing of soils, the investigation generally adheres to guidance outlined in BS1377:1990 to 2022 and Testing of Soils for Civil Engineering Purposes and BS EN 17892 where appropriate.

New information, legislation, local authority planning conditions or changes to best practice may necessitate further fieldworks and revision/reissue of the ground investigation report after the date of this report issue. Further assessment, investigation or construction activities over time may reveal conditions that were not found during the period of these investigations and, therefore, could not have been taken into account in the preparation of the report. VEL reserves the right to amend their conclusions and recommendations in the light of further information that may become available.

Interpretation and recommendations should not be assumed valid for either adjacent areas of land or alternative land uses. Should the proposed site use change, the findings of this report should be re-assessed for the new end-use.

Intrusive investigations can only investigate ground beneath a small proportion of the total site area. Attention is drawn to the fact that the findings are based on data obtained from the borehole samples and in-situ testing. Where comments are made based on information obtained from third parties, VEL assumes that all third-party information is true and correct. No independent action has been undertaken to validate the findings of third-party information, unless specifically stated. The possibility of variation in ground conditions around the borehole should not be overlooked. As such these do not necessarily address all aspects of the ground behaviour on site. Any opinion or diagram of a possible configuration of strata beyond the borehole or extrapolated to greater depth is conjectural and given for guidance only, no responsibility is accepted as to its accuracy. No liability can be accepted for such variations.

This investigation was undertaken in good faith with regards to the request and requirements of BMJV at the time of quotation, it does not constitute a full interpretative report with regards to the geotechnical or environmental status of the site. There may be other sources of information not included in this report that hold data relevant to the site that could materially affect the conclusions made in this report.

Where applicable this report should be presented to the relevant statutory authority, planning body, or design engineers as soon as possible for their review, comment and/or acceptance.

It is possible therefore that the intrusive investigation undertaken by VEL, whilst fully appropriate, may not have encountered all significant subsurface conditions. Consequently, no liability can be accepted for conditions not revealed by the exploratory holes.

7 | Page

3 Results of the Ground Investigation

3.1 Published Ground Conditions

The published geological records available from the British Geological Survey indicates that the site is located upon a number of superficial deposits all of which from the Quaternary Period. The majority of these are sand and gravels. The list of superficial deposits is below.

- Egginton Common Sand and Gravel Member Sand and gravel
- Wanlip Member Sand and gravel
- Head Clay, silt, sand and gravel
- Hemington Member Silt and gravel
- Holme Pierrepont Sand and Gravel Member Sand and gravel
- Alluvium Clay, silt, sand and gravel
- Beeston Sand and Gravel Member Sand and gravel
- Eagle Moor Sand and Gravel Member Sand and gravel

The underlying solid bedrock geology is varied, with the site potentially passing through nine different formations, all from the Triassic Period. These bedrocks are listed below.

- Gunthorpe Member Mudstone (247.1-237 Ma)
- Gunthorpe Member Dolomitic siltstone (247.1-237 Ma)
- Diseworth Sandstone Sandstone (247.1-237 Ma)
- Tarporley Silstone Formation Siltstone, mudstone and sandstone (250-241.5 Ma)
- Helsby Sandstone Formation Sandstone (247.1-241.5 Ma)
- Edwalton Member Mudstone (237-228.4 Ma)
- Arden Sandstone Formation Sandstone (237-228.4 Ma)
- Branscombe Mudstone Formation Mudstone (228.4-201.3 Ma)
- Cotgrave Sandstone Member Sandstone (237-228.4 Ma)

3.2 Encountered Ground Conditions

3.2.1 Made Ground

Made Ground was encountered from the surface at all exploratory locations. Black bituminous material was found from ground level in all borehole locations, but BH1920N, to a depth of 0.30m BGL. A concrete bound material is beneath the bituminous material in all locations to a maximum depth of 1.30m BGL. Boreholes BH1877N, BH1902N, BH1904N and BH1933S all have sandy, gravel of quartz and quartzite beneath the concrete to a maximum depth of 1.20m BGL. The remainder of the boreholes, concrete is immediately on top of natural superficial deposits.

Rev 002 8 | Page

The made ground in BH1920N comprises sandy, gravelly clay to a depth of 1.60m BGL. Beneath the clay is silty gravelly sand to a maximum depth of 3.90m BGL.

3.2.2 Cohesive Superficial Deposits

Underlying the made ground reddish brown firm to very stiff, occasionally soft, clay is encountered. The clay is mostly sandy and gravelly, with rare cobbles and boulders. It occurs as shallow as 1.00m BGL, with a deepest occurrence of 16.00m BGL.

3.2.3 Granular Superficial Deposits

Within borehole locations BH1902N and BH1904N, beneath the made ground is loose to medium dense sand and gravel. Further sand and gravels were encountered in a number of borehole locations, noticeable within BH1877S, BH1896S and BH1912S where the gravel was very dense with the need of rotary open hole to penetrate it. BH1877S also contained boulders with the gravel strata. These deposits were recorded at depths ranging from 0.90m BGL to 14.85m BGL.

3.2.4 Solid Geology

During the investigation mudstone and sandstone bedrock were encountered within three and two locations respectively. The mudstone bedrock occurred at depth ranges of 4.80m BGL to 16.90m BGL, with strengths of very weak to weak.

The sandstone was encountered in BH1904N at a depth of 16.90m BGL to 20.00m BGL, it was also encountered in BH1937N at a depth of 3.30m BGL to 4.10m BGL.

Please refer to the exploratory hole logs in Appendix B for a more detailed account of the conditions encountered during the investigation.

3.3 In-situ Tests

3.3.1 In-situ Standard Penetration Tests (SPT)

Standard penetration tests (SPT's) were carried out with the use of a normal solid cone or split spoon sampler in the solid deposits encountered within the boreholes in order to determine the relative strength / density of the materials tested. Where the full penetration depth could not be achieved, the bottom sampling depth is indicated as less than 0.45m from the top (start

Rev 002 9 | Page

of test), with the actual depth of penetration being recorded in millimetres. The results are shown as 'N' values on the graphic borehole record sheets, these have not been corrected for hammer efficiency or over burden pressure. Where possible a disturbed sample was collected also.

A summary of SPT results by geological unit is presented below:

Table 3-1 – Summary of SPT results.

Strata	SPT Range ('N')	Notes
Made Ground	15 – 36	Indicative of medium dense to dense strata
Cohesive Superficials	15 - 50	Indicative of firm to very stiff conditions
Granular Superficials	10 – 50+	Indicative of loose to very dense strata
Mudstone	50+	
Sandstone	50+	

3.4 Laboratory Testing

The laboratory test results so far indicate that the soils at the site are:

Table 3-2 – Summary of laboratory testing results.

Geotechnical	Test Results Range
Moisture Content %	2.7 - 24
Plasticity Index %	NP - 22
Effective Cohesion (kPa)	17.29
Effective Friction (deg)	39.7
Density (Bulk Mg/m³)	2.00 – 2.33
Density (Dry Mg/m³)	1.61 – 2.19
Point Load Index Is50 (MPa)	0.05 – 3.86
Geochemical	Test Results Range
рН	6.1 – 9.7
Water Soluble sulphate (mg/l)	<10-81
Total Sulphate (mg/kg)	<100 - 600
Total Sulphur (mg/kg)	<100 - 800
Total Sulphur (%)	<0.01 – 0.08
LOI (%)	3.4

10 | Page

3.5 Groundwater

Groundwater was not encountered during this investigation.

Water strikes are detailed on the exploratory hole logs presented in Appendix B.

Changes in groundwater level may occur for a number of reasons, including seasonal effects and variations in drainage. The long term groundwater elevation may increase or decrease at some time in the future. Groundwater direction has not been determined as part of this report.

3.6 Groundwater and ground gas monitoring

Combined groundwater monitoring installations were not requested by the client.

Rev 002 11 | P a g e

4 References

- British Geological Survey (BGS formerly the Institute of Geological Sciences (IGS))
 www.bgs.ac.uk and BGS Geoindex: http://mapapps2.bgs.ac.uk/geoindex/home.html.
- BS 5930:2015 A1 2020 Code of Practice for Site Investigations.
- BS EN ISO 14688 Identification, Description and classification of soils
- BS EN ISO 14689 Identification, Description and classification of rocks
- BS1377:1990-2022, Methods for Testing of Soils for Civil Engineering Purposes.
- BS EN ISO 17892, Geotechnical investigation and testing. Laboratory testing of soil
- BS 8574:2014- Geotechnical Data Management

Rev 002 12 | P a g e

APPENDICES

i | P a g e

Appendix A: Drawings

Rev 002 ii | Page